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Abstract

Self-training has been shown to be helpful in
addressing data scarcity for many domains, in-
cluding vision, speech, and language. Specifi-
cally, self-training, or pseudo-labeling, labels
unsupervised data and adds that to the train-
ing pool. In this work, we investigate and
use pseudo-labeling for a recently proposed
novel setup: joint transcription and translation
of speech, which suffers from an absence of
sufficient parallel data resources. We show
that under such data-deficient circumstances,
the unlabeled data can significantly vary in do-
main from the supervised data, which results
in pseudo-label quality degradation. We in-
vestigate two categories of remedies that re-
quire no additional supervision and target the
domain mismatch: pseudo-label filtering and
data augmentation. We show that pseudo-label
analysis and processing in this way results in
additional gains on top of the vanilla pseudo-
labeling setup providing a total improvement
of up to 0.4% absolute WER and 2.1 BLEU
points for En—De and 0.6% absolute WER and
2.2 BLEU points for En—Zh.

1 Introduction

Semi-supervised learning methods have been a cor-
nerstone in addressing annotated data scarcity by
taking advantage of and incorporating the relatively
larger amounts of unlabeled" data in the training
process. Self-training is a relatively early instance
of such methods (Scudder, 1965). Conceptually,
self-training is simple: first, a base model is trained
using limited labeled data. The base model is then
used to predict labels for the unlabeled data. The
generated labels are termed “pseudo-labels” (PLs)
to signify their predicted nature, as opposed to gold
supervised data. Finally, the pseudo-labels are com-
bined with the initial seed supervised data to train

*Work done during an internship at Apple.
'We use descriptors “(un)labeled” and “(un)supervised”
interchangeably throughout this paper.

a new model, and this process is repeated until no
further improvement in performance is observed.

Self-training, or pseudo-labeling interchange-
ably, has been shown to be effective to improve
upon fully supervised baselines in low-resource set-
tings for several sequence-to-sequence (seq2seq)
tasks, such as machine translation (MT) (Zhang
et al., 2018; He et al., 2020; Jiao et al., 2021), end-
to-end speech recognition (ASR) (Xu et al., 2020;
Park et al., 2020; Kahn et al., 2020; Likhomanenko
et al., 2021), end-to-end speech translation (ST)
(Pino et al., 2020), and more recently speech-to-
speech translation (Dong et al., 2022). In this work,
we study pseudo-labeling for a recently proposed
new setup, joint speech transcription and trans-
lation (STT) (Anastasopoulos and Chiang, 2018;
Sperber et al., 2020): a setup that is of interest in
use cases where both the transcript and translation
of a speech signal are returned to the user. As we
describe in detail later in §2.1, the fully supervised
data for modeling end-to-end joint transcription
and translation is triples of form (s, tc, tl) where s
is the speech signal, tc is the transcript, and ¢/ is
the translation. As that is especially costly to come
by, STT also seems to have the potential to benefit
from pseudo-labeling.

Our investigations show that while pseudo-
labeling (PL) is indeed helpful, the quality of
pseudo-labels that bring about the benefits is subpar.
Upon inspecting the supervised and unsupervised
sets, that proves to be not surprising: with limited
amounts of supervised data, it is likely that the su-
pervised and unsupervised sets differ in domain,
impacting the quality of pseudo-labels. Specifi-
cally, in our case, we identify two causes lead-
ing to domain mismatch with out-of-distribution
unlabeled data: difference between the sequence
length ranges and vocabulary sets of the supervised
and unsupervised sets. In this work, we ask if we
can specifically counteract the domain mismatch
to reach a set of pseudo-labels of higher quality,
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and if that higher quality, in turn, translates into a
better overall performance of pseudo-labeling.

First, we propose PLs filtering based on sim-
ple data-centric criteria inspired by Likhomanenko
et al. (2021). While PLs filtering is a common com-
ponent of PL algorithms, it is usually based on the
model prediction scores (Kahn et al., 2020; Park
et al., 2020; Zhang et al., 2021, 2022), which may
not directly target the identified domain mismatch
aspects, e.g., different sequence length ranges, as
our proposed filtering does. Second, we propose
augmenting the supervised data by concatenating
randomly-picked samples to create new ones and
adding them to the supervised set. These two are
essentially different in nature: while filtering in-
creases the overall quality by removing samples
with PLs that are likely to be faulty, augmentation
does so by extending the supervised set and gen-
erating better labels in the first place. Our results
confirm that indeed this distinction in nature gets re-
flected in different ways filtering and augmentation
improve the performance of pseudo-labeling.

