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Abstract

Real-life multilingual systems should be able
to efficiently incorporate new languages as data
distributions fed to the system evolve and shift
over time. To do this, systems need to han-
dle the issue of catastrophic forgetting, where
the model performance drops for languages or
tasks seen further in its past. In this paper, we
study catastrophic forgetting, as well as meth-
ods to minimize this, in a massively multilin-
gual continual learning framework involving
up to 51 languages and covering both classifi-
cation and sequence labeling tasks. We present
LR ADJUST, a learning rate scheduling method
that is simple, yet effective in preserving new
information without strongly overwriting past
knowledge. Furthermore, we show that this
method is effective across multiple continual
learning approaches. Finally, we provide fur-
ther insights into the dynamics of catastrophic
forgetting in this massively multilingual setup.

1 Introduction

Standard supervised NLP methods perform well
when training on enough data from a uniform dis-
tribution. However, they fail to retain knowledge
learnt in the past when sudden shifts occur in train-
ing data distributions. This effect of dropping per-
formance on data from past distributions is com-
monly referred to as catastrophic forgetting (Mc-
Closkey and Cohen, 1989; de Masson D’Autume
et al., 2019; Biesialska et al., 2020a), where sta-
bility or preservation of knowledge is traded off
for increased plasticity or the ability to acquire
new knowledge. To tackle this issue, continual
learning (CL) methods were proposed under var-
ious settings, such as limited compute or ability
to store past data (Lopez-Paz and Ranzato, 2017;
de Masson D’Autume et al., 2019). The data shifts
commonly studied are obtained by training over
a sequence of non-iid partitions (Chaudhry et al.,
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Figure 1: Multilingual Continual Learning: The model
θ is trained sequentially with data from T different lan-
guages.

2018), different tasks (Jin et al., 2021), or by train-
ing on various domains such as in task-oriented
dialogue (Madotto et al., 2021), named entity recog-
nition (Monaikul et al., 2021), part-of-speech (Liu
et al., 2020), and intent detection (Wu et al., 2021).

Lifelong learning is key to the success of de-
ployed multilingual systems, enabling the system
to incorporate annotated data for new languages as
they become available without costly retraining and
redeployment of the entire system. This sequential
availability of data for new languages is a common
case of training data shift (see Figure 1 for the task
setup). Yet, the effect of catastrophic forgetting
was not yet systematically studied for multi-lingual
models with multiple diverse languages. M’hamdi
et al. (2022) study continual learning in a cross-
lingual setting limited to just six languages. The
cross-lingual abilities of pre-trained models were
found to drop when performing fine-tuning for a
target language (Liu et al., 2021), although apply-
ing continual learning approaches can effectively
reduce the magnitude of the effect (Lopez-Paz and
Ranzato, 2017).

In this paper, we systematically study the effect
of catastrophic forgetting and mitigation strategies
in a massively multilingual setting covering up to
51 languages on three different tasks. We start
by quantifying the extent to which forgetting hap-
pens when languages are presented to the model in
sequence, identifying an up to 16% F1 drop com-
pared to training using all the data mixed. Next, we
propose LR ADJUST, a simple, yet effective, method
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to preserve the learned knowledge by adjusting the
learning rate over time to alleviate the knowledge
overwriting from the new language and preserve
the previous learned knowledge. This method is
orthogonal to continual learning methods and thus
can be handily combined with any of these. We find
that across three different CL methods, LR ADJUST
helps further reduce the gap between a fully trained
model and the CL setup. We conduct analysis on
the aspect of cross-lingual transfer in backward and
forward directions to measure the influence of the
CL on previous tasks and its ability in zero-shot
learning respectively. Finally, we conduct analyses
on the effects of catastrophic forgetting when first
training on multiple languages jointly and when
using a curriculum learning approach informed by
language similarity.

2 Massively Multilingual Continual
Learning

2.1 Task Setup

We define a curriculum of T tasks as an ordered
set of data sets D = {D1, D2, ..., Dt, ..., DT } and
model θt, where Dt is the data set with task t.
In this case, the task is a distinct language. The
weights of model θ are updated continuously θt+1

← f(θt, Dt) by minimizing the log-likelihood over
data set Dt via gradient updates.

