Text Augmentation Using Dataset Reconstruction for Low-Resource
Classification

Adir Rahamim*

Technion - Israel Institute of Technology
adir.rahamim@campus.technion.ac.il

Esther Goldbraich
IBM Research
esthergold@il.ibm.com

Abstract

In the deployment of real-world text classifica-
tion models, label scarcity is a common prob-
lem. As the number of classes increases, this
problem becomes even more complex. One
way to address this problem is by applying text
augmentation methods.

One of the more prominent methods involves
using the text-generation capabilities of lan-
guage models. We propose Text AUgmenta-
tion by Dataset Reconstruction (TAU-DR), a
novel method of data augmentation for text
classification. We conduct experiments on
several multi-class datasets, showing that our
approach improves the current state-of-the-art
techniques for data augmentation.

1 Introduction

The deployment of deep learning models in the
real-world requires an abundance of labels. How-
ever, labeled data is often difficult and expensive
to obtain, especially when the models are deployed
in highly specialized domains. Therefore, in this
paper, we focus on data augmentation for text clas-
sification in low-resource environments.

Text classification (Sebastiani, 2002) is funda-
mental to machine learning and natural language
processing. It includes various tasks, such as intent
classification (Kumar et al., 2019; Rabinovich et al.,
2022), which is a vital component of many auto-
mated chatbot platforms (Collinaszy et al., 2017);
sentiment analysis (Tang et al., 2015); topic clas-
sification (Tong and Koller, 2001; Shnarch et al.,
2022); and relation classification (Giridhara et al.,
2019). The design and development of such Al
applications may begin with a dataset containing
only a limited amount of data.

To improve the performance of downstream
models in such low-resource settings, a data aug-
mentation mechanism is often implemented (Wong
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et al., 2016). To achieve this, new data are syn-
thesized from existing training data. It has been
demonstrated that the use of such mechanisms can
significantly improve the performance of various
neural network models. For computer vision and
speech recognition, a number of well-established
methods are available for synthesizing labeled data
and enhancing classification accuracy. Some of
the basic methods, which are also class preserving,
include transformations such as cropping, padding,
flipping, and shifting along time and space dimen-
sions (Cui et al., 2015; Krizhevsky et al., 2017).

However, the application of simple transforma-
tion for textual data augmentation is more challeng-
ing, since simple transformations often invalidate
and distort the text, thereby producing grammati-
cally and semantically incorrect texts that are differ-
ent from the actual text distribution. Consequently,
rule-based data augmentation methods for texts typ-
ically involve replacing one word with a synonym,
deleting a word, or changing a word (Wei and Zou,
2019; Dai and Adel, 2020).

Recent advances in text generation models (Rad-
ford et al., 2018) facilitate an innovative approach
for handling scarce data situations. In an effort
to reduce the cost of obtaining labeled in-domain
data, Wang et al. (2021) use the self-training frame-
work to generate pseudo-labeled training data from
unlabeled in-domain data. Xu et al. (2021) have
recently demonstrated the difficulty in extracting
such domain-specific unlabeled data from general
corpora.

A number of existing works (Ding et al., 2020;
Anaby-Tavor et al., 2020; Yang et al., 2020) have
overcome this difficulty by using the generation
capabilities of pre-trained language models.

In this paper, we follow the latter paradigm and
propose Text Augmentation by Dataset Reconstruc-
tion (TAU-DR), a novel text augmentation algo-
rithm that generates new sentences based on the
reconstruction of the original sentences from the
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hidden representations of a pre-trained classifier.

TAU-DR utilizes frozen auto-regressive lan-
guage models by soft-prompt tuning, using a rela-
tively small number of trainable parameters com-
pared to the language model and unlike most exist-
ing methods that rely on language models, it does
not require an additional pertaining phase. During
training, we extract the hidden representation from
the pre-trained classifier and use a Multi-Layer Per-
ceptron (MLP) to turn the hidden representation
into a soft-prompt. The soft-prompt is then fed into
the frozen language mode.

Our approach is motivated by the observation
that if the pre-trained classifier is trained from a
language model (i.e. BERT), then the hidden repre-
sentation is a contextual embedding of the original
sentence. Thus, the soft-prompt will also summa-
rize contextual information from a small neigh-
borhood of the hidden representation, giving the
frozen language model additional information for
enriching the original dataset.

By using this training approach and manipulat-
ing the trained prompts, we are able to generate
novel sentences with their corresponding pseudo-
labels. Then, as in previous works (Anaby-Tavor
et al., 2020; Wang et al., 2022), we apply a filtering
mechanism and filter out low-quality sentences.

