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Abstract

A hallmark of human intelligence is the ability
to learn new concepts purely from language.
Several recent approaches have explored train-
ing machine learning models via natural lan-
guage supervision. However, these approaches
fall short in leveraging linguistic quantifiers
(such as ‘always’ or ‘rarely’) and mimicking
humans in compositionally learning complex
tasks. Here, we present LaSQuE, a method that
can learn zero-shot classifiers from language
explanations by using three new strategies -
(1) modeling the semantics of linguistic quan-
tifiers in explanations (including exploiting or-
dinal strength relationships, such as ‘always’
> ‘likely’), (2) aggregating information from
multiple explanations using an attention-based
mechanism, and (3) model training via curricu-
lum learning. With these strategies, LaSQuE
outperforms prior work, showing an absolute
gain of up to 7% in generalizing to unseen real-
world classification tasks.1

1 Introduction

Learning from language (also ‘conversational ma-
chine learning’) is a new paradigm of machine
learning where machines are taught tasks through
natural language supervision in the form of ex-
planations and instructions (Andreas et al., 2018;
Arabshahi et al., 2020; Weller et al., 2020; Efrat and
Levy, 2020). Language explanations of concepts
have been explored for training classification mod-
els in few-shot and zero-shot settings (Mei et al.,
2022; Srivastava et al., 2017, 2018; Hancock et al.,
2018; Chai et al., 2020; Obeidat et al., 2019; Hanjie
et al., 2022).

However, current approaches fall short in fully
leveraging supervision available in language expla-
nations and using learning strategies that humans
routinely employ in learning new tasks. First, most

∗Equal contribution
1Our code can be found at: https://github.com/

sgdgp/LaSQuE
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Figure 1: We present techniques to learn zero-shot clas-
sifiers from natural language explanations. We investi-
gate (1) learning Quantifier Semantics to fully leverage
supervision from individual explanations, (2) Attention-
based mechanisms to identify the most salient explana-
tions for learning a task, and (3) Curriculum Learning
to learn more complex tasks progressively.

approaches, such as LNL (Srivastava et al., 2017),
and BabbleLabble (Hancock et al., 2018), do not
model supervision within free-form language ex-
planations in the form of quantifiers. Quanti-
fiers are linguistic elements that can dictate the
vagueness and perceived confidence of relations
expressed in a statement (Solt, 2009; Moxey and
Sanford, 1986). For example, with statements such
as ‘some poisonous mushrooms are red in color’,
we can infer that a red mushroom is not always
poisonous because of the quantifier ‘some’. More-
over, quantifiers are a ubiquitous part of natural
language and universal across languages. Second,
prior approaches do not reason about differences
in salience and utility of multiple explanations in
learning a new task, weighing them equally in the
absence of labeled data. This is sub-optimal since
certain explanations can be naturally harder to in-
corporate or have inherently less value in learning
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a concept2. Thirdly, when learning a set of tasks,
humans often learn ‘simpler’ concepts first and
gradually build towards ‘harder’ concepts (New-
port, 1990). Curriculum learning (Bengio et al.,
2009), a method where tasks are introduced in an
incremental and adaptive manner, has been shown
to be effective in a wide range of complex machine
learning tasks (Platanios et al., 2019; Tay et al.,
2019; Narvekar et al., 2017). However, its applica-
tion in the context of learning from explanations
has yet to be explored. The deteriorating general-
ization of classifiers with the increasing complexity
of explanations in prior work (Menon et al., 2022)
further motivates the need for curriculum learning
for learning from explanations.

To address the first shortcoming, our approach
LaSQuE (Learning Strategies For Quantified
Explanations) explicitly models quantifier seman-
tics and learns them directly from labeled classifica-
tion data. However, directly learning from labeled
data can lead to quantifier semantics that is incon-
sistent with human perceptions of their numerical
estimates. Hence, we provide weak supervision in
the form of ordinal relations describing the relative
strengths of quantifiers (e.g., ‘always’ > ‘likely’)
to supplement the learning of quantifier semantics
that comply with human judgments. Second, we
design an attention-based mechanism to model the
relative importance of multiple explanations in clas-
sifying an example. We also qualitatively analyze
the attention weights to identify characteristics of
explanations found most helpful. Finally, we con-
sider different axes of explanation complexity and
empirically evaluate the utility of curriculum learn-
ing on three different curricula.
As our test bed, we use the recently proposed
CLUES benchmark (Menon et al., 2022) for learn-
ing classification tasks from language explanations.
Our work focuses on learning classifiers from lan-
guage explanations where the explanations provide
the logic to perform the classification. (e.g., the
explanation ‘pungent mushrooms are toxic’, pro-
vides the logic that mushrooms with a pungent
odor should be classified as toxic). CLUES is the
largest available benchmark that contains explana-
tions conformant with this perspective. It differs
from some other benchmarks (Mishra et al., 2022;
Sanh et al., 2022), where the language component
provides the description of the task instead (such
as, ‘classify the mushrooms as toxic or poisonous’),

2e.g., overly complex or highly subjective explanations

which can be used to train/prompt a model. On
CLUES, LaSQuE achieves an improvement of 17%
and 7%, respectively, on the synthetic and real-
world benchmarks over baselines.