The outline of this paper is as follows. We pro-
vide some background in §2 and detail the exper-
imental setup in §3. Then, in §4, we report and
discuss the results from vanilla pseudo-labeling,
the observation of domain mismatch, and the gains
brought about by filtering and augmentation.

Our contributions are: 1) We specifically focus
on PL in the face of domain mismatch between the
supervised and unsupervised sets; 2) We investigate
the mitigation of the effect of domain mismatch
through two approaches: PLs filtering and augmen-
tation by concatenation and demonstrate how they
improve PL in different ways. These approaches
can be repurposed wherever PL is considered as a
solution; 3) We apply PL modified with those ap-
proaches specifically to a novel setup, joint speech
transcription and translation, and report gains on
top of the vanilla PL for STT.

2 Background

Our work studies a pseudo-labeling solution for
end-to-end joint speech transcription and transla-
tion. In this section, we provide the background
for these two components involved in the study,
namely speech transcription and translation and
pseudo-labeling.

2.1 Speech Transcription and Translation

Our task of speech transcription and translation
(STT) is closely related to script recognition (ASR)
and speech translation (ST). ASR is the task of
generating the text equivalent to an audio speech
signal. Meanwhile, ST aims to generate the text
equivalent to the signal in a target language other
than the language of the speaker. In contrast, STT
generates both the transcript and the translation
Jjointly in an end-to-end fashion. STT is particularly
appealing in cases where both the transcript and
translation are to be displayed to the user.
Formally, STT can be modeled as follows: given
a speech signal (s), the model generates the tran-
script (tc) and translation (¢/) concatenated together
in the output as one single sequence: s — tc_tl
(Sperber et al., 2020). This formulation is sim-
ple to implement as it casts STT as an instance of
the well-known seq2seq modeling and results in
a single end-to-end model to be stored on device.
Furthermore, as reported by Sperber et al. (2020),
this formulation results in a reasonably consistent
transcripts and translations as the coupled infer-
ence ensures that translations are conditioned on
the transcripts. In our experiments, we use this STT
formulation as it offers a good trade-off between ac-
curacy, computational efficiency, and consistency.
However, the major challenge that such model-
ing presents is insufficient data resources: three-
way parallel samples of form (s, tc, tl) are expen-
sive to annotate. Annotation would require multi-
lingual annotators and would be time-consuming.
To alleviate this limitation, we study how pseudo-
labeling can be employed effectively to combat
data scarcity in this setting. We provide a back-
ground on pseudo-labeling in the next section.

2.2 Pseudo-labeling

Pseudo-labeling (PL), often referred to as self-
training in the literature, addresses the data insuf-
ficiency issue by taking advantage of much larger
amounts of unsupervised data. More precisely, as-
sume a labeled set L = {x;, y;} and an unlabeled
set U = {x;}, where |U| > |L|, are available
(note that in the case of STT, y; is actually a tu-
ple consisting of the transcript and the translation:
y; = (tci,tl;)). PL starts with training an initial
model M in a supervised manner using L. Then,
using M, it generates pseudo-labels (predictions)
for U. It then incorporates the pseudo-labels (PLs)
to create a new model M ", which hopefully super-
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Algorithm 1 Pseudo-labeling

Require: L = {z;,y;} and U = {x;}
: Train a base model M on L

: while The desired number of rounds or convergence has not been reached do
Generate the pseudo-labeled set: P = {z;, M(z;) | z; € U}

Replace M with M+
: end while

1
2
3
4: Obtain M ™ by fine-tuning M on L U P
5
6
7: return M

sedes M in performance. M can then replace M
to repeat this process for as many rounds as desired,
or until no further gains are observed. Although
conceptually simple, several key decisions need to
be made before PL can be applied.

How should M be created? M ™ can be trained
from scratch (Park et al., 2020) or alternatively ob-
tained by continuously fine-tuning M (Xu et al.,
2020) using the labeled set combined with the
pseudo-labeled set. As we later report in §4, in
our experiments, fine-tuning consistently outper-
forms training from scratch. Hence, we opt for
fine-tuning in our experiments.