We conduct experiments on four multi-class
datasets: TREC, ATIS, Banking77, and T-Bot (in
various low-resource settings) and show that our
approach consistently outperforms the current state-
of-the-art approaches. We also conduct several ex-
periments measuring the quality of the generated
sentences!.

Our contributions are two-fold, and can be sum-
marized below:

* We propose a novel approach for data aug-
mentation using dataset reconstruction. We
demonstrate that our method achieves state-
of-the-art performance on several text classifi-
cation datasets.

* We suggest two novel filtering approaches for
better exploitation of the generated sentences
- one approach for cases where the evaluation
set is available, and another approach for cases
where such datasets are absent.

The remainder of the paper is organized as fol-
lows: Section 2 introduces the problem framework

'Our implementation will be released after the anonymity
period.

and relevant studies. In Section 3, we present
TAU-DR and our approach. In Section 4, we con-
duct the experiments. Section 5 concludes the pa-
per and includes a discussion of future work.

2 Problem Setup and Related Work

In this section, we introduce the data augmenta-
tion setting in a low-resource text classification.
Let Xiain = { (a4, yl)}fil be a text classification
dataset with L classes, where we denote x; to be
the example and y; to be its corresponding label.
We assume that for each class, we have m examples
where m is a relatively low number. As in previous
works (e.g., Anaby-Tavor et al. 2020; Wang et al.
2022), we assume the existence of a validation set
Xyq and a test set Xiegt.2

Our goal is to create an augmented dataset Xge,
by using Xin S0 that by training a classifier on
the union of the generated and the original dataset
Xirain U Xgen, we improve the performance of the
same classifier trained on Xpi,. The performance
of each classifier is measured on Xieg.

The task of text augmentation is relatively chal-
lenging, since even small modifications can change
the meaning and label of the text. By carefully
setting up a rule-based approach, one can deal
with this challenge. This was tried by Wei and
Zou (2019), who proposed Easy Data Augmen-
tation (EDA), which utilizes simple predefined
rules to edit, remove, and substitute portions of
the text while maintaining its meaning. Dai and
Adel (2020) suggested a rule- based augmentation
method named SDANER, tailored for named entity
recognition.

A different line of research, which is the promi-
nent approach, uses pre-trained language mod-
els. Wu et al. (2019) proposed Conditional BERT
(CBERT) for contextual data augmentation. Given
a sentence and its label, words in the sentence are
masked randomly. The label is then used as a con-
text to predict substitute words while keeping the
original sentence in the same class.

Anaby-Tavor et al. (2020) introduced Language
Model Based Data Augmentation (LAMBADA),
which is also a conditional generation-based data
augmentation. LAMBADA fine-tunes an entire
language model, GPT'2, by concatenating all of
the sentences together with their corresponding

*Because this assumption does not hold in some real-world
scenarios, in Section 4.5 we abandon that assumption and
discuss the no-validation case.
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labels, thereby creating additional textual data on
which the language model can be fine-tuned. Due
to the noisiness of the generation process, a filtering
process is used to ensure that only high-quality
sentences remain. The filtering process consists of
a classifier that was trained on the original dataset
by taking those sentences with the top-K softmax
scores.

Wang et al. (2022) recently suggested PromDA.
This approach first trains an entire pre-trained lan-
guage model on the task of converting keywords
to sentences from a general corpus. Then, using
RAKE (Rose et al., 2010), keywords are extracted
from the original dataset. By concatenating these
keywords to a learned prefix, the language model
from the previous step is used to reconstruct the
original sentence. Then, the same filtering process
as in LAMBADA is used, with the exception that
all sentences for which the original classifier agrees
with the pseudo-label are taken.

2.1 Soft-Prompts

TAU-DR, as will be discussed in the next section,
exploits the language-generation capabilities of lan-
guage models by using soft-prompts, one of the
dominant approaches for parameter-efficient tuning.
Prompt-based learning was introduced by Brown
et al. (2020). Their study demonstrated that a large
language model can be adapted for downstream
tasks by carefully constructing prompts (i.e., tex-
tual instructions). A method proposed by Gao et al.
(2020) for simplifying the construction process
involves expanding prompts by using pretrained
language models. Each downstream task requires
manual construction of discrete prompts. The con-
struction of discrete prompts is still an independent
process that is difficult to optimize together with
downstream tasks.

A study by Lester et al. (2021); Li and Liang
(2021) suggests using soft-prompts. Soft-prompts
do not represent actual words, as opposed to hard
prompts, and can be incorporated into frozen pre-
trained language models. As demonstrated by Li
and Liang (2021), pre-trained language models
(PLMs) with soft-prompts provide better perfor-
mance in low-resource settings, and enable end-to-
end optimization of downstream tasks.