The rest of this paper is structured as follows: we
provide a description of the preliminaries in §3. In
§4 we describe LaSQuE and our learning strategies
along with supporting empirical performance. §5
discusses performance of LaSQuE on real world
classification tasks. Our contributions are:
• We introduce LaSQuE, which models semantics

of linguistic quantifiers, and uses an attention-
based mechanism to identify salient explanations
for learning classifiers from language. LaSQuE
significantly outperforms previous methods in
generalizing to unseen classification tasks.

• We empirically demonstrate the utility of curricu-
lum learning in training classifiers from language
by experimenting with three curricula.

2 Related Work

Natural Language Quantification. Previous
work has studied the role of quantifiers in nat-
ural language from multiple perspectives, such
as formal logic (Barwise and Cooper, 1981), lin-
guistics (Lobner, 1986; Bach et al., 2013), cogni-
tive psychology (Kurtzman and MacDonald, 1993),
and natural language processing to guide statisti-
cal models (Srivastava et al., 2018). In the above
mentioned works, quantifiers have been typically
modelled in either set-theoretic terms (Barwise and
Cooper, 1981) or by representing them probabilis-
tically (Moxey and Sanford, 1993; Yildirim et al.,
2013; Srivastava et al., 2018). Our work is closely
related to Srivastava et al. (2018), who also model
the effects of quantifiers in modifying the belief
of a classifier. However, we differ from Srivastava
et al. (2018) as we learn the beliefs associated with
quantifiers during training as opposed to defining
them apriori with fixed values. More recently, Cui
et al. (2022) discusses the challenges in understand-
ing quantifiers, specifically in the context of NLI,
and contributes a focused test dataset to benchmark
NLI models on their ability to understand quanti-
fiers. While both Cui et al. (2022) and our work
broadly highlight the need to model quantifiers to
advance language understanding, we differ in the
nature of downstream tasks studied (diverse clas-
sification tasks in our work vs NLI in Cui et al.
(2022)). Our approach (LaSQuE) contains a ded-
icated module that enables us to learn quantifier
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semantics, which apply to a wide range of tasks
spanning multiple domains.

Curriculum Learning. Curriculum learning
(Bengio et al., 2009) is a technique to learn com-
plex tasks through a graded exposure of examples
ranging from easy-to-hard difficulty. Recent works
in machine learning (Jiang et al., 2018; Guo et al.,
2018; Hacohen and Weinshall, 2019) have success-
fully demonstrated the utility of curriculum learn-
ing in learning image classification tasks. More
recently, Xu et al. (2020) also demonstrated the
effectiveness of curriculum learning for a set of
natural language understanding tasks drawn from
the GLUE benchmark (Wang et al., 2018). How-
ever, prior works build a curriculum of easy-to-hard
examples to improve model performance on indi-
vidual tasks. Rather than examples, we build a
curriculum of easy-to-hard tasks in our work, sim-
ilar to Mao et al. (2019). In contrast to Mao et al.
(2019) though, we focus on learning structured data
classification tasks from language explanations as
opposed to visual question answering tasks.

3 Preliminaries

3.1 Setup

We employ a cross-task generalization setup
(Mishra et al., 2022), and train classifiers using
multi-task training over a set of tasks Tseen and
evaluate for zero-shot generalization on a set of
tasks Tnovel (Tnovel ∩ Tseen = ϕ). The evaluation
metric is the zero-shot classification accuracy on
novel classification tasks.

Datasets. For experiments, we use the recently
proposed CLUES benchmark (Menon et al., 2022).
The benchmark is composed of synthetic and real-
world classification datasets. In CLUES, inputs are
structured, consisting of attribute name-attribute
value pairs (see Figure 1 for example). We use
the ‘Features-as-Text’ or ‘FaT’ representation
to encode the examples following Menon et al.
(2022), i.e., given the input as in Figure 1, we
encode the input as text tokens in the form odor
| pungent [SEP] ...gill-color |
white [SEP]. Additional details and statistics
about CLUES can be found in Appendix A.

Baselines. To compare the efficacy of our pro-
posed strategies on CLUES, we use the following
two baselines in our experiments: (1) RoBERTa
w/o Exp (does not use explanations) (Liu et al.,

2019) and (2) ExEnt (Menon et al., 2022). ExEnt
uses Natural Language Inference (NLI) as an inter-
mediate step to perform classification. The op-
erations in ExEnt can be broadly grouped into
three steps: (1) NLI step: obtain scores from an
entailment prediction model (RoBERTa+MNLI-
finetuned) for the alignment between the input and
each explanation available for a task; (2) Entail-
ment → Classification scores conversion: convert
the entailment scores for each input-explanation
pair into classification scores based on the nature of
the explanation; and (3) Aggregation: average the
classification scores from each input-explanation
pair to obtain an aggregate score for classification.
Convert aggregate scores to probabilities using soft-
max and train the model end-to-end using the cross-
entropy loss. For more details on ExEnt, we refer
the reader to Menon et al. (2022).

4 LaSQuE

In this section, we present our method, LaSQuE,
and provide detailed descriptions and empirical
support for the different learning strategies that are
part of LaSQuE– (1) modeling quantifier semantics,
(2) using attention for aggregation across explana-
tions, and (3) curriculum learning.