Should PL be applied to supervised set? For the
PL stage, we consider and experiment with labeling
the supervised set in addition to the unsupervised
set and monitor for any potential improvements.
Similar to the previous item, as we later show in
§4, using PLs for the supervised set does not prove
to be beneficial in our experiments. Therefore, we
generate predictions only for the unlabeled set.

In what way should the pseudo-labels be used to
update existing models? For instance, He et al.
(2020), at each round, first train a model from
scratch on the pseudo-labeled set, and then fine-
tune it on the supervised set to obtain the final
model for that round. Alternatively, Xu et al. (2020)
combine the two sets and use a hyper-parameter to
have control over the relative weight of the super-
vised portion against the pseudo-labeled portion.
To keep our setup simple, we opt for combining the
sets and treating them equally.

With the key factors outlined above, Algorithm 1
shows how we carry out vanilla pseudo-labeling
for our experiments. All results we report in §4.1
follow this algorithm.

3 Experimental Setup
3.1 Data

In this work, we use two publicly available multi-
lingual speech translation datasets which, thanks
to the nature of their creation, include transcripts:
CoVoST V2 (Wang et al., 2020) and MuST-C (Cat-
toni et al., 2021). CoVoST V2 is created by amend-
ing the validated audio clips and transcripts from
the Common Voice crowd-sourced ASR corpus
(Ardila et al., 2020) with professional translations.
It covers translations from English into 15 lan-
guages and from 21 languages into English. MuST-
C is created by automatically aligning the audio
segments from TED talks to corresponding man-
ual transcripts and translations (available from the
TED website), which are also aligned. It covers
translations from English into 14 languages.

We conduct our experiments across two lan-
guage pairs: English-German (En-De) and
English—Chinese (En—Zh), which are available in
both CoVoST and MuST-C. In all our experiments,
we designate CoVoST as the supervised set, and
MuST-C as the unsupervised set. Note that this
means our objective is to reach the best perfor-
mance possible on the CoVoST evaluation set.
While we also have the gold transcripts and transla-
tions (labels in the STT problem) for MuST-C, we
do not use them and practically treat MuST-C as
an unlabeled set. We only use MuST-C gold labels
for analysis and pseudo-label quality assessment.
We provide the statistics of our data in Table 1.

3.2 Model

To extract speech representations, we first use pre-
trained wav2vec 2.0 BASE (Baevski et al., 2020)?
which results in 20ms per frame. On top of this
extractor, we use a stack of three convolutional lay-

We wuse a model provided by
Face Transformers (Wolf et al.,
facebook/wav2vec2-base-960h

Hugging
2020):
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CoVoST MuST-C
Train Eval Train Eval
En-De 233k 155k 251k 1.4k
En—7h 233k 15.5k 359k 1.3k

Table 1: Amount of data available (number of sen-
tences), per language pair and corpus.

ers to downsample the input further, resulting in
160ms per frame: each layer has a kernel of 3 and a
stride of 2. Next we attach encoder-decoder Trans-
former (Vaswani et al., 2017) with pre-layer nor-
malization, a hidden dimension of 1024, dropout
of 0.1, and five and three layers of encoder and de-
coder, respectively, following Sperber et al. (2020).
Positional embeddings (absolute sinusoidal) are
only added on the decoder side. The whole model
is trained in an end-to-end manner, including the
wav2vec 2.0 feature extractor. On the output side,
as described in §2.1, the decoder generates one
sequence consisting of the transcript and the trans-
lation concatenated together.

In terms of input prepossessing, we remove in-
stances where speech is either shorter than 0.5s or
longer than 15s, or either the transcript or the trans-
lation is longer than 50 words. After that, we use
SentencePiece (Kudo and Richardson, 2018) for
subword tokenization. The vocabulary is created
using only the supervised set. We use a vocabulary
size of 1020 and 8188 in the case of En—De and En—
Zh, respectively. The transcription and translation
vocabulary is shared in both cases.

The objective function during optimization is
a weighted sum of the CTC loss (Graves et al.,
2006) on the encoder side and the cross-entropy
loss on the decoder side. For both training a base
model and fine-tuning an existing checkpoint on
the union of the labeled set and the pseudo-labeled
set, we use Adam optimizer (Kingma and Ba, 2015)
with peak learning rate of 0.0005 after 500 warmup
steps, coupled with inverse square root learning rate
scheduling. We train for a total of 100 epochs and
use SpecAugment (Park et al., 2019) in the same
way and with the same parameters as wav2vec 2.0.
After training, pseudo-labels are generated with a
beam size of five.

