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Abstract

Several explanation methods such as Integrated
Gradients (IG) can be characterised as path-
based methods, as they rely on a straight line
between the data and an uninformative baseline.
However, when applied to language models,
these methods produce a path for each word
of a sentence simultaneously, which could lead
to creating sentences from interpolated words
either having no clear meaning, or having a sig-
nificantly different meaning compared to the
original sentence. In order to keep the meaning
of these sentences as close as possible to the
original one, we propose Sequential Integrated
Gradients (SIG), which computes the impor-
tance of each word in a sentence by keeping
fixed every other words, only creating interpo-
lations between the baseline and the word of
interest. Moreover, inspired by the training pro-
cedure of several language models, we also pro-
pose to replace the baseline token "pad" with
the trained token "mask". While being a sim-
ple improvement over the original IG method,
we show on various models and datasets that
SIG proves to be a very effective method for
explaining language models.1

1 Introduction

Language models such as BERT (Devlin et al.,
2018) have demonstrated to be effective on various
tasks, for instance on sentiment analysis (Hoang
et al., 2019), machine translation (Zhu et al., 2020),
text summarization (Liu, 2019) or intent classifi-
cation (Chen et al., 2019). However, with the in-
creased performance and usage of such models,
there has been a parallel drive to develop methods
to explain predictions made by these models. In-
deed, BERT and its variations are complex models
which do not allow a user to easily understand why
a certain prediction has been produced. On the
other hand, it is important to be able to explain a

1An implementation of this work can be found at https:
//github.com/josephenguehard/time_interpret

Figure 1: Comparison between IG, DIG, and our
method: SIG. While DIG improves on IG by creating
discretized paths between the data and the baseline, it
can produce sentences with a different meaning com-
pared to the original one. Our method tackles this issue
by fixing every word to their true value except one, and
moving the remaining word along a straight path (SIG)

model’s predictions, especially when this model is
used to make high-stake decisions, or when there
is a risk of a discriminating bias, for instance when
detecting hate speech on social media (Sap et al.,
2019).

As a result, developing effective methods to ex-
plain not only language models, but also machine
learning models in general, has recently gained sig-
nificant attention. Many different methods have
therefore been proposed such as: LIME (Ribeiro
et al., 2016), Grad*Inp (Shrikumar et al., 2016), In-
tegrated Gradients (IG) (Sundararajan et al., 2017),
DeepLift (Shrikumar et al., 2017) or GradientShap
(Lundberg and Lee, 2017). Among these methods,
some can be characterised as path-based, which
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means that they rely on a straight line between the
data and an uninformative baseline. For instance,
IG computes gradients on interpolated points along
such a path, while DeepLift and GradientShap can
be seen as approximations of IG (Ancona et al.,
2017; Lundberg and Lee, 2017).

While these methods aim to be used on any type
of models and data, some have been tailored to
the specificity of language models. For instance,
Sanyal and Ren (2021) challenge the use of contin-
uous paths on a word embedding space which is
inherently discrete. They propose as a result Dis-
cretized Integrated Gradient (DIG), which replaces
the continuous straight path with a discretized one,
where interpolated points are words.

In our work, we suggest another potential is-
sue when applying path-based explanation meth-
ods on language models. These models are usu-
ally designed to be used on individual or multiple
sentences, in order to perform for instance senti-
ment analysis or question answering. However,
a path-based method applied on such models cre-
ates straight lines between each word and a base-
line simultaneously. When interpolated points are
grouped together to form a sentence, this sentence
could have a very different meaning compared with
the original one.

As a result, we propose a simple method to allevi-
ate this potential issue: computing the importance
of each word in a sentence or a text by keeping
fixed every other word and only creating interpola-
tions between the baseline and the word of interest.
After computing the importance of each word in
this way, we normalise these attributions across
the sentence or text we aim to explain. We call
this method Sequential Integrated Gradients (SIG),
as, although we focus in this work on language
models, such a method could be used on any se-
quential modelling. We also propose to use the
token "mask" as a baseline, when possible, as its
embedding has been trained to replace part of sen-
tences when training language models. As a result,
our method follows closely the training procedure
of these models.