4.1 Modeling quantifier semantics

Quantifiers are a ubiquitous part of natural lan-
guage and can help express varying strengths of
relations in a statement. Prior work in cognitive
science (Chopra et al., 2019; Steinert-Threlkeld,
2021) and machine learning (Srivastava et al., 2018;
Menon et al., 2022) shows that people tend to
use quantifiers often in learning or teaching tasks.
Hence, modeling quantifiers is important for build-
ing systems that can mimic humans in efficiently
learning from natural language. However, past
work on computational modeling of quantifiers is
sparse. To the best of our knowledge, no prior
work has explored learning quantifier semantics in
a data-driven way. In this work, we devise meth-
ods to explicitly model the differential semantics
of quantifiers present in explanations to guide clas-
sifier training. Figure 2 shows architecture of our
model, LaSQuE.

To formalize our approach to modeling quan-
tifier semantics, consider a task t with the set of
class labels L and set of explanations E. Given
the Feature-as-Text (FaT) representation of a struc-
tured data example x ∈ t and an explanation
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Figure 2: LaSQuE models quantifier semantics and uses attention over multiple explanations to aggregate class
logits. We re-weigh the logits from the NLI step and map them to class logits, thus strengthening/weakening
the contribution of an explanation towards assigning the label (mentioned in the explanation) to the input. This
mapping procedure (described in §4.1) also takes the strength of the quantifier (in form of probabilities) present in
the explanation into account (denoted by ◯⋆ in the figure). Curriculum learning (not shown in the figure) entails
training LaSQuE progressively on easy-to-hard tasks.

ej ∈ E, our model takes FaT(x) and ej as input and
passes it through a pretrained RoBERTa+MNLI
model, following previous work (Menon et al.,
2022). For each example-explanation pair, the NLI
model outputs entailment, neutral, and contradic-
tion scores (denoted as sje, sjn, and s

j
c respectively).

In the next step, we incorporate quantifier seman-
tics to assign logits to the set of class labels, L,
using the outputs of the NLI model. In this work,
we model the semantics of a quantifier by a proba-
bility value signifying the strength of the quantifier,
i.e., the confidence of the quantifier in conveying
the beliefs expressed in the explanation. Then the
class logit assignment is done as follows. If:

• Explanation ej mentions a label lexp: An illus-
trative example is ‘If head equal to 1, then it is
usually dax’. In this example the label mentioned,
lexp is ‘dax’. Let pquant denote the strength (as
a probability) of the quantifier mentioned in the
explanation3. In the aforementioned example,
pquant will be the probability associated with the
quantifier ‘usually’. Let P(l) denote the proba-
bility of any label l ∈ L. Then,

log(P(lexp)) ∝ pquant × s
j
e

+ (1 − pquant) × s
j
c + s

j
n/∣L∣ (1)

3We assume that explanations contain a single quantifier.
This assumption also holds true with the explanations found
in CLUES.

∀ l ∈ L \ {lexp},
log(P(l)) ∝ pquant × s

j
c

+ (1 − pquant) × s
j
e + s

j
n/∣L∣ (2)

Equations 1 and 2 define the likelihood of each
label in terms of the NLI model outputs. The
entailment score (se) denotes how strongly the
explanation influences the classifier to label the
input as lexp. On the other hand, the contradiction
score, sc denotes how strongly the explanation
influences the classifier to not label the input as
lexp. These ‘influences’ are additionally modi-
fied based on the quantifier strength as shown in
equations 1 and 2.
Note: If quantifiers are absent in the explanations,
we assume pquant is 1.

• Explanation ej mentions negation of a label
‘lexp’ (NOT lexp): An illustrative example is ‘If
head equal to 1, then it is usually not dax’, where
‘dax’ is the label mentioned (lexp). The roles of
s
j
c and s

j
e as described in the previous equations

are reversed.
Following this step, we average the class logits

from each example-explanation pair to aggregate
the decisions. Finally, we apply a softmax over the
resulting class scores to obtain a distribution over
class labels and train the model to minimize the
cross-entropy loss, LCE .

Approaches to learn quantifier semantics. We
experiment with the following approaches to learn
the probability values of quantifiers:
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panel, the complexity of tasks increases from left to right due to negations. Across panels, the complexities also
increase from left to right due to a combination of change in the presence of quantifiers and explanation structure
(using conjunctions/disjunctions).

• Finetuning pre-defined probability values: We
initialize the quantifier probability values
(pquant) with pre-defined values and fine-tune
them while training LaSQuE. These initial esti-
mates can be specified from domain knowledge
or by an expert. In this work, we adopt the quan-
tifier values from Srivastava et al. (2018).4 We
refer to the model learned using this approach as
LaSQuE (predefined init).

• Learning probability values for the quantifiers
from scratch: We start from random initializa-
tion and then learn the probability values of each
quantifier while training LaSQuE. We refer to the
model learned using this approach as LaSQuE
(random init).