2.2 Inter-task Learning Rate Adjustment

We propose LR ADJUST, a simple and effective
method to adjust the learning rate when we start
training on a new task. Our intuition is that mod-
els are susceptible to catastrophic forgetting when
we provide a higher learning rate, so the learn-
ing rate should be toned down with time to en-
sure the preservation of the learned knowledge and
to reduce the effect of overwriting the weights
with the new knowledge. Learning rate adjust-
ments have been studied in the context of incre-
mental learning (Cavalin et al., 2009; Khreich et al.,
2012) and for efficient optimization using sched-
ules (Ge et al., 2019). Concretely, the new learn-
ing rate is lowered every time as the following:
lrt = max(lrmin, lrt−1 ∗ γ), with a weight γ,
where γ < 1 and lrmin is the minimum learning
rate. The method is detailed in Algorithm 1.

2.3 Continual Learning Method

We experiment with the following continual learn-
ing approaches:

Algorithm 1 Inter-task Learning Rate Adjustment
(LR ADJUST)
Require: An ordered list of tasks D =
{D1, D2, ..., Dt, ..., DT }
Require: γ: learning rate adjustment coefficient,
lrt: learning rate at time t, θ: model weights, lrmin:
minimum learning rate

1: Randomly initialize the classifier on θ
2: for all Dt ∈ D do
3: Adjust learning rate to lrt =

max(lrmin, lrt−1 ∗ γ)
4: Compute∇θLDt(fθ) using Dt

5: θt+1 ← θt − lrt∇θLDt(fθ)
6: end for

• Experienced Replay (de Masson D’Autume
et al., 2019) uses an episodic memory to store
seen training data in memory and retrieve it from
memory for fine-tuning. We schedule the replay
step to be run every few iterations. During the
replay step, we retrieve the data and fine-tune
the model using the retrieved data. The number
of stored data is constrained to ensure efficient
memory use. And, we take a uniform distribu-
tion of samples across all labels.

• Averaged GEM (A-GEM) (Chaudhry et al.,
2018) also utilizes an episodic memoryM and is
a more efficient implementation of GEM (Lopez-
Paz and Ranzato, 2017) that computes the gradi-
ent constraints and minimizes the loss as follows:

Lt(θt,M) ≤ Lt−1(θt−1,M),

where loss Lt is constrained to be lower or equal
to the loss Lt−1.

• Elastic Weight Consolidation (EWC) (Kirk-
patrick et al., 2017) minimizes the following
loss:

Lt(θ) = Lt(θ) +
∑

i

λ

2
Fi(θt − θ∗t−1)

2,

where Fi is the Fisher information matrix, λ is a
coefficient that sets how important the old task
is compared to the new one, and θ∗t−1 is the pre-
vious learned weights. The Fi is pre-computed
after each task is completed and we incorporate
the loss to the training on each gradient update.

3 Experimental Setup

3.1 Data sets
We use a multilingual natural language understand-
ing data set, MASSIVE (FitzGerald et al., 2022)
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and a multilingual named entity recognition (NER)
data set, WikiAnn (Rahimi et al., 2019). The MAS-
SIVE data set consists of two tasks: intent clas-
sification and slot filling with 51 languages. The
WikiAnn data set consists of 40 languages. We
adopt the data splits from the original papers.

3.2 Methods
Our model architecture is an encoder-only multi-
lingual model XLM-RBASE (Conneau et al., 2020)
with a classification layer for each task. All param-
eters in the model are updated during the training.
The full hyper-parameters are listed in Appendix A.
The language order for the experiments are listed
in Appendix B. We experiment with the following
approaches:
• MULTI: A single multilingual model is trained on

data mixed from all languages. This represents
an upper bound to CL methods, as there are no
memory or data sequencing constraints.

• MONO: A separate model is trained on all the su-
pervised data for each language and applied to
all inputs in that language.

• VANILLA: A single model is trained by sequen-
tially presenting data from each language. The
language order is selected randomly.

• CL Methods: We run REPLAY, A-GEM, and EWC to
train a single model on data from each language
presented sequentially.

• CL Methods + LR ADJUST: We run the CL meth-
ods with the learning rate adjustment method
described in Section 2.2.