2 Method

SIG formulation Let’s define a language model
as a function F(x) : Rm×n → R. The input x
is here modelled as a sequence of m words, each
having n features. These features are usually con-
structed by an embedding layer. We denote xi the

ith word of a sentence (or of a text, depending on
the input of the model), and xij the jth feature of
the ith word. The output of F is a value in R, which
is, in our experiments, a measure of the sentiment
for a given sentence. We now define the baseline
for each word xi as xi = (x1, ..., <mask>, ..., xm).
The baseline is therefore identical to x except at
the ith position, where the word xi is replaced by
the embedding of the word "mask"2, a token used
in many language model to replace part of the sen-
tence during training. Moreover, we use the nota-
tion xi instead of xi as xi corresponds to an entire
sentence, not to be mistaken with a single word
like xi.

In this setting, we keep the baseline as similar to
the original sentence as possible, only changing the
word of interest. This method of explaining a word
is also kept similar to the way these language mod-
els are usually pre-trained, by randomly masking
part of sentences.

Let’s now define our Sequential Integrated Gra-
dients (SIG) method. For a word xi and a feature j,
SIG is defined as:

SIGij(x) := (xij − xij)×∫ 1

0

∂F(xi + α× (x − xi))
∂xij

dα

Similar to the original IG (Sundararajan et al.,
2017), we compute the gradient of F along a
straight line between xi and x for each word xi,
the main difference being that the baseline differs
for each word. Also similar to the original IG, we
approximate in practice the integral with Riemann
summation.

Finally, we compute the overall attribution of a
word by computing the sum over the feature dimen-
sion j, and normalising the result:

SIGi(x) :=
∑

j SIGij

||SIG||
Axioms satisfied by SIG The original Integrated
Gradients method satisfies a few axioms that are
considered desirable for any explanation methods
to have. Among these axioms, SIG follows imple-
mentation invariance, which states that attributions
should be identical if two models are functionally
equivalent. Moreover, SIG follows completeness

2Certain language models, such as GPT-2 (Radford et al.,
2019), do not have a "mask" token. A "pad" token should be
therefore used for such models.
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Method DistilBERT RoBERTa BERT

LO ↓ Comp ↑ Suff ↓ LO ↓ Comp ↑ Suff ↓ LO ↓ Comp ↑ Suff ↓
Grad*Inp -0.412 0.112 0.375 -0.199 0.0760 0.426 -0.263 0.0923 0.439
DeepLift -0.624 0.170 0.271 -0.261 0.0932 0.408 -0.244 0.0898 0.438
GradientShap -1.32 0.303 0.258 -0.896 0.261 0.314 -0.622 0.219 0.388
IG -1.96 0.445 0.151 -1.44 0.405 0.226 -0.981 0.345 0.352
DIG -1.69 0.384 0.167 -0.824 0.263 0.278 -0.777 0.287 0.345

SIG -2.02 0.473 0.0992 -1.62 0.440 0.216 -1.19 0.392 0.312

Table 1: Comparison of SIG with several feature attribution methods on three language models fine-tuned on the
SST2 dataset. For ↑ metrics, the higher the better, while for ↓ ones, the lower the better.

Method DistilBERT RoBERTa BERT

LO ↓ Comp ↑ Suff ↓ LO ↓ Comp ↑ Suff ↓ LO ↓ Comp ↑ Suff ↓
Grad*Inp -0.153 0.0766 0.209 -0.0892 0.0432 0.300 -0.291 0.0887 0.298
DeepLift -0.269 0.117 0.159 -0.124 0.0557 0.269 -0.285 0.0701 0.366
GradientShap -0.832 0.289 0.137 -0.606 0.204 0.144 -0.874 0.172 0.308
IG -1.50 0.534 0.0428 -1.35 0.441 0.0327 -1.58 0.302 0.224
DIG -0.779 0.304 0.133 -0.663 0.186 0.108 -1.06 0.207 0.232

SIG -1.95 0.564 0.00409 -1.37 0.404 -3.31E-05 -2.12 0.364 0.124

Table 2: Comparison of SIG with several feature attribution methods on three language models fine-tuned on the
IMDB dataset.

in a specific way: for each word xi, we have the
following result:

∑

j

SIGij(x) = F(x)− F(xi)

This means that for each word, the sum of its
attribution across all features j is equal to the differ-
ence between the output of the model as x and at
its corresponding baseline xi. However, it does not
entail that

∑
ij SIGij(x) = F(x)− F(x), where x

would be an overall baseline filled with <mask>.
Moreover, this last axiom entail another one

called sensitivity, which here means that if, for
a certain word, the input x has the same influence
on the output of F as its corresponding baseline xi,
then

∑
j SIGij(x) = 0.

Finally, we show in Appendix A that SIG pre-
serves symmetry for each word on the embedding
dimension, but that this axiom is not true in general.