• Ordinal ranking as weak supervision: We ex-
plore another form of supervision by specifying
ordinal relationships between pairs of quantifiers
based on their relative strengths. To define or-
dinal relationships, we re-purpose the quantifier
probability values in Srivastava et al. (2018). For
example, quantifiers such as ‘likely’ and ‘often’
associated with the values 0.7 and 0.5 respec-
tively are defined by the relationship, ‘likely’ >
‘often’. We leverage the ordinal relations to guide
the learning of quantifier semantics through a
ranking loss, following Pavlakos et al. (2018).
Given a pair of quantifiers qi and qj (i ≠ j), the
ranking loss is defined as:

Li,j = {log(1 + exp(pqi − pqj)), p
∗
qi

> p
∗
qj(pqi − pqj)2, p

∗
qi

= p
∗
qj

4Full list of quantifiers used can be found in the Appendix.

where, p
∗
q refers to the subjective probability

value of a quantifier, q, in Srivastava et al. (2018).
Further, we define

Lrank = ∑(qi,qj)∈Q
Li,j (3)

where, Q denotes the full set of quantifiers
present in the explanations of CLUES (§A.1). The
final loss is a weighted sum of classification loss
(LCE) and ranking loss (Lrank).

Ltotal = LCE + λLrank (4)

where, λ denotes the weight of ranking loss. We
use λ = 10 in this work, chosen using validation
performance. We refer to the model learned
using this approach as LaSQuE (ordinal).

Performance on CLUES-Synthetic: To eval-
uate the effectiveness of natural language quan-
tification in learning classifiers from language ex-
planations, we experiment on a collection of 100
tasks for each of the 48 different complexities from
CLUES-Synthetic. The complexities vary based
on the presence of conjunctions, negations, and
quantifiers in the task explanations. For each com-
plexity, we train a classifier and evaluate its gener-
alization to novel tasks of the same complexity.

Figure 3 shows the results of different variants of
LaSQuE and ExEnt across the different task com-
plexities as the relative performance gain over the
RoBERTa w/o Exp. baseline for zero-shot classifi-
cation of examples from unseen tasks. For ease of
visualization, we have averaged the results across
binary and multiclass classification tasks in the
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figure. Post-averaging, we plot sets of four bars
corresponding to the evaluations of the four mod-
els (three LaSQuE variations + ExEnt) on each of
the 24 task complexities resulting from negations,
conjunctions, and quantifiers.

Overall, we find that explicit modeling of quan-
tifier semantics helps to learn better zero-shot clas-
sifiers. In particular, LaSQuE expectedly performs
much better than previous approaches on tasks with
quantified explanations. Further, while ExEnt is
weaker than RoBERTa w/o exp. baseline on certain
task complexities, LaSQuE outperforms or match
the baselines on almost all task complexities. Ex-
pectedly, the generalization ability of models de-
crease with the increasing complexity of explana-
tions due to changes in the structure of explanations
or the presence of negations.

METHOD ACCURACY (↑)

ExEnt 54.7
LaSQuE (random init) 56.9♦

LaSQuE (predefined init) 59.7♦♣

LaSQuE (ordinal) 59.9♦♣

Table 1: Average accuracies of different models on
CLUES-Synthetic. ♦ and ♣ denote that the model
is significantly better than ExEnt and LaSQuE (random
init) respectively. For all significance tests p < 0.005
using a paired t-test.

Table 1 shows the average accuracy of dif-
ferent LaSQuE variants and ExEnt over tasks in
CLUES-Synthetic. LaSQuE (ordinal) performs
the best across majority of the synthetic task com-
plexities in CLUES with a significant 5.2% abso-
lute improvement across all tasks complexities

over ExEnt. Further, LaSQuE (predefined init) per-
forms comparably with LaSQuE (ordinal) in many
cases (5.0% vs 5.2% absolute improvement over
ExEnt) but struggles in tasks where explanations
have negations in both clauses and labels. The poor
performance of LaSQuE (random init) compared
to LaSQuE (predefined init) and LaSQuE (ordinal)
demonstrates the challenge of jointly learning quan-
tifier semantics and a classifier only from labels.
Nevertheless, LaSQuE (random init) outperforms
ExEnt significantly by 2.2% points (absolute) on
average across all synthetic task complexities.

Analyzing the learned quantifier estimates for
the LaSQuE variant whose quantifier values are fine-
tuned from predefined values (LaSQuE (predefined
init) in Figure 4), we observe the final learned prob-
ability values are close to the initialization values.
On the other hand, we note that LaSQuE (ordinal)
learns three clusters of quantifier probabilities that
match with our intuition of high-strength (probabil-
ity above 0.95), intermediate strength (probability
around 0.7), and low-strength quantifiers (proba-
bility close to 0). Even though LaSQuE (ordinal)
makes little difference between quantifiers within
a cluster, we observe that weak supervision in the
form of ordinal ranks is sufficient to develop mod-
els competent with, even surpassing, LaSQuE (pre-
defined) that uses predefined initialization. Finally,
we observe LaSQuE (random init) struggles to learn
any interpretable ranking for quantifiers. On further
analysis, we identify that LaSQuE (random init) can
learn the quantifier semantics reasonably well for
simple binary tasks. However, it struggles to learn
reasonable quantifier semantics in the presence of
negations, conjunctions, and disjunctions.
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4.2 Aggregating explanations with attention