For both language pairs, we use the dev sets pro-
vided by the corpora as the held-out evaluation set.
For scoring (and only for scoring), we remove dia-
critics and punctuation, and report our performance

B Retrain, not Fine-Tune
[ Label Sup. & Unsup.
Best Setting

CoVoST BLEUt

CoVoST WER}

Figure 1: Performance of different PL settings on our
supervised set, CoVoST. In each case, PL is done for
three rounds. The best setting fine-tunes the checkpoint
from the last round on the supervised set and the pseudo-
labels for the unsupervised set.

in terms of word error rate (WER) of transcripts
and BLEU of translations using beam size of five
with SACREBLEU.?

Our implementation is built upon PyTorch
(Paszke et al., 2019), xnmt (Neubig et al., 2018),
and Lightning (Falcon and The PyTorch Light-
ning team, 2019).

4 Results and Discussion

We present our results in this section in the follow-
ing order: §4.1 establishes vanilla pseudo-labeling
performance, which leads to our analysis of the
domain mismatch between the supervised and un-
supervised sets. §4.2 and §4.3 then describe the two
categories of remedies we devise to mitigate the
effect of domain discrepancies on pseudo-labeling.
As mentioned in §2.2, this is all using the best
setting we were able to establish during our pilot
experiments: at each pseudo-labeling round, we
1) label only the unsupervised data, and 2) fine-
tune the existing checkpoint on the combination of
supervised and pseudo-labeled data. We conduct
our pilot experiments on En—De. We were able
to confirm that the aforementioned setting consis-
tently beats the rest over several rounds of pseudo-
labeling. Figure 1 illustrates the lead of the best
setting over others in the last round of our experi-
ments. The same pattern holds across all rounds.

4.1 Vanilla Pseudo-Labeling

In Table 2, we include the results of vanilla PL, as
in Algorithm 1, with no modifications. We report

3Hash: case.lc+numrefs. 1+smooth.4.0+tok.{ 13a,zh} for
{En-De,En-Zh}.
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En-De En-Zh
Base Model R1 R2 R3 Bound Base Model R1 R2 R3 R4 Bound
QCoVoST WER | 154 154 150 15.0 14.4 14.8 146 148 147 146 13.7
BLEU 1 22.8 238 245 245 25.5 28.7 294 30.0 305 30.7 31.9
MuST.C WER | 45.1 452 29.7 284 9.6 479 462 438 428 372 8.9
BLEU © 73 9.1 9.7 9.6 22.4 9.1 99 96 90 83 18.9

Table 2: Vanilla pseudo-labeling results over each round up to saturation. CoVoST, our supervised set, is distin-
guished with Qsymbol to signify it is intended to improve performance on it. MuST-C is the unsupervised set.
“Bound” refers to the performance of fully supervised models trained on the combination of CoVoST and MuST-C

with their gold labels.

WER and BLEU for En-De and En—Zh across both
corpora. To reiterate, CoVoST (distinguished by
the magnifying glass symbol Q) is our designated
supervised set, and hence, what we are trying to
boost performance on. MuST-C scores, on the
other hand, are reported for the sake of analysis;
the metrics are to assess the quality of PLs.

We report the performance of the initial model
(the fully supervised baseline, Model M on line 1
of the Algorithm 1) in the “Base Model” column.
Scores from each pseudo-labeling round, thereafter,
appear on the corresponding “R” column. To have
an upper bound of what is possible with the collec-
tive data if pseudo-labels were predicted perfectly,
we train a single model using both corpora in a
supervised manner. Those numbers are provided
in the “Bound” column. Note that this is the only
case for which MuST-C gold labels are used.

First and foremost, in confirmation with the lit-
erature, vanilla pseudo-labeling is effective. On
QCoVoST, it is able to improve the base model by
0.4% absolute WER and 1.7 BLEU points on En—
De, and 0.2% absolute WER and 2.0 BLEU points
on En—-Zh. However, with a closer look at the qual-
ity of pseudo-labels at each round (i.e., MuST-C
scores), it is evident that the generated labels are
far from ideal quality.