3.3 Metrics
We measure the ability of cross-lingual transfer
using CL metrics adapted from Lopez-Paz and
Ranzato (2017). We define a matrix R ∈ RT×T ,
where Ri,j denotes the test score performance of
the model on task tj when training the last sample
from task ti. We formally define the metrics as:

3.3.1 Cross-lingual Forward Transfer (CFT)
This metric represents the ability to perform zero-
shot learning by evaluating on the test data from
tasks/languages that are unseen in training. We
formally define the metric as:

CFT =
1

T − 1

T−1∑

i=1

X̄i,

X̄i =
1

T − i

T∑

j=i+1

Ri,j ,

Figure 2: Average F1 scores and standard deviation over
5 runs on WikiAnn (Rahimi et al., 2019) evaluated over
increasing number of languages seen in training.

Figure 3: Average F1 scores and standard deviation
over 5 runs on MASSIVE-Slot (FitzGerald et al., 2022)
evaluated over increasing number of languages seen in
training.

where X̄i is the average performance of the lan-
guages that will be seen in the future (t>i).

3.3.2 Cross-lingual Backward Transfer (CBT)
This metric measures the influence of learning a
task ti on the performance of the previous tasks.
We formally define the metric as the following:

CBT =
1

T − 1

T−1∑

i=1

RT−1,i −Ri,i.

CBT practically measures the effect of catas-
trophic forgetting of past tasks after adding a new
task to the model.

4 Results and Analysis

Figures 2, 3 and 4 show performance numbers
across the languages seen to that point in train-
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Figure 4: Average F1 scores and standard deviation over
5 runs on MASSIVE-Intent (FitzGerald et al., 2022)
evaluated over increasing number of languages seen in
training.

ing for the three data sets. Each point on the graph
shows the average and standard deviation of the F1
scores, obtained over 5 runs with different seeds.
For the CL experiments, the seed also controls the
order of languages in training. This can lead to
higher variance across runs – compared to mixing
the same data across runs – because the forget-
ting effect depends on the language order. Table 1
shows the forward and backward transfer for the
three data sets.

Results show the following:
Catastrophic forgetting is present in multilin-

gual continual learning, with performance drop-
ping quickly when training on languages sequen-
tially (VANILLA). This method converges to be-
tween 4 – 17 F1 lower than mixing the same data
and training a full model every time (MULTI). We
also see that this effect is present even when the
performance of monolingual models is close to that
of multilingual models, as in the case of WikiAnn.
Training a full model on all languages (MULTI) al-
ways performs best, outperforming training on one
language at a time (MONO) sometimes substan-
tially (MASSIVE-Slot - 10 F1, MASSIVE-Intent -
4 F1), highlighting the importance of cross-lingual
transfer and preserving information from past seen
languages in a continual learning setup.

Continual learning methods generally help
dampen the impact of forgetting. For example, in
WikiAnn, the REPLAY and A-GEM CL methods re-
duce the backward transfer from 16.90 to 11.87 and
10.75 respectively, albeit EWC does not substantially
improve the performance relative to the VANILLA

Figure 5: Multi-task strategies and training using the
language order heuristics on WikiAnn. It shows the
averaged F1 scores and standard deviation on 5 runs.

method.
LR ADJUST, the learning rate adjustment scheme,

further reduces the gap to the multi-task model
significantly and consistently across languages
when combined with any of the CL methods. For
example, on the WikiAnn dataset, the backward
transfer is reduced from 16.90 to just 3.59 and 3.79
for the A-GEM and REPLAY methods respectively,
making multilingual CL feasible. Further, we see
that using CL methods alone results in a contin-
uous drop in performance as more languages are
added, while adding LR ADJUST stabilizes average
performance after the first few languages, resulting
in a flatter curve.

Finally, we see that the patterns of improve-
ment hold when studying cross-lingual forward
transfer, which quantifies the zero-shot model per-
formance on languages unseen in training. The con-
tinual learning approaches improve over sequen-
tial training (e.g. +4.45 on WikiAnn) and using LR
ADJUST in addition further boosts performance (e.g.
+9.25 for VANILLA, +5.83 for REPLAY on WikiAnn).
This shows that the resulting models were able to
retain essential and generalizable information for
the task that is more universal across all languages.