Using mask instead of pad as a baseline We
propose in this study to replace, as the baseline,
the commonly used "pad" token with the "mask"
token, on language models having such token. This
seems to go against the intuition that the baseline
should be uninformative, as "mask" is a trained

token. To support the usage of "mask", we argue
that, because <PAD> (denoting the embedding of
"pad") is untrained, it could be arbitrarily close to
some words, and far from others. Oh the other
hand, <MASK> has been trained to replace random
words, making it ideally as close to one word as to
any other.

Another way to see it is to compare it with im-
ages. It is natural for images to choose the baseline
as a black image, as this baseline has no informa-
tion. However, there is no such guarantee in NLP.
For instance, the embedding of "pad": <0, 0, 0,
. . . , 0> could perfectly be very close to an em-
bedding of a word with a specific meaning, which
would harm the explanations. On the other hand,
<MASK> has been trained to replace any word, and
therefore seems more suited to be the baseline.

3 Experiments

3.1 Experiments design
We evaluate SIG against various explanation meth-
ods by closely following the experimental setup of
Sanyal and Ren (2021). As such, we use the follow-
ing language models: BERT (Devlin et al., 2018),
DistilBERT (Sanh et al., 2019) and RoBERTa (Liu
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Method DistilBERT RoBERTa BERT

LO ↓ Comp ↑ Suff ↓ LO ↓ Comp ↑ Suff ↓ LO ↓ Comp ↑ Suff ↓
Grad*Inp -0.257 0.0681 0.315 -0.121 0.0617 0.363 -0.438 0.143 0.438
DeepLift -0.332 0.101 0.260 -0.163 0.0804 0.348 -0.452 0.123 0.450
GradientShap -0.452 0.237 0.212 -0.389 0.194 0.299 -0.715 0.204 0.438
IG -0.540 0.341 0.163 -0.787 0.354 0.242 -1.19 0.307 0.410
DIG -0.487 0.273 0.181 -0.426 0.223 0.286 -1.05 0.293 0.414

SIG -0.533 0.331 0.134 -0.869 0.361 0.251 -1.52 0.390 0.349

Table 3: Comparison of SIG with several feature attribution methods on three language models fine-tuned on the
Rotten Tomatoes dataset.

steps LO ↓ Comp ↑ Suff ↓ Delta Time

IG 50 -0.981 0.345 0.352 0.304 t
SIG 50 -1.19 0.392 0.312 4.82 N × t

IG 250 -0.999 0.352 0.355 0.055 t′

IG 10 × N -0.998 0.351 0.352 0.066 N × t′ / 25
SIG 10 -1.14 0.373 0.322 4.93 N × t′ / 25

Table 4: Comparison of IG and SIG with different num-
bers of interpolations on BERT fine-tuned on the SST2
dataset.
t and t′ represent the amount of time to calculate IG
with 50 and 250 steps respectively, and N represents the
number of words on the input data (for instance in one
sentence). On the SST2 dataset, we have an average of:
N ≈ 25 words per sentence.
On top of the table, we compare IG and SIG using a
fixed number of steps. On the bottom of the table, we
compare IG with 250 steps against SIG with 10 steps.
Since N ≈ 25, we have N × t′ / 25 ≈ t′. For a fairer
comparison, we also compare IG with a variable num-
ber of steps: 10 × N for each sentence, against SIG
with 10 steps. These two methods have the same time
complexity.
Delta is defined as

∑
ij Attrij(x)−(F(x)−F(x)). Con-

trary to IG, SIG has a high delta value, as in general∑
ij SIGij(x) ̸= F(x)− F(x).

et al., 2019). We also use the following datasets:
SST2 (Socher et al., 2013), IMDB (Maas et al.,
2011) and Rotten Tomatoes (Pang and Lee, 2005),
which classify sentences into positive or negative
sentiments or reviews. Moreover, we use the Hug-
gingFace library to recover processed data and pre-
trained models (Wolf et al., 2019).

Following (Sanyal and Ren, 2021), we use the
following evaluation metrics: Log-Odds (Shriku-
mar et al., 2017), Comprehensiveness (DeYoung
et al., 2019) and Sufficiency (DeYoung et al., 2019).
These metrics mask the top or bottom 20 % impor-
tant features, according to an attribution method,

and measure by how much the prediction of the
language model changes using this masked data,
compared with the original one. For more details
on these metrics, please see Sanyal and Ren (2021).