Our investigation into the reasons as to why that
is the case points to two root causes that indicate
QCoVoST and MuST-C are significantly different
in domain in the following aspects:

Length mismatch between corpora.  As shown
in Figure 2, MuST-C speech sequences are gener-
ally longer, which also results in longer transcripts
and translations.

Vocabulary mismatch between corpora. We
were also able to identify discrepancies between
the vocabulary of words between the two corpora.

—— CoVoST - speech
MuST-C - speech

Figure 2: The PDF of input audio lengths (in seconds)
estimated using kernel density estimation. MuST-C
speech signals are longer in duration.

For instance, on the English side, MuST-C and
CoVoST each have roughly 64k and 121k unique
types, respectively. Of those, only 38k types are
in common, with CoVoST having more probability
mass on rare (tail-end of the Zipfian distribution)
vocabulary types. Specifically, even if we train
plain machine translation systems on QCoVoST
transcripts and translations (and take the audio out
of the picture), the En—-De system scores only 12.4
BLEU on MuST-C En-De, and the En—Zh system
scores only 9.6 BLEU on MuST-C En—Zh.

Following these observations, we next demon-
strate that it is possible to counteract the domain
mismatch and enhance the quality of labels to boost
the effectiveness of pseudo-labeling.

4.2 Direction #1: Data-Centric Filtering

Per §2.2, in vanilla PL, we use all the generated
labels to update the model. Alternatively, PLs can
be filtered to remove predictions of less quality. Re-
cent works (Park et al., 2020) rely on confidence
scores from the model to filter the pseudo-labels,
which require careful and proper normalization.
Kahn et al. (2020) use a combination of heuristic-
based and confidence-based filtering. In our case,
similar to Likhomanenko et al. (2021), we propose
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En-De En-Zh
QCoVoST MuST-C QCoVoST MuST-C
WER | BLEU? WER | BLEU?
Bound 14.4 25.5 WER | BLEU T 13.7 31.9 WER | BLEUT
Vanilla PL 15.4/15.0 23.8/24.5 45.2/28.4 9.1/9.7 14.6/14.6 29.4/30.7 46.2/37.2 9.9/9.9
Ratio to Gold  15.3/15.0 24.1/24.7 22.8/15.8 9.6/10.4 14.5/14.2 29.5/30.5 23.2/17.4 10.0/10.2
Ratio KDE 15.1/15.0 24.2/24.5 30.5/27.1 9.4/10.1 14.3/14.2 29.8/30.7 30.8/21.7 10.8/10.8
LASER 15.2/15.0 24.1/245 34.7/27.6 9.6/10.0 14.6/14.3 29.4/30.6 40.8/20.3 10.7/11.2
Augmentation 15.3/15.3 24.9/24.9 33.8/22.2 11.5/11.8 14.6/14.3 30.1/30.9 48.7/25.4 11.9/11.9

Table 3: Improved results using remedies recommended. Each cell includes the performance obtained from the first
round and the best performance obtained using the corresponding method (R1/Best). We also include bounds from
Table 2 for QCoVoST for comparison. We use bold font to mark the best performance on QCoVoST.

and only rely on data-centric metrics to specifi-
cally target domain-mismatch and select a subset
of pseudo-labels to use in the next round: transcript
length to audio length ratio and transcript and trans-
lation LASER embeddings cosine similarity.

4.2.1 Length Ratio Distribution

A sign of flawed inference and faulty output in
seq2seq models has been known to be looping
(Chorowski and Jaitly, 2017): the model gener-
ates the same n-gram repeatedly. We were also
able to identify looping occurring frequently in the
PLs and resulting in long transcripts. While the
supposed lengths of the correct transcripts are un-
known, the length of the input audio can be used
as an indicator: heuristically, the shorter the input
audio, the shorter the transcript.

To take advantage of this signal with no supervi-
sion overhead, we estimate the probability density
function (PDF) of the joint probability distribu-
tion over the input audio lengths and predicted
transcripts lengths using kernel density estima-
tion (KDE). At each PL round then, we only keep
the top 90% (found empirically) of the most prob-
able transcripts. Figure 3 visualizes the effect of
such filtering. Instances that have the highest PDF
values, have a similar ratio of transcript length to
audio length to that of gold transcripts. Hence,
this can be a useful metric that needs no additional
supervision.