4.1 Multi-task Training vs. Catastrophic
Forgetting

We conduct additional experiments to understand
whether initially training on multiple languages at
once can reduce the severity of catastrophic for-
getting in the CL setup when new languages are
added. We run a multi-task training on the first k
languages, where k is 10 or 30, and then, we run the
remaining languages sequentially on the WikiAnn
data set. As shown in Figure 5, the model is more
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WikiAnn MASSIVE-Slot MASSIVE-Intent
CFT CBT CFT CBT CFT CBT

VANILLA 67.77 -16.90 57.27 -7.92 79.60 -3.15
+ LR ADJUST 77.02 -4.19 59.17 -5.20 80.32 -1.56

EWC 68.58 -16.83 60.79 -5.36 79.67 -2.99
+ LR ADJUST 76.78 -4.50 62.30 -3.36 80.46 -1.53

A-GEM 69.54 -11.87 57.63 -6.22 79.68 -3.13
+ LR ADJUST 77.26 -3.59 57.93 -2.48 80.73 -1.65

REPLAY 72.22 -10.75 60.38 -6.04 79.23 -3.18
+ LR ADJUST 78.05 -3.79 62.54 -3.26 80.32 -1.65

Table 1: Cross-lingual Forward Transfer (CFT) and Cross-lingual Backward Transfer (CBT). Higher scores are
better.

robust to forgetting when it is exposed to multi-task
training with more languages with higher final av-
erage scores at the final task, but the graphs shows
the performance still drops dramatically after being
exposed to the first new language fed sequentially.

4.2 The Role of Language Order
To investigate the role of the language order on
CL, we decide to reorder the language list by using
heuristics. We start with two languages from the
same family, as listed in Ethnologue (Eberhard and
Gary, 2019), and add all languages from the same
family one by one, then switch to a new language
family and continue the same process. We conjec-
ture that seeing a similar language at an interval
will allow a more effective cross-lingual transfer.
Figure 5 (LANGUAGE ORDER) displays the results,
which indicate that performance does not improve
after we manually select the languages, and its per-
formance is similar to random ordering (VANILLA).

5 Related Work

CL aims to learn effectively over iterations by
leveraging information from previously learned
tasks (McCloskey and Cohen, 1989). CL has been
applied towards mitigating catastrophic forgetting
in many computer vision tasks (Lopez-Paz and
Ranzato, 2017). Broadly speaking, CL methods
can be classified (Biesialska et al., 2020b) into
rehearsal (re-using training examples from prior
task) (Rolnick et al., 2019; de Masson D’Autume
et al., 2019), regularization (guide consolidation
via additional loss) (Kirkpatrick et al., 2017), mem-
ory (Lopez-Paz and Ranzato, 2017; Chaudhry
et al., 2018), and architectural methods (using task-
specific parameters) (Rusu et al., 2016; Madotto
et al., 2021).

6 Conclusion

We present the first study of catastrophic forgetting
in a massively multilingual setting involving up to
51 languages on named entity recognition and nat-
ural language understanding tasks. We investigate
continual learning methods and present a learning
rate scheduling method that is simple yet effective
in reducing the effects of catastrophic forgetting.
Furthermore, we show that this method is effective
across multiple continual learning methods. Fi-
nally, we provide analysis and further insights into
the dynamics of catastrophic forgetting.

Acknowledgments

We are grateful to Abhinav Singh and Shuyi Wang
for feedback on a draft of this manuscript.

Limitations

The experiment in this paper is limited to three com-
mon CL methods: Replay, A-GEM, and EWC. Due
to compute resources, we experiment with XLM-
RBASE and do not compare with other variants or
larger base models. We acknowledge that the MAS-
SIVE data set varies in coverage across language
groups and evaluation could over-represent certain
linguistic families (Pikuliak and Simko, 2022).

Ethics Statement

In our experiments, we use publicly available data
sets with permissive licenses for research experi-
ments. We do not release new data or annotations
as part of this work. There are no potential risks.

772



References
Magdalena Biesialska, Katarzyna Biesialska, and

Marta R Costa-jussà. 2020a. Continual lifelong learn-
ing in natural language processing: A survey. In
Proceedings of the 28th International Conference on
Computational Linguistics, pages 6523–6541.

Magdalena Biesialska, Katarzyna Biesialska, and
Marta R. Costa-jussà. 2020b. Continual lifelong
learning in natural language processing: A survey. In
Proceedings of the 28th International Conference
on Computational Linguistics, pages 6523–6541,
Barcelona, Spain (Online). International Committee
on Computational Linguistics.