To mimic human learning, models need to identify
salient explanations that can be potentially useful
in classifying an input. As previously mentioned,
in the absence of labeled data for a task, previous
work on learning from explanations does not differ-
entiate between multiple explanations in terms of
their salience and utility for classifying an example.
For example, ExEnt averages the class logits from
multiple explanations for making predictions, im-
plicitly considering all explanations equally salient
for classifying an example. To model the varying
importance of each explanation towards deciding
the class label, we use attention for the aggregation
step. We obtain the attention weights by using a
feed-forward network over the [CLS] representa-
tions obtained from the intermediate NLI model.
The attention weights are then normalized using
softmax. The final aggregated class logits for the la-
bel l is ∑m

j=1 ajz
l
j , where aj is the attention weight

for each explanation ej , and z
l
j denotes the logit

for label l using ej . The aggregated class logits are
converted to probabilities using softmax, and the
model is trained using cross-entropy loss.
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Figure 5: (a) Generalization accuracy on
CLUES-Synthetic ablating the use of attention
to combine results from multiple explanations in
LaSQuE. (b) Mean attention scores of explanations
from LaSQuE vs explanation length (# of tokens).

Performance on CLUES-Synthetic: To evaluate
the role of attention, we experiment with two mod-
els, one using mean and the other using attention
for aggregation. Each model is fine-tuned from the
RoBERTA+MNLI backbone on the training tasks
of CLUES-Synthetic. Figure 5(a) shows the gen-
eralization performance for two variants of LaSQuE.
Using attention for aggregation across explanations
results in significantly better generalization accu-
racy (50.68% vs 46.04% ; p < 0.1, paired t-test).
While technically simple, we see that this modifi-

cation allows the model to behave in conceptually
sophisticated ways.
Attention weight analysis: Figure 5(b) shows
a histogram of average attention weights from
LaSQuE for different explanation lengths. We
find that longer explanations (typically explana-
tions with nested conjunctions and disjunctions)
get lower attention weights on average. This seems
reasonable and intuitive since complex explana-
tions are likely harder for the model to interpret
correctly, so relying on them may be riskier. Fur-
ther, we find that explanations containing quanti-
fiers receive higher attention on average than expla-
nations without quantifiers (0.44 vs 0.35), further
highlighting the value of modeling quantifiers in
explanations. Explanations containing ‘definitely’
and ‘frequently’ received higher attention than ex-
planations containing other quantifiers. Surpris-
ingly, the average attention weights were compara-
ble for explanations with and without negation.

4.3 Curriculum learning

From Figure 3, it is clear that the generalization
abilities of models diminish dramatically with the
increasing complexity of tasks and explanations.
Thus, we next investigate using curriculum learn-
ing (Bengio et al., 2009), which has shown sig-
nificant successes in learning complex tasks, for
learning classifiers from explanations.

We define the ‘complexity’ of an explanation
under three axes here - (1) the type of classification
task (binary vs multiclass) served by the explana-
tion, (2) presence of negations in the explanation,
and (3) structure of the explanation (whether the
explanation contains conjunction/disjunctions or
nested clauses). Using curriculum learning we em-
pirically evaluate if training on a classification task
with ‘easier’ (less complex) explanations first gives
any advantage when learning a task with ‘harder’
(more complex) explanations. In this work, we
explore the following curricula:
• Binary → multiclass: We first train classifiers on

binary classification tasks and then on multiclass
classification tasks.

• No negations → having negations in labels and
clauses: We train on tasks with explanations that
contain no negation followed by training on tasks
with explanations that have negations in them.
Note that negation can appear in the clauses or
before a class label in the explanation.

• No conjunctions/disjunctions → tasks with
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nested conjunctions and disjunctions: We first
train on tasks with simple explanations without
any conjunctions or disjunctions. Following this,
we train on tasks having explanations that contain
one conjunction/disjunction and then, on tasks
with explanations that contain nested clauses.
Figure 6 shows the results of curriculum learn-

ing on the synthetic tasks of CLUES. We find that
LaSQuE trained through curriculum learning (de-
noted by ‘curriculum’ bars) outperforms LaSQuE
trained only on the most challenging task set in the
corresponding curriculum (denoted by ‘standard’
bars) on the generalization accuracy of novel hard-
est tasks in the corresponding curriculum. How-
ever, we notice that LaSQuE has minimal benefits
from training in a curriculum learning fashion on
the conjunctions curriculum (shown in green).

We hypothesize that jointly learning quantifiers
and classifiers might be challenging, so we experi-
ment with another setup where we reduce the learn-
ing problem to only modeling task complexities
by freezing the quantifier semantics with the se-
mantics learned by LaSQuE on simple synthetic
binary tasks. With this modification, we find that
curriculum learning is much more effective in all
three curricula as seen from the improved aver-
age generalization performance (denoted by ‘pre-
trained curricula’ bars in Figure 6). Notably, we
find curriculum learning to be most effective in han-
dling negations obtaining an absolute improvement
of 17.11% on the generalization accuracy. The
low gains achieved through curriculum learning
for handling structural complexity indicates a need
to model the role of conjunctions and disjunctions
explicitly. We leave this for future work to explore.