’

3 Text Augmentation by Dataset
Reconstruction (TAU-DR)

In this section, we introduce Text AUgmentation
by Dataset Reconstruction (TAU-DR), our novel
text augmentation algorithm.

Algorithm 1 Text Augmentation by Dataset Re-
construction (TAU-DR)

Require: Training dataset X,i,, pre-trained clas-
sifier Cpq e, pre-trained language model LM
%% training phase
while training steps not done do
for (z,y) in Xin do
Extract h from Cpgqe
P < MLP(h) % transform the hid-
den representation into soft-prompt.
5: & < LM(P) % predict a sentence
using the soft-prompt
6: Orirp < Ovine — Vou,pLim (2, )
end for
8: end while
%% generation phase
9: Xintra GENintra (£M7 MLPa Xtrain)
10: Xinter < GENinter(£M7 MLP7 Xtrain)
11 Xgen < Xintra U Xinger
%% filtration phase
12: Xgen  Filtration(Xeain, Xval, Xgen)

sw e

TAU-DR consists of three stages: training, gen-
eration, and filtration, as described below.

3.1 Training

We now describe the training phase in TAU-DR as
shown in Algorithm 1. Given an example = from
the original dataset, we extract its hidden represen-
tation, h, from the pre-trained classifier, which we
denote by Chgse (line 3). For instance, if Cp,ge is @
BERT classifier, it can be the [C'LS] token repre-
sentation in the last layer. The next step in line 4
is to apply a multi-layer perceptron (M L P) with
parameters 0,7 p, and turn the hidden represen-
tation, h, into a prompt of length n denoted as P.
P is then fed into the frozen language model LM
(line 5). The training objective of the language
model is to reconstruct the original sentence using
only the hidden representation. The training step is
illustrated in Figure 1.

3.2 Generation

To generate new sentences that will challenge the
classifier and ultimately improve its accuracy, we
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Why does my P ;
retrained Frozen
transfer not show — v > > N Why does my
up in my account? Classifier MLP ’ % Language Model — transfer not show
up in my account?
Hidden Soft-Prompt

Representation

Figure 1: TAU-DR: We take a sentence from the dataset and pass it through the pre-trained classifier. Then, the
last hidden representation (i.e., [cls] token) is used as an input for the multi-layered preceptron (MLP), whose
parameters are the only trained parameters. The MLP outputs a soft prompt and the generator reconstructs the

original sentence.

perturb the learned soft prompts. We suggest two
novel strategies to provide new soft prompts for the
frozen language model?.

Intra-class generation The motivation behind
the following approach is that by combining soft
prompts from the same class, we will be able to
lexically and semantically enrich the class itself.
The method can be described as follows: We se-
lect two sentences, x1, xo from the same class, and
then extract their corresponding hidden representa-
tion, h1, ho, using the pre-trained classifier Cg .
Using the trained M L P, we transform them into
their corresponding soft prompts, P; and P». Then,
by averaging the two prompts, we achieve a new
aggregated soft prompt P,,,. The latter is passed
into the language model. The pseudo-label for the
generated sentences is set as class x7. This is illus-
trated in Figure 2.

Inter-class generation With inter-class genera-
tion, we help the classifier to better distinguish
between the different classes. This is done by gen-
erating sentences using soft-prompts, which are cre-
ated by combining soft-prompts from two different
classes. First, we randomly sample two sentences
from two different classes, x1,x9, and then, as
detailed above, extract their soft-prompts denoted
as Py and P», respectively. We then aggregate
the two prompts by taking their weighted mean,
Pugg = wPy + (1 — w)Pp, where 0 < w < 1is
sampled uniformly. In this case, we set the pseudo-
label as the label of the closest prompt as illustrated
in Figure 3.

3.3 Dynamic Consistency Filtering

By generating new sentences for our classifier, we
risk the creation of low-quality data. This can hap-
3The closest work to this approach is the work of Asai et al.

(2022), suggesting the aggregation of prompts for multitask
generalization.

pen if we set an incorrect pseudo-label or if the
language model generates out-of-domain examples.
Therefore, it is common to apply a consistency fil-
tering mechanism (Anaby-Tavor et al., 2020; Wang
et al., 2022).

The consistency filtering suggested by Anaby-
Tavor et al. (2020) used the pre-trained classifier
and considered the top-K sentences (ordered by
their softmax scores). Wang et al. (2022) also used
the trained classifier. However, instead of using
the top-K approach, they kept all the generated
sentences for which the classifier agrees with the
pseudo-label.