Finally, we use the following feature attribu-
tion methods to compare our methods against:
Grad*Inp (Shrikumar et al., 2016), Integrated
Gradients (Sundararajan et al., 2017), DeepLift
(Shrikumar et al., 2017), GradientShap (Lundberg
and Lee, 2017) and Discretized IG (DIG) (Sanyal
and Ren, 2021) using the GREEDY heuristics.
Moreover, as in Sanyal and Ren (2021), we use
50 interpolation steps for all methods expect from
DIG, for which we use 30 steps.

3.2 Results

Comparison with other feature attribution
methods We present of Tables 1, 2 and 3 a com-
parison of the performance of SIG with the attri-
bution methods listed in 3.1. We observe that SIG
significantly outperforms all other methods across
most datasets and language models we used. This
tends to confirm that the change of overall meaning
of a sentence by combining interpolations simul-
taneously is an important issue which needs to be
tackled.

Comparison between IG and DIG Although
results in Sanyal and Ren (2021) show that DIG
outperforms other methods, including IG, this is
not the case when using "mask" as a token. This re-
sult seems to undermine the intuition of Sanyal and
Ren (2021) that the discrete nature of the embed-
ding space is an important factor when explaining
a language model. We also show in Appendix C
that the requirement of having a monotonic path,
stressed by Sanyal and Ren (2021), is not neces-
sary.
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Method Example

IG “a well-made and often lovely depiction of the mysteries of friendship.
SIG “a well-made and often lovely depiction of the mysteries of friendship.

IG “a hideous , confusing spectacle , one that may well put the nail in the coffin of any future rice adaptations.”
SIG “a hideous , confusing spectacle , one that may well put the nail in the coffin of any future rice adaptations.”

IG "this is junk food cinema at its greasiest."
SIG "this is junk food cinema at its greasiest."

IG "a remarkable 179-minute meditation on the nature of revolution."
SIG "a remarkable 179-minute meditation on the nature of revolution."

Table 5: Examples of attributions on several sentences of the SST2 dataset. The underlined bold tokens represent
the most important token in the sentence, while bold tokens represent the top 20 % tokens in the sentence, according
to each attribution method.

Choice of the baseline token We also provide
in Appendix B results using "pad" as a baseline.
Comparison between Tables 1, 2 and 3 on one
hand, and Tables 6, 7, 8 on the other hand show
that IG greatly improves using the "mask" token
as a baseline. This seems to confirm our intuition
of using this token instead of "pad". Moreover,
SIG performs similarly using either token, which
demonstrates the robustness of this method across
these two baseline tokens.

Time complexity of SIG One important draw-
back of SIG is its time complexity, which is de-
pendent on the number of words in the input data.
In Table 4, we compare the original IG with SIG,
using different numbers of steps. We define t and
t′ as the time complexity of computing IG with
respectively 50 and 250 steps, and N the number
of words in the input data. This table shows that,
although reducing the number of steps results in
a decrease of performance, SIG with 10 steps still
performs better than both IG with 250 steps and
IG with 10 × N steps, while having the same time
complexity.

Moreover, as noted in Sanyal and Ren (2021),
using IG with a large number of steps decreases
Delta =

∑
ij IGij(x) − (F(x) − F(x)), while not

improving performance. As a result, when comput-
ing attributions on long sentences or large texts, we
recommend using SIG with a reduced number of
steps instead of IG.

Comparison of IG and SIG on several exam-
ples We provide on Table 5 several examples of
explained sentences, using IG and SIG. Both meth-
ods tend to agree on short sentences, while more
disagreements appear on larger ones. For each
example, we display in underlined bold the most

important token, and in bold the top 20 % most
important tokens, according to each method.

4 Conclusion

In this work, we have defined an attribution method
specific to text data: Sequential Integrated Gradi-
ents (SIG). We have shown that SIG yields signif-
icantly better results than the original Integrated
Gradients (IG), as well as other methods specific
to language models, such as Discretized Integrated
Gradients (DIG). This suggests that keeping the
meaning of interpolated sentences close to the orig-
inal one is key to producing good explanations. We
have also shown that, although SIG can be compu-
tationally intensive, reducing the number of inter-
polations still yields better results than IG with a
greater number of interpolations.

We have also highlighted in this work the benefit
of using the token "mask" as a baseline, instead
of "pad". Although SIG seems to be robust across
both tokens, this is especially important when us-
ing IG, as it significantly improves the quality of
explanations. Using the trainable token "mask" is
indeed closer to the training procedure of language
models, and should yield better interpolations as
a result. We recommend therefore using this to-
ken as a baseline, when possible, when explaining
predictions made by a language model.