Paulo R Cavalin, Robert Sabourin, Ching Y Suen, and
Alceu S Britto Jr. 2009. Evaluation of incremen-
tal learning algorithms for hmm in the recognition
of alphanumeric characters. Pattern Recognition,
42(12):3241–3253.

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus
Rohrbach, and Mohamed Elhoseiny. 2018. Effi-
cient lifelong learning with a-gem. arXiv preprint
arXiv:1812.00420.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Édouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451.

Eberhard David, Gary Simons, and Charles Fennig.
2019. Ethnologue: Languages of the world. Twenty-
second Edition, SIL International, Dallas.

Cyprien de Masson D’Autume, Sebastian Ruder, Ling-
peng Kong, and Dani Yogatama. 2019. Episodic
memory in lifelong language learning. Advances in
Neural Information Processing Systems, 32.

David M Eberhard and F Gary. 2019. Simons, and
charles d. fennig (eds.). 2019. Ethnologue: Lan-
guages of the world, 22.

Jack FitzGerald, Christopher Hench, Charith Peris,
Scott Mackie, Kay Rottmann, Ana Sanchez, Aaron
Nash, Liam Urbach, Vishesh Kakarala, Richa Singh,
et al. 2022. Massive: A 1m-example multilin-
gual natural language understanding dataset with
51 typologically-diverse languages. arXiv preprint
arXiv:2204.08582.

Rong Ge, Sham M Kakade, Rahul Kidambi, and Pra-
neeth Netrapalli. 2019. The step decay schedule: A
near optimal, geometrically decaying learning rate
procedure for least squares. Advances in neural in-
formation processing systems, 32.

Xisen Jin, Bill Yuchen Lin, Mohammad Rostami, and
Xiang Ren. 2021. Learn continually, generalize

rapidly: Lifelong knowledge accumulation for few-
shot learning. In Findings of the Association for Com-
putational Linguistics: EMNLP 2021, pages 714–
729, Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Wael Khreich, Eric Granger, Ali Miri, and Robert
Sabourin. 2012. A survey of techniques for incre-
mental learning of hmm parameters. Information
Sciences, 197:105–130.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz,
Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, et al. 2017. Over-
coming catastrophic forgetting in neural networks.
Proceedings of the national academy of sciences,
114(13):3521–3526.

Zihan Liu, Genta Indra Winata, Andrea Madotto, and
Pascale Fung. 2020. Exploring fine-tuning tech-
niques for pre-trained cross-lingual models via con-
tinual learning. arXiv preprint arXiv:2004.14218.

Zihan Liu, Genta Indra Winata, Andrea Madotto, and
Pascale Fung. 2021. Preserving cross-linguality of
pre-trained models via continual learning. In Pro-
ceedings of the 6th Workshop on Representation
Learning for NLP (RepL4NLP-2021), pages 64–71.

David Lopez-Paz and Marc’Aurelio Ranzato. 2017.
Gradient episodic memory for continual learning. Ad-
vances in neural information processing systems, 30.

Andrea Madotto, Zhaojiang Lin, Zhenpeng Zhou, Se-
ungwhan Moon, Paul A Crook, Bing Liu, Zhou Yu,
Eunjoon Cho, Pascale Fung, and Zhiguang Wang.
2021. Continual learning in task-oriented dialogue
systems. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 7452–7467.

Michael McCloskey and Neal J Cohen. 1989. Catas-
trophic interference in connectionist networks: The
sequential learning problem. In Psychology of Learn-
ing and Motivation, volume 24, pages 109–165. El-
sevier.

Meryem M’hamdi, Xiang Ren, and Jonathan May.
2022. Cross-lingual lifelong learning. arXiv preprint
arXiv:2205.11152.

Natawut Monaikul, Giuseppe Castellucci, Simone Fil-
ice, and Oleg Rokhlenko. 2021. Continual learn-
ing for named entity recognition. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 35, pages 13570–13577.

Matúš Pikuliak and Marian Simko. 2022. Average
is not enough: Caveats of multilingual evaluation.
In Proceedings of the The 2nd Workshop on Multi-
lingual Representation Learning (MRL), pages 125–
133, Abu Dhabi, United Arab Emirates (Hybrid). As-
sociation for Computational Linguistics.