Clearly, the chosen filtration method has a large
effect on the final classifier, as it controls the data
quality of the final trained classifier. The top-K
approach might be too conservative, keeping a large
safety margin, which results in filtering out most of
the generated instances. On the other hand, keeping
all the instances on which the classifier agrees with
the pseudo-label might include many noisy-label
sentences, resulting in a degraded classifier.

We now present Dynamic Consistency Filtering
- our filtering approach for a case where an eval-
uation set exists. In Section 4.5, we discuss the
no- evaluation case. Our method relies upon the
evaluation dataset to approximate the optimal por-
tion of the generated instances to include in the
augmented dataset. We do so by training k classi-
fiers, one of which trained on a different quantile
of the generated instances, ordered by their soft-
max scores (received from the pre-trained classifier
Chase)- After training the k instances, we choose
the best preforming classifier using the evaluation
dataset.

It is important to note that there is a possibility
of applying the filtering mechanism in a recursive
manner, for example, training a classifier on the fil-
tered data and running that classifier on the original
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Intra-class generation

Figure 2: Intra-class generation: We sample two in-
stances from the same class and average their prompts.
The averaged prompt is then used as a prompt for the
generator. The (pseudo)-label is decided according to
the class of the instances.

generated dataset, with the hope of improving the
filtering of the instances. This way, one can further
improve the performance of the final classifier, as
discussed by Anaby-Tavor et al. (2020).

3.4 Training and Generating in
Low-Resource Setting

0.95
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Figure 4: F1, DC and MAUVE of the generated text
distribution compared to the train distribution as a func-
tion of the training steps.

In a preliminary study we conducted, we in-
vestigated how over-training affects the quality of
the generated text in terms of diversity and dis-
tance from the original train distribution. To show
the effect of over-training, we apply LAMBADA
(Anaby-Tavor et al., 2020) on several internal low-
resource multi-class datasets. We trained LAM-
BADA for 2500 steps and generated augmented
sentences every 100 steps. We then evaluated the
quality of the generated sentences as a function
of the trained steps by using distributional mea-
sures: Precision and Recall (Sajjadi et al., 2018)
summarized as F1, DC (Naeem et al., 2020) and

Inter-class generation

Figure 3: Inter-class generation: We sample two in-
stances from two different classes. We then calculate
the weighted average of their prompts (the weights are
sampled randomly). The (pseudo)-label is decided ac-
cording to the closest sample.

MAUVE (Pillutla et al., 2021) *.

We can observe, on Figure 4, that DC, Precision
and Recall and MAUVE converges to 1. This sug-
gest that without any control measures in place, the
distribution of the generated text quickly converges
into the training distribution. This is not a desired
property since our goal is to generate texts which
will expand the support of the training distribution.
It is interesting to note that the nature of the results
remains the same, even when soft-prompt tuning is
applied.

Therefore, to address the above, we deploy two
heuristics. The first heuristic is to increase the num-
ber of training samples. We do so by using the EDA
rule-based simple augmentation method discussed
earlier (Wei and Zou, 2019). Please note that in this
enrichment we do not consider the pseudo-labels,
since our goal is to provide more reference points
for the M LP training. Moreover, we checkpoint
the M L P several times during training, and gener-
ate sentences from the different checkpoints.

4 Experiments

4.1 Setup

We conduct experiments on four multi-class clas-
sification datasets (described in the next subsec-
tion). Each benchmark dataset is split into 80%
train ,10% evaluation and 10% test. We then take
the train dataset and sample K examples for each
class where classes without K examples are re-
moved, resulting in a shot- K dataset. In our experi-
ments, we choose K € (5,10). As a base classifier,
we choose the BERT-base model’, as in the study
of Anaby-Tavor et al. (2020); Wang et al. (2021).

*The measures are introduced on Section 4.4.
Shttps://huggingface.co/bert-base-uncased
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Shot-5 Shot-10

Method ATIS TREC Banking77 T-Bot | ATIS TREC Banking77 T-Bot
Chase 0.739  0.495 0.689 0.681 || 0.772 0.713 0.798 0.741
EDA 0.735  0.524 0.7 0.684 || 0.806  0.72 0.793 0.749
C-BERT 0.75  0.517 0.682 671 0.877  0.727 0.805 0.747
LAMBADA | 0.88  0.566 0.709 0.703 || 0.871 0.745 0.787 0.74
PromDA 0.867 0.583 0.739 0.692 || 0.897 0.742 0.791 0.752
TAU-DR | 0.906 0.641 0.733 0.71 || 0.933 0.773 0.839 0.788

Table 1: The average accuracy results of the different benchmarks to the multi-class classification tasks. The best
improvement in each configuration over the