Moreover, while this study was conducted on
bidirectional language models such as BERT, SIG
could also be used on auto-regressive models such
as GPT-2 (Radford et al., 2019), by iteratively com-
puting the attribution of a token, while keeping
previous tokens fixed, and masking future tokens if
any has been already computed.
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Limitations

We see two main limitations of this work. The
first one concerns the diversity of the language
models and datasets used. BERT, DistilBERT and
RoBERTa have similar architecture, and SST2,
IMDB and Rotten Tomatoes are datasets designed
to evaluate the sentiment of English text. It would
therefore be interesting to validate the robustness
of our results on more diverse languages, tasks
and language models. In this short paper, we de-
cided for brevity to follow the experiment design
of Sanyal and Ren (2021), while being aware of its
inherent limitations.

The second limitation of this work concerns the
time complexity of SIG. As it needs to compute ex-
planations for each word individually, this method
can become very computationally expensive when
applied on large text data. To alleviate this issue,
we first made it possible to compute gradients in
parallel, using an internal batch size similar to how
Captum (Kokhlikyan et al., 2020) implemented
the Integrated Gradients method. Secondly, as dis-
cussed in 3.2, it is possible to reduce the number of
interpolated points, which makes the computation
faster while retaining better performance than the
original IG.

In this work, we ran our experiments on a ma-
chine with 16 CPUs, and one Nvidia Tesla T4 GPU.
With this setting, computing SIG on SST2 and Rot-
ten Tomatoes takes around one hour for each model.
On the larger IMDB, computing SIG, on 2000 ran-
domly sampled inputs, takes around 5 days for
BERT and RoBERTa, and 2 days for DistilBERT.

Ethics Statement

The methods presented in this work aim to explain
language models, and can as such present ethical is-
sues related to this task. Discriminating biases can
indeed be present in text data on which a language
model is trained, and such a model can acquire
and propagate these biases (Sap et al., 2019). As
the presented methods aim to explain a language
model without additional knowledge, these meth-
ods could also display discriminating biases learnt
by a language model.

Moreover, common explanation methods such
as Integrated Gradients has proved to be prone to
adversarial attacks (Dombrowski et al., 2019), and
can be misleading when used on out of sample data
(Slack et al., 2021). There is no reason to believe
our methods would be more robust compared to

existing methods such as IG.
The proposed methods can also be characterised

as gradient-based, as they rely on computing gradi-
ents on the input data, an uninformative baseline,
or on interpolated points between them. As noted
by (Mittelstadt et al., 2019), such methods are only
local and may not give a clear explanation of the
model globally.
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A On the symmetry-preserving axiom of
Sequential Integrated Gradients

This section is divided into two parts. First, we
show that SIG preserves symmetry for each word
along the embedding dimension. Second, we pro-
vide a counterexample to show that symmetry does
not hold in general.

Symmetry of SIGi Let us use the same notations
as in Section 2. We want to compute the attribution
of a word xi on a model F, using the baseline xi.
Let’s define the function:

Fi(x) := F(x1, ..., x, ..., xm)

Fi corresponds to F where only the ith word is
not fixed. Here, x corresponds to a word, not a
sentence.

For such a function, SIG corresponds to the reg-
ular IG method: the baseline is < mask > and
SIG constructs a straight line between this base-
line and xi. As a result, if Fi is symmetric on two
embedding features j1 and j2, SIG preserves this
symmetry: SIGij1(x) = SIGij2(x).
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Non symmetry of SIG The fact that SIG does
not preserve symmetry in general is due to the
choice of the baseline. As a counterexample, let’s
define a language F which takes as an input two
words x1 and x2. This language model is moreover
symmetric: F(x1, x2) = F(x2, x1).

Here, the original IG method would preserve
the symmetry: as the baseline is (<mask>, <mask>),
when x1 = x2, we have IG(x)1 = IG(x)2. How-
ever, SIG doesn’t preserve the symmetry due to
its baseline: we would have: x1 = (<mask>, x2)
and x2 = (x1, <mask>). As a result, SIG(x)1 =
SIG(x)2 only if x1 = x2 = <mask>.

B Additional results using the "pad"
token

We present in this section results using the "pad"
token instead of the "mask" one. These results
for the three datasets: SST2, IMDB and Rotten
Tomatoes can be found respectively on Tables 6, 7
and 8.

When using the "pad" token as a baseline, SIG
seems to perform similarly compared with using
the "mask" one, while other methods perform sig-
nificantly worse. This demonstrates both the need
to use "mask" as a token, and the robustness of the
SIG method across different baselines.