773

https://doi.org/10.18653/v1/2020.coling-main.574
https://doi.org/10.18653/v1/2020.coling-main.574
https://doi.org/10.18653/v1/2021.findings-emnlp.62
https://doi.org/10.18653/v1/2021.findings-emnlp.62
https://doi.org/10.18653/v1/2021.findings-emnlp.62
https://aclanthology.org/2022.mrl-1.13
https://aclanthology.org/2022.mrl-1.13


Afshin Rahimi, Yuan Li, and Trevor Cohn. 2019. Mas-
sively multilingual transfer for ner. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 151–164.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timo-
thy Lillicrap, and Gregory Wayne. 2019. Experience
replay for continual learning. Advances in Neural
Information Processing Systems, 32.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Des-
jardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell.
2016. Progressive neural networks. arXiv preprint
arXiv:1606.04671.

Tongtong Wu, Massimo Caccia, Zhuang Li, Yuan-Fang
Li, Guilin Qi, and Gholamreza Haffari. 2021. Pre-
trained language model in continual learning: A com-
parative study. In International Conference on Learn-
ing Representations.

A Hyper-parameters

In all experiments, we run with five different seeds
{42, 52, 62, 72, 82} using a V100 32GB GPU and
each run takes up to a week to finish.

A.1 WikiAnn
Table 2 shows the hyper-parameters used in the
experiments using WikiAnn dataset.

MULTI VANILLA MONO MULTI-10/30 REPLAY A-GEM EWC

LR 1e-4 5e-5
5e-5 (all except hi)

1e-5 (hi)
5e-5 - - -

LR Decay 0.9997 0.999 0.9999 0.9997 - - -
Batch Size 32 32 32 32 - - -
Max epochs 20 20 20 20 - - -
Early stopping 5 5 5 5 - -
EWC_Reg - - - - - - 10000
store_memory_prob - - - - 0.0005 0.01 -
max_store_num_samples - - - - 1E+7 1E+5 -
retrieve_num_samples - - - - 100 - -
run_per_step - - - - 5000 2000 -

Table 2: Hyper-parameters for WikiAnn data set.

A.2 MASSIVE-Slot
Table 3 shows the hyper-parameters used in the
experiments using MASSIVE-Slot dataset.

MULTI VANILLA MONO REPLAY A-GEM EWC

LR 2e-5 1e-5 1e-5 - - -
LR Decay 0.9999 0.9999 0.9999 - - -
Batch Size 32 8 8 - - -
Max epochs 20 20 20 20 - - -
Early stopping 5 5 5 5 - -
EWC_Reg - - - - - 10000
store_memory_prob - - - 0.0005 0.01 -
max_store_num_samples - - - 1E+7 1E+5 -
retrieve_num_samples - - - 100 - -
run_per_step - - - 5000 2000 -

Table 3: Hyper-parameters for MASSIVE-Slot data set.

A.3 MASSIVE-Intent
Additionally, we run the CL setup on MASSIVE-
Intent dataset and the results are shown in Figure 4.
Table 4 shows the hyper-parameters used in the
experiments using MASSIVE-Intent dataset.

MULTI VANILLA MONO REPLAY A-GEM EWC

LR 2e-5 2e-5 2e-5 - - -
LR Decay 0.999 0.995 0.995 - - -
Batch Size 32 32 32 - - -
Max epochs 20 20 20 - - -
Early stopping 5 5 5 - - -
EWC_Reg - - - - - 10000
store_memory_prob - - - 0.0005 0.01 -
max_store_num_samples - - - 1E+7 1E+5 -
retrieve_num_samples - - - 100 - -
run_per_step - - - 5000 2000 -

Table 4: Hyper-parameters for MASSIVE-Intent data
set.