We further analyze the progression of the zero-
shot generalization accuracies as we increase the
complexity of tasks as we move forward in the
curriculum. We defer this result and discussion to
the Appendix §C. Briefly, our results suggest that
models tend to perform better on more complex

tasks at the expense of slight performance drops on
simpler tasks as the curriculum progresses.

5 Performance on real-world tasks
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Figure 7: Zero-shot classification accuracy on novel
real-world classification tasks in CLUES-Real.

Comparison with ExEnt. In the previous sec-
tions, we established the effectiveness of our pro-
posed strategies on a large number of synthetic
tasks from CLUES. Here, we empirically evaluate
LaSQuE on the 36 real-world classification tasks
from CLUES using the aforementioned strategies.

In Figure 7, we find that directly trying to train
LaSQuE fails to surpass the baselines (even when
using attention to aggregate over explanations)
as the comparatively low number of explanations
in CLUES-Real hinders the model from learning
quantifier semantics and classification jointly. To
alleviate this issue, we pre-train on the synthetic
tasks and then fine-tune the learned model on the
real tasks, which we also see as a natural type of
curriculum learning. We find that pre-training on
synthetic tasks (LaSQuE (syn2real)) gives a rela-
tive gain of 6.7% in generalization accuracy over
ExEnt. On the contrary, if we pre-train ExEnt
using the same set of synthetic tasks, we find
that the resultant model, ExEnt (syn2real), is in-
ferior to ExEnt in terms of generalization accu-
racy (as shown in figure 7). LaSQuE (syn2real) out-
performs ExEnt (syn2real) (58.68% vs 52.94%),
showing that LaSQuE is better in transferring the
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skills learned over synthetic tasks to real-world
tasks. Next, we evaluate the utility of curriculum
learning on real tasks. We start with a pre-trained
LaSQuE on synthetic tasks and then fine-tune it first
on binary tasks of CLUES-Real followed by train-
ing on multiclass tasks of CLUES-Real. We find
that curriculum learning results in the best general-
ization (LaSQuE (syn2real + curriculum)) perform-
ing significantly better than ExEnt (relative gain of
12.7%; p < 0.005, paired t-test) on CLUES-Real.

Comparison with Large Instruction-tuned mod-
els. Recent works show that large language mod-
els (LLMs) fine-tuned on multiple classification
tasks have an ability for zero-shot classification on
new tasks (Ouyang et al., 2022; Sanh et al., 2022;
Chung et al., 2022). These models have been pri-
marily trained on unstructured text classification
tasks and instructions that define the task rather
than providing logic for classification. Given the
emergent ability of large language models (Wei
et al., 2022), we test the performance of such mod-
els on CLUES-Real and compare them with our
best LaSQuE model. Specifically, we compare
against the publicly available T0-3B (Sanh et al.,
2022) and FLAN-T5-XXL (Chung et al., 2022)
models. We report the generalization accuracy over
16 real-world tasks with and without using explana-
tions in the prompt for T0-3B and FLAN-T5-XXL
in Table 2. We find that both T0-3B and FLAN-T5-
XXL with explanations in the prompt (47.90% and
42.30% respectively) perform worse than our best
LaSQuE (61.90%) on the same set of tasks. This
shows that our strategies for LaSQuE instill stronger
inductive biases into a much smaller model (125M
for LaSQuE vs 3B for T0/ 11B for FLAN-T5-XXL).
Further, adding explanations in the prompt lowers
performance of both T0-3B and FLAN-T5-XXL
showing that these models struggle in understand-
ing the classification logic described in form of nat-
ural language explanations, for structured classifi-
cation tasks. Future work should explore improved
techniques for using large instruction-tuned models
under zero-shot settings for structured classifica-
tion tasks guided by natural language explanations.

6 Conclusion

We have presented effective and generalizable
strategies to learn classifiers from language expla-
nations. While our results are promising, our analy-
sis also highlights several open challenges in learn-

METHOD ACCURACY (↑)

LaSQuE (best) 61.90%

T0-3B (w/o exp.) 49.47%
T0-3B (w/ exp.) 47.90%
FLAN-T5-XXL (w/o exp.) 44.47%
FLAN-T5-XXL (w/ exp.) 42.30%

Table 2: Zero-shot accuracy of our best LaSQuE model,
T0-3B, and FLAN-T5-XXL (11B) on 16 unseen classi-
fication tasks of CLUES-Real.

ing from language. In particular, LaSQuE struggles
to learn quantifier semantics without quantifier-
specific supervision (in the form of pre-defined
initialization or ordinal relations), especially when
tasks have complex explanations (due to the pres-
ence of negations/conjunctions/disjunctions). Fur-
ther, our modeling of quantifiers as fixed probabil-
ity values is restrictive. Future work can also ex-
plore explicit modeling of negations, conjunctions
and disjunctions for learning from explanations.

7 Limitations

In this work, we introduce LaSQuE, which models
and learns the differential semantics of linguistic
quantifiers present in natural language explanation
to train a classifier guided by these explanations.
We evaluate the efficacy of LaSQuE over baselines
on the CLUES benchmark.

This work assumes that only a single quantifier is
present in the explanations. However, in real-world
settings, explanations may contain multiple quan-
tifiers. Modeling the composition of quantifiers
can be an interesting direction for future work to
make the paradigm of learning from explanations
more robust toward fuzzy concepts expressed in
real-world explanations.