To gauge the maximum potential effectiveness
of length ratio-based filtering, we also conduct ex-
periments with filtering based on the ratio of the
generated transcript length to the gold transcript
length, where we only keep those with the length
within 0.9 and 1.1x the length of the correspond-

ing gold transcript. Note that this only has discus-
sion purposes, as it uses supervision in the form of
access to the length of the gold transcripts.

Table 3 (rows “Ratio to Gold” and “Ratio KDE”)
shows how our length ratio-based filtering methods
compare against plain vanilla pseudo-labeling. For
each method, we run the same number of rounds as
we did for vanilla pseudo-labeling in Table 2. We
report the performance of the first round and the
best round (first round/best round in table cells) of
each method. Results from each separate round are
comprehensively provided in Appendix A.

On QCoVoST, “Ratio KDE” speeds up gains
relative to vanilla pseudo-labeling despite incorpo-
rating fewer labels (only 90%): 15.1 vs. 15.4 WER
and 24.2 vs. 23.8 BLEU at the first round in the
case of En—De. The same pattern holds for En—Zh.
Looking at the scores on MuST-C, it is evident that
moderating the quality of pseudo-labels in this way,
does indeed translate into better pseudo-labels for
future rounds and improved performance on the
supervised set. Also, “Ratio to Gold”, benefiting
from a form of supervision, expectedly results in
better quality on the unsupervised set. However, on
the supervised set, it performs similarly to “Ratio
KDE”, demonstrating that “Ratio KDE” is effective
enough at removing detrimental pseudo-labels.

While “Ratio KDE” performs clearly better at
earlier rounds, it saturates at the same performance
as vanilla pseudo-labeling, which uses all the la-
bels (with being better only in the case of En—Zh
WER by 0.4% absolute WER). So it is especially
beneficial when available resources can only cover
a small number of pseudo-labeling rounds.
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Figure 3: Plots of transcript lengths (y-axis, length in words) against input audio lengths (x-axis, length in seconds)
for gold transcripts (top) and generated transcripts during pseudo-labeling (bottom). Datapoints in the bottom plot
are color-coded based on their PDF value as estimated by KDE, with lighter colors indicating higher values. The
most probable mass forms a pattern similar to that of gold transcription. Therefore PDF values can be effective for

filtering pseudo-labels of less quality.

4.2.2 LASER Score

Our second filtering method relies on the relation-
ship between the generated translations and tran-
scripts (this is in contrast to the previous method,
which relied on the relationship between the gener-
ated transcripts and audio signals). For this, we
use the pretrained LASER model (Artetxe and
Schwenk, 2019), a multilingual sentence encoder,
to embed the generated transcripts and translations
in a multilingual space to rank pairs based on the
cosine similarity and hold onto only the top 90%.
Given that LASER lies at the center of this, the
quality of representations of different languages in
its multilingual space can affect the degree of gains
it can bring about.

Per Table 3, row “LASER”, LASER-based filter-
ing improves performance on the unsupervised set
(and hence, the quality of the PLs) all across the
board. Those improvements translate into better
performance on the supervised set for both En—
De and En—Zh. Importantly, the improvement pat-
tern is similar to that of length ratio-based filter-
ing: more gains at earlier rounds, saturating at the
same performance as the vanilla PL. However, as
opposed to ratio-based filtering, which needs no ad-
ditional supervision, the LASER model is trained
using a massive amount of bitext and benefits from
supervision in that way. But that does not result
in enhanced performance compared to ratio-based
filtering. So while LASER scores present a sec-

ond avenue for pseudo-label filtering, "Ratio KDE"
incurs strictly no supervision overhead, is simple,
and is the best-performing filtering method.

4.3 Direction #2: Data Augmentation

Our previous filtering methods remove PLs so that
the remaining subset has a higher quality. However,
if we can generate better labels, to begin with, we
can discard none and retain all the labels. Here,
to improve the quality of the labels generated by
the base model at no extra supervision cost, we
use data augmentation by concatenation to directly
target the reported length mismatch between cor-
pora in §4.1. To do so, we create an augmented
set from our supervised set by randomly selecting
a pair of samples and constructing a new sample
by concatenating the audio signals as the input and
concatenating corresponding transcripts and trans-
lations as output. In our experiments, we build a set
of 20k augmented samples as such using the origi-
nal QCoVoST data. After training the base model,
before generating PLs, we first further fine-tune the
base model on the union of the original supervised
set and the augmented set. We then proceed as in
vanilla PL with the union of the original data and
the augmented set as our supervised training set.
As shown in Table 3, row “Augmentation”, al-
though no generated labels are thrown away, the
quality of PLs is indeed increased in the subsequent
round. This is especially pronounced in the case
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Ref. Transcription

completely reduced.