B Language Order

We randomly shuffle the language order for each
seed. Tables 5 and 6 show the language order we
use in the experiments for WikiANN and MAS-
SIVE datasets, respectively.

seed languages

42 el, bn, en, ta, ms, mk, ro, es,
bs, sk, it, pl, lv, hr, et, sq,
sv, nl, fa, lt, id, ru, tl, pt,

hu, he, uk, sl, bg, af, tr, no,
ca, cs, de, fi, fr, hi, ar, da, vi

52 el, sl, hr, he, fa, it, lt, tl,
mk, cs, pl, hu, bs, tr, uk, fr,

ta, pt, sq, da, ms, no, et, vi, ar,
af, id, fi, es, ca, ru, sv, en,
de, bg, nl, lv, ro, sk, bn, hi

62 et, fi, ar, sv, ms, fa, sq, tr,
it, ru, no, el, da, pl, hi, bg,

cs, nl, hr, sl, mk, he, lv, tl, vi,
bn, ro, id, de, af, ca, uk, sk,

en, lt, hu, pt, fr, bs, es, ta
72 fr, uk, mk, hr, ar, sl, sk, ta,

bn, hi, ca, ro, pt, cs, fa, nl, en,
he, pl, el, bg, sv, no, ru, da, ms,

tl, af, id, vi, et, fi, it, de,
hu, lv, sq, lt, es, tr, bs

82 de, fi, ar, pl, pt, da, ms, hu,
et, lv, ca, lt, af, fa, sq, mk, id,
it, ta, sl, tr, ro, uk, bs, hi, vi,
cs, bn, nl, tl, fr, no, bg, sv,

he, en, es, hr, sk, ru, el

Table 5: Language Order for Experiments with
WikiAnn.

C Geographical Information of
Languages

Table 7 shows all languages’ language families and
subgroups on NusaX and MASSIVE datasets.
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seed languages

42 kn-IN, ka-GE, is-IS, fa-IR, bn-BD,
tl-PH, ko-KR, en-US, mn-MN, hu-HU,

my-MM, ja-JP, fi-FI, az-AZ, sq-AL,
sl-SL, es-ES, km-KH, pt-PT, af-ZA,
te-IN, id-ID, nl-NL, zh-CN, sw-KE,
ms-MY, ml-IN, it-IT, jv-ID, ta-IN,

tr-TR, ro-RO, nb-NO, th-TH, fr-FR,
zh-TW, vi-VN, ar-SA, lv-LV, ru-RU,
cy-GB, pl-PL, da-DK, el-GR, he-IL,

hi-IN, hy-AM, ur-PK, am-ET, de-DE, sv-SE
52 [nl-NL, is-IS, bn-BD, id-ID, en-US,

my-MM, kn-IN, he-IL, ja-JP, da-DK,
sq-AL, hu-HU, tl-PH, lv-LV, sw-KE,

zh-TW, mn-MN, fi-FI, am-ET, zh-CN,
fr-FR, sl-SL, sv-SE, ta-IN, it-IT,

vi-VN, hi-IN, ur-PK, cy-GB, pt-PT,
de-DE, ro-RO, ru-RU, km-KH, pl-PL,

te-IN, af-ZA, ml-IN, jv-ID, fa-IR,
th-TH, es-ES, el-GR, ar-SA, ko-KR,

ka-GE, ms-MY, nb-NO, tr-TR, az-AZ, hy-AM
62 sv-SE, az-AZ, ko-KR, ja-JP, el-GR,

ru-RU, my-MM, ka-GE, ur-PK, vi-VN,
tl-PH, pt-PT, fr-FR, kn-IN, tr-TR,
en-US, fi-FI, sl-SL, he-IL, hy-AM,

ml-IN, ar-SA, sw-KE, da-DK, te-IN,
cy-GB, it-IT, id-ID, zh-TW, lv-LV,

km-KH, pl-PL, nl-NL, ms-MY, am-ET,
de-DE, sq-AL, hu-HU, af-ZA, th-TH,
zh-CN, nb-NO, es-ES, jv-ID, ta-IN,

is-IS, mn-MN, hi-IN, bn-BD, fa-IR, ro-RO
72 fi-FI, tl-PH, tr-TR, da-DK, zh-TW,

hi-IN, sw-KE, ko-KR, ms-MY, lv-LV,
cy-GB, az-AZ, ml-IN, kn-IN, sv-SE,
hy-AM, de-DE, id-ID, vi-VN, it-IT,
te-IN, fr-FR, my-MM, ta-IN, es-ES,
hu-HU, nb-NO, pt-PT, ro-RO, ar-SA,

nl-NL, af-ZA, mn-MN, ru-RU, am-ET,
en-US, km-KH, he-IL, ja-JP, el-GR,
zh-CN, is-IS, ka-GE, sq-AL, pl-PL,