For our experiments, we assume perfect extrac-
tion of quantifiers and limit our analysis to a lim-
ited set of quantifiers in this work. Furthermore,
we assume that the effect of quantifiers in a sen-
tence is the same irrespective of the domain of the
sentence. For example, consider two sentences

‘pungent mushrooms are usually toxic’ and ‘people
who smoke regularly usually suffer from cancer’.
Here the effect of ‘usually’ is not exactly the same
for two sentences that are from different domains.
However, LaSQuE is not sensitive to the task do-
main while modeling the semantics of the quanti-
fier. Future work can investigate variations in the
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semantics of the same quantifier across different
domains and also how to incorporate/learn such
domain-specific differences (for example, by mod-
eling the semantics of a quantifier as a probability
distribution rather than a point value).

Ethics and Broader Impact

All our experiments are performed over publicly
available datasets, specifically datasets (includ-
ing language explanations) from CLUES bench-
mark (Menon et al., 2022). The datasets do not
contain any information that uniquely identifies the
crowdworkers involved in data collection. We do
not perform any additional annotation or human
evaluation in this work.

Our method, LaSQuE can learn classifiers over
structured data using language explanations pro-
vided as part of input to the classifier. LaSQuE
is built over existing pre-trained language model,
RoBERTa (Liu et al., 2019). We do not foresee any
risks with our method if the inputs to our model are
appropriate for the task. Any measures to counter-
act erroneous inputs (that may be provided delib-
erately, potentially exploiting unwanted biases) or
curb the biases of pre-trained language models are
beyond the scope of this work.

The broader impact of this research in the longer
term could increase the accessibility of predictive
technologies for ordinary users (non-experts), en-
abling them to customize AI technologies through
natural language interactions.
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A Details on CLUES

CLUES (Menon et al., 2022) is a recently pro-
posed benchmark of classification tasks paired
with natural language explanations. The bench-
mark consists of 36 real-world classification tasks
(CLUES-Real) as well 144 synthetic classification
tasks (CLUES-Synthetic). The tasks and expla-
nations of the benchmark are in English language.
The real-world classification tasks were created
using resources from UCI Machine Learning repos-
itory, Kaggle, and Wikipedia tables. The explana-
tions for real-world tasks were crowdsourced. The
synthetic tasks were created programmatically to
study the performance of models under different
levels of task complexities. The 48 different com-
plexities in CLUES-Synthetic arise from the: (a)
presence of negations in clauses and/or labels, (b)
structure of explanations (conjunctions/disjunction-
s/nested), (c) presence of quantifiers in explana-
tions, and (d) binary vs multiclass classification
task. The explanations for CLUES-Synthetic are
generated programmatically using templates. In
this work, we follow the train and test splits for
CLUES-Real from Menon et al. (2022). Addition-
ally, we train on 70% of the labeled examples of
the seen tasks and perform zero-shot generaliza-
tion test over the 20% examples of each task in
CLUES-Real. For the extremely small tasks, we
use the entire set of examples for zero-shot testing.
The seen-unseen task splits for CLUES-Real and
CLUES-Synthetic that we use for experiments in
this paper is the same as that in Menon et al. (2022).

A.1 List of quantifiers

The full list of quantifiers along with their associ-
ated probability values are shown in Table 3.

QUANTIFIERS PROBABILITY

"always", "certainly", "definitely" 0.95
"usually", "normally", "generally",

"likely", "typically" 0.70

"often" 0.50
"sometimes", "frequently", 0.30
"occasionally" 0.20
"rarely", "seldom" 0.10
"never" 0.05

Table 3: Probability values used for quantifiers in CLUES.
These values are based on Srivastava et al. (2018).

B Training details

In this section we provide details about implemen-
tation such as hyperparameter details, and details
about hardware and software used along with an
estimate of time taken to train the models.

B.1 Hyper-parameter settings

For all the transformer-based models we use the im-
plementation of HuggingFace library (Wolf et al.,
2020). All the model based hyper-parameters are
thus kept default to the settings in the HuggingFace
library. We use the publicly available checkpoints
to initialize the pre-trained models. For RoBERTa
based baselines we use ‘roberta-base’ checkpoint
available on HuggingFace. For our intermediate
entailment model in ExEnt, we fine-tune a pre-
trained checkpoint of RoBERTa trained on MNLI
corpus (‘textattack/roberta-base-MNLI’ from Hug-
gingFace).

When training on CLUES-Synthetic, we use a
maximum of 64 tokens for our baseline RoBERTa
w/o Exp. and ExEnt.