It means reduce your carbon dioxide emissions with the full range of choices that
you make, and then purchase or acquire offsets for the remainder that you have not

Ratio KDE

It means reduce your carbon dioxide emissions, with the full range of choices that you
make, and then purchase or purchase or purchase.

Augmentation

completely reduced.

It means reduce your carbon dioxide emissions. With the full range of choices that
you make. And then purchase or acquire offsets for the remainder that you have not

Table 4: Pseudo-labels generated by “Ratio KDE” and “Augmentation”. The reference is also provided. The label
in the case of “Ratio KDE” gets filtered. But “Augmentation” gets to learn from it in the next round.

of translations. We provide an example evidencing
this in Table 4. Here we compare the PLs generated
by “Ratio KDE” and “Augmentation” for an utter-
ance in MuST-C against each other. For a longer
input, “Ratio KDE” suffers from looping and inad-
equate generation, and this instance actually gets
filtered. However, “Augmentation” gets it right and
retains it for training in the subsequent round. The
fact that it also generates the output as sentences
separated with periods indicates that this is indeed
learned as a consequence of augmented samples.

With retaining all pseudo-labels, not only does
bootstrapping the supervised set using concatena-
tion expedite the gains from pseudo-labeling, but
it is also the most effective in terms of the final
performance before saturation by improving the
score in three cases: it improves the performance
of vanilla pseudo-labeling on QCoVoST by 0.4
and 0.2 BLEU points on En—-De and En—Zh, re-
spectively, and by 0.3% absolute WER on En—Zh.
Therefore, it further closes the gap between pseudo-
labeling and the upper bounds.

To conclude our discussion on how domain mis-
match can be addressed, we find filtering methods,
which discard labels, to be only effective when
due to any resource limitation, only a few rounds
of pseudo-labeling can be run. This finding also
echoes insights from Bansal et al. (2022) that stud-
ies data scaling laws for MT and shows while fil-
tering may benefit computational efficiency, more
unfiltered data can replace filtered data. As an al-
ternative to filtering, we show that improving the
quality of all generated labels through augmenta-
tion so that all can be kept, is the most effective,
especially when as many rounds as needed can be
run to reach saturation.

5 Related Work

The two paradigms often considered in low-
resource data scenarios are self-training and pre-

training. Self-training, or pseudo-labeling, has long
been studied for a variety of seq2seq tasks (He
et al., 2020; Xu et al., 2020; Park et al., 2020;
Kahn et al., 2020; Chen et al., 2020; Likhoma-
nenko et al., 2021; Pino et al., 2020; Dong et al.,
2022). Regarding the relationship between pretrain-
ing and self-training, Xu et al. (2021) and Wang
et al. (2021) show that self-training and unsuper-
vised pretraining are complimentary and can be
combined to boost performance on speech recog-
nition and speech translation, respectively. In the
case of supervised pretraining, however, Zoph et al.
(2020) show in the vision domain that as the size
of the labeled data available grows, self-training
remains helpful, whereas the benefits of supervised
pretraining start to diminish.

For applying self-training to the unvisited setup
of joint speech transcription and translation (Sper-
ber et al., 2020), we focus on domain mismatch, a
matter which can get overlooked when gains from
vanilla pseudo-labeling are observed. As solutions,
we study pseudo-label filtering and augmentation
by concatenation. In contrast to conventional filter-
ing, which relies on normalized model confidence
scores (Park et al., 2020; Kahn et al., 2020), or
recently, the agreement between several forward
passes of the model run with dropout (Khurana
et al., 2021), we define and use data-centric fac-
tors that are attuned to the domain differences we
observe and directly target them.