th-TH, jv-ID, fa-IR, ur-PK, sl-SL, bn-BD
82 az-AZ, he-IL, am-ET, fr-FR, ta-IN,

ka-GE, ja-JP, hy-AM, bn-BD, ml-IN,
ro-RO, pl-PL, jv-ID, pt-PT, nl-NL,

tr-TR, mn-MN, zh-TW, ko-KR, ur-PK,
af-ZA, cy-GB, sq-AL, vi-VN, hi-IN,
km-KH, tl-PH, kn-IN, sw-KE, it-IT,
sv-SE, sl-SL, de-DE, el-GR, is-IS,

fi-FI, da-DK, ru-RU, ms-MY, lv-LV,
ar-SA, th-TH, hu-HU, te-IN, es-ES,

fa-IR, id-ID, nb-NO, my-MM, zh-CN, en-US

Table 6: Language Order for Experiments with MAS-
SIVE.

Language Code Name Family Subgroup

af / af-ZA Afrikaans Indo-European Germanic
am-ET Amharic Afro-Asiatic Semitic
ar / ar-SA Arabic Afro-Asiatic Semitic
az-AZ Azerbaijani Turkic Southern
bn / bn-BD Bengali Indo-European Indo-Iranian
bg Bulgarian Indo-European Balto-Slavic
bs Bosnian Indo-European Balto-Slavic
ca Catalan Indo-European Italic
cs Czech Indo-European Balto-Slavic
cy-GB Welsh Indo-European Celtic
da / da-DK Danish Indo-European Germanic
de / de-DE German Indo-European Germanic
en / en-US English Indo-European Germanic
el / el-GR Greek Indo-European Greek
es / es-ES Spanish Indo-European Italic
et Estonian Uralic Finnic
fa Persian Indo-European Indo-Iranian
fi / fi-FI Finnish Uralic Finnic
fr / fr-FR French Indo-European Italic
id / id-ID Indonesian Austronesian Malayo-Polynesian
is-IS Icelandic Indo-European Germanic
it / it-IT Italian Indo-European Italic
ja-JP Japanese Japonic Japanese
jv-ID Javanese Austronesian Malayo-Polynesian
he / he-IL Hebrew Afro-Asiatic Semitic
hi / hi-IN Hindi Indo-European Indo-Iranian
hr Croatian Indo-European Balto-Slavic
hu / hu-HU Hungarian Uralic Hungarian
hy-AM Armenian Indo-European Armenian
ka-GE Georgian Kartvelian Georgian
km-KH Khmer Austro-Asiatic Mon-Khmer
kn-IN Kannada Dravidian Southern
ko-KR Korean Koreanic Korean
lt Lithuanian Indo-European Balto-Slavic
lv / lv-LV Latvian Indo-European Balto-Slavic
ml-IN Malayalam Dravidian Southern
mn-MN Mongolian Mongolic Eastern
ms / ms-MY Malay Austronesian Malayo-Polynesian
mk Macedonian Indo-European Balto-Slavic
my-MM Burmese Sino-Tibetan Tibeto-Burman
nb-NO Norwegian Indo-European Germanic
nl / nl-NL Dutch Indo-European Germanic
no Norwegian Indo-European Germanic
pl / pl-PL Polish Indo-European Balto-Slavic
pt / pt-PT Portuguese Indo-European Italic
ro / ro-RO Romanian Indo-European Italic
ru / ru-RU Russian Indo-European Balto-Slavic
sl / sl-SL Slovenian Indo-European Balto-Slavic
sk Slovak Indo-European Balto-Slavic
sq / sq-AL Albanian Indo-European Albanian
sw-KE Swahili Niger-Congo Atlantic-Congo
sv / sv-SE Swedish Indo-European Germanic
ta / ta-IN Tamil Dravidian Southern
te-IN Telugu Dravidian South-Central
th-TH Thai Kra-Dai Kam-Tai
tl / tl-PH Tagalog Austronesian Malayo-Polynesian
tr / tr-TR Turkish Turkic Southern
ur-PK Urdu Indo-European Indo-Iranian
uk Ukrainian Indo-European Balto-Slavic
vi / vi-VN Vietnamese Austro-Asiatic Mon-Khmer
zh-CN / zh-TW Chinese Sino-Tibetan Chinese

Table 7: Geographical information of languages un-
der study. The language family is based on Ethno-
logue (David et al., 2019).
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