We used the AdamW (Loshchilov and Hutter,
2019) optimizer commonly used to fine-tune pre-
trained Masked Language Models (MLM) mod-
els. For fine-tuning the pre-trained models on our
benchmark tasks, we experimented with a learning
rate of 1e − 5. In order to learn the quantifier prob-
abilities, we search for the correct learning rate to
use in {1e− 3, 2e− 3, 5e− 3, 9e− 3, 1e− 2, 2e−
2, 3e − 2} and use 1e − 2 for our reported exper-
iments based on the best validation accuracy ob-
tained while training and testing on the binary clas-
sification datasets with no negation and conjunction
complexities in explanations/concepts. Batch sizes
was kept as 2 with gradient accumulation factor of
8. The random seed for all experiments was 42.
We train all the models for 20 epochs. Each epoch
comprises of 100 batches, and in each batch the
models look at one of the tasks (in a sequential
order) in the seen split. In the curriculum learning
experiments, we run the model on each task type
for 20 epochs and select the best model during a
particular step of the curriculum based on the vali-
dation scores of the seen tasks. Finally, the chosen
best checkpoint is used to initialize the model for
the next step of the curriculum.
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Figure 8: Progression of generalization accuracies on task complexities as we move forward in the curriculum
for all three curricula (from left to right: Classes, Negations and Conjunctions curriculum). The text on each bar
indicates the evaluation complexity, while the x-axis indicates the complexity that the model has been currently
trained on in the curriculum.

B.2 Hardware and software specifications
All the models are coded using Pytorch 1.4.05

(Paszke et al., 2019) and related libraries like
numpy (Harris et al., 2020), scipy (Jones et al.,
2001–) etc. We run all experiments on a Tesla
V100-SXM2 GPU of size 16GB, 250 GB RAM
and 40 CPU cores.

B.3 Training times
• Training on CLUES-Real : The baseline

RoBERTa w/o Exp model typically takes 3 sec-
onds on average for training on 1 batch of exam-
ples. ExEnt and LaSQuE (all variants) also take
comparable amount of time to train on 1 batch.
In 1 batch, the models go through 16 examples
from the tasks in seen split.

• Training on CLUES-Synthetic : All the mod-
els take comparatively much lesser time for train-
ing on our synthetic tasks owing to lesser num-
ber of explanations on average for a task. For
training on 1 batch, all models took 1 seconds
or less to train on 1 batch of examples from
CLUES-Synthetic.

• Training for curriculum learning: The run time
of a curriculum learning episode depends on the
number of tasks in an episode. In Figure 6, the
binary-multiclass curriculum takes 2 hours to
train, while negations take 4 hours, and conjunc-
tions take 3 hours. The same time frame applies
for the results in Figure 8.

C Extended Analysis of Curriculum
Learning

In Figure 8, we show the trajectories of general-
ization performance as we increase the complexity
along three independent axes in the three curric-
ula. Briefly, our results indicate that in learning
tasks with more classes, generalization increases
on multiclass classification tasks at the expense of

5https://pytorch.org/

a slight performance decrease on the more straight-
forward binary tasks. In the curriculum focused on
negations, LaSQuE underperforms on tasks with ex-
planations that have ‘label negations’ after training
on the relevant training datasets for that complexity.
However, on further analysis, we observe that this
trend is more pronounced when ‘label negations’
are paired with multiclass classification tasks. By
contrast, LaSQuE improves through training on the
relevant training datasets of binary classification
tasks with ‘label negations’ in concepts. Lastly,
training progressively on more structurally com-
plex tasks resulting from conjunctions/disjunctions
in explanations shows improvements during evalua-
tion across all conjunction types without forgetting
how to solve simpler tasks.
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Model Name No Conjunctions
No Quantifiers

Simple Conjunctions
No Quantifiers

Nested Conjunctions
No Quantifiers

NN CN LN BN NN CN LN BN NN CN LN BN

LaSQuE (predefined init) 89.67 87.09 81.40 42.87 78.05 68.41 51.01 56.84 75.38 65.82 58.70 45.14

LaSQuE (scratch) 89.67 87.09 81.40 42.87 78.05 68.41 51.01 56.84 75.38 65.82 58.70 45.14

LaSQuE (ordinal) 91.22 88.00 79.79 59.97 76.00 62.91 54.05 58.02 74.72 68.66 51.62 47.24

ExEnt 89.67 87.09 81.40 42.87 78.05 68.41 51.01 56.84 75.38 65.82 58.70 45.14

Model Name No Conjunctions
With Quantifiers

Simple Conjunctions
With Quantifiers

Nested Conjunctions
With Quantifiers

NN CN LN BN NN CN LN BN NN CN LN BN

LaSQuE (predefined init) 64.81 56.77 63.70 56.16 56.30 55.02 49.79 44.37 54.77 46.80 44.66 40.79

LaSQuE (scratch) 66.15 47.48 47.01 47.33 54.00 44.76 49.90 42.20 52.23 35.46 42.70 37.15

LaSQuE (ordinal) 65.10 45.03 56.88 56.83 56.36 50.41 53.08 51.78 53.48 49.22 44.92 43.91

ExEnt 49.41 40.02 47.88 43.44 49.17 42.87 45.84 42.33 43.34 37.67 37.41 34.80

Table 4: Classification accuracies of LaSQuE and ExEnt. ‘NN’, ‘CN’, ‘LN’, and ‘BN’ stand for ‘no negations’,
‘clause negations’, ‘label negations’, and ‘both negations’, respectively denoting the variations of negations appearing
in the explanations of CLUES-Synthetic. We see that LaSQuE outperforms ExEnt (Menon et al., 2022) on all tasks
having explanations with quantifiers. Within each set, task complexity increases from left to right due to negations.
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