C Challenge of the monotonic assumption
of the path

Sanyal and Ren (2021) stipulate that the path be-
tween a baseline and an input needs to be mono-
tonic to allow approximating the integral in IG
using Riemann summation. However, while this is
true for a Riemann integral, it is also possible to
approximate the Riemann–Stieltjes integral, which
is a generalisation of Riemann integral, and does
not need a monotonic path. We define the Rie-
mann–Stieltjes integral of f : [a,b] → R as:

∫ b

x=a
f(x) dg(x)

where g : [0, 1] → [a,b] designates a path. Let
us define a partition over [0, 1] as tk such as 0 ≤
t1 ≤ ... ≤ tn ≤ 1. We can then approximate the
integral with the sum:

n−1∑

i=0

f(g(ci))× [g(ti+1)− g(ti)]

where ci ∈ [ti, ti+1]. As such, while the parti-
tion ti, i ∈ {1, ..., n} needs to be monotonic, the
function g does not need to have this constraint. As
a result, we could define a path-based IG method
as:

IGγ(x)i :=
∫

γ

∂F(x)
∂xi

dxi

where γ is not necessarily monotonic.
(Lundstrom et al., 2022) provide more insights

on this topic, and in particular show that the imple-
mentation invariance, completeness and sensitivity
axioms hold for non-monotonic paths.

For this reason, we decided not to include a com-
bination of DIG and SIG in this study. However, an
implementation of this method and the correspond-
ing results can be found in the repository published
with this paper.
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Method DistilBERT RoBERTa BERT

LO ↓ Comp ↑ Suff ↓ LO ↓ Comp ↑ Suff ↓ LO ↓ Comp ↑ Suff ↓
Grad*Inp -0.402 0.112 0.375 -0.318 0.085 0.398 -0.454 0.092 0.439
DeepLift -0.196 0.053 0.489 -0.270 0.0784 0.439 -0.283 0.061 0.463
GradientShap -0.753 0.191 0.328 -0.514 0.146 0.386 -0.471 0.146 0.425
IG -0.954 0.251 0.273 -0.726 0.227 0.315 -0.658 0.235 0.398
DIG -1.222 0.310 0.237 -0.812 0.249 0.287 -0.879 0.292 0.374

SIG -1.993 0.466 0.108 -1.346 0.398 0.244 -1.30 0.393 0.331

Table 6: Comparison of SIG with several baselines on three language models fine-tuned on the SST2 dataset. For ↑
metrics, the higher the better, while for ↓ ones, the lower the better.

Method DistilBERT RoBERTa BERT

LO ↓ Comp ↑ Suff ↓ LO ↓ Comp ↑ Suff ↓ LO ↓ Comp ↑ Suff ↓
Grad*Inp -0.189 0.082 0.209 -0.216 0.047 0.315 -0.654 0.087 0.299
DeepLift -0.032 -0.005 0.515 -0.149 0.031 0.374 -0.519 0.027 0.465
GradientShap -0.315 0.117 0.302 -0.351 0.110 0.213 -0.622 0.088 0.358
IG -0.474 0.186 0.201 -0.499 0.169 0.114 -0.577 0.117 0.288
DIG -0.812 0.297 0.153 -0.626 0.187 0.099 -0.971 0.192 0.229

SIG -2.157 0.585 0.0062 -0.856 0.291 0.0207 -1.96 0.352 0.152

Table 7: Comparison of SIG with several baselines on three language models fine-tuned on the IMDB dataset.

Method DistilBERT RoBERTa BERT

LO ↓ Comp ↑ Suff ↓ LO ↓ Comp ↑ Suff ↓ LO ↓ Comp ↑ Suff ↓
Grad*Inp -0.152 0.068 0.315 -0.211 0.062 0.363 -0.806 0.143 0.438
DeepLift -0.077 0.017 0.372 -0.198 0.056 0.370 -0.457 0.076 0.474
GradientShap -0.326 0.147 0.250 -0.264 0.103 0.348 -0.697 0.161 0.429
IG -0.424 0.208 0.190 -0.360 0.151 0.312 -0.795 0.201 0.414
DIG -0.501 0.257 0.184 -0.346 0.153 0.310 -1.06 0.267 0.416

SIG -0.753 0.378 0.109 -0.771 0.318 0.266 -1.55 0.360 0.393

Table 8: Comparison of SIG with several baselines on three language models fine-tuned on the Rotten Tomatoes
dataset.
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