Concatenation as an effective augmentation
method has been studied in the context of machine
translation (Agrawal et al., 2018; Kondo et al.,
2021; Nguyen et al., 2021; Gowda et al., 2022)
and speech-to-text (Lam et al., 2022). In our case,
we use it to expose our base model to sequences of
higher length to improve the quality of generated
pseudo-labels.
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6 Conclusion

We study pseudo-labeling for joint speech tran-
scription and translation. We show that while
vanilla pseudo-labeling is helpful, additional im-
provements are obtained by addressing the low
quality of generated pseudo-labels due to domain
mismatch between the supervised and unsuper-
vised sets.

We find that our proposed solutions help in
two different ways, as they are in distinct nature:
pseudo-label filtering, which discards low-quality
labels, is mostly helpful by expediting gains in ear-
lier rounds, especially for transcriptions. Augmen-
tation by concatenation, on the other hand, does
not discard any of the labels. As a result, it is able
to maintain an edge over vanilla pseudo-labeling in
the late rounds as well.

Limitations

We would like to acknowledge the following limi-
tations of this work.

Our study setup only takes advantage of super-
vised data in the form of triples of <speech, tran-
scriptions, translations>. This is because we first
and foremost want to investigate the effectiveness
of pseudo-labeling in the most extreme case. How-
ever, the setup can be extended to be able to also
rely on ASR-only (<speech, transcription>) and
ST-only (<speech, translation>) pairs. We leave
incorporating ASR and ST data as a future work
as well as incorporating external language and ma-
chine translation models.

We identified two sources of domain mismatch:
input length ranges and vocabulary mismatch.
However, the solutions that we investigate directly
target the length mismatch, without explicitly ad-
dressing the vocabulary mismatch. The latter is in-
deed more challenging to address, especially with-
out incurring additional supervision. In fact, cir-
cling back to the previous item as a future direction,
incorporating supervision in the form of ASR or
ST can expand the vocabulary set, also addressing
vocabulary mismatch.
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A Extended Results B Responsible NLP Research

B.1 Computing Infrastructure

QCoVoST MuST-C Our experiments are each run using 32 NVIDIA
WER | BLEU 1t V100 GPUs (4 8-GPU nodes).

WER | BLEU

Bound 14.4 25.5
Base Model 154 28 451 73 B.2 Licenses of Artifacts Used

15.4 23.8 452 9.1 We use the following artifacts in compliance with
Vanilla PL 15.0 24.5 29.7 9.7 their terms of use:

15.0 24.5 28.4 9.6

15.3 24.1 2.8 9.6 * CoVoST V2 dataset (Wang et al., 2020) under
Ratio to Gold 15.0 24.5 185 10.2 CCBY-NC4.0

15.1 24.7 15.8 10.4

15.1 242 305 94 * MuST-C dataset (Cattoni et al., 2021) under
Ratio KDE 15.0 24.5 27.7 9.8 CC BY-NC-ND 4.0

15.4 24.4 27.1 10.1

152 21 347 9.6 » wav2vec 2.0 under Apache License 2.0
LASER 15.0 24.5 29.1 9.9

15.3 245 276 10.0 * LASER (Artetxe and Schwenk, 2019) under
Auementation 153 24.9 33.8 11.5 BSD

& 153 249 222 11.8

e Transformers (Wolf et al.,, 2020) under

Table 5: Extended results on En—De. All run until Apache License 2.0
saturation. Each row represents one round of pseudo-
labeling with the respective method.

* xnmt (Neubig et al., 2018) under Apache Li-
cense 2.0

* Lightning (Falcon and The PyTorch Lightning

QCoVoST MuST-C team, 2019) under Apache License 2.0
WER | BLEU

Bound 13.7 319 WER| BLEUT
Base Model 14.8 287 479 9.1
14.6 294 462 9.9
. 14.8 300 438 9.6
Vanilla PL 14.7 305 428 9.0
14.6 307 372 8.3
14.5 295 232 10.0
. 143 305 187 10.2
Ratio to Gold 14.4 305  17.9 9.7
14.2 305 174 9.9
143 298 308 10.8
. 143 302 220 10.8
Ratio KDE 14.2 304 217 10.8
14.2 307 217 10.4
14.6 294 408 10.7
14.4 304 275 10.4
LASER 14.4 305 244 10.4
143 306 203 112
14.6 301 487 11.9
Avemenation 143 305 357 11.0
ue 14.5 309 263 115
14.3 309 254 113

Table 6: Extended results on En—Zh. All run until satura-
tion. Each row represents one round of pseudo-labeling
with the respective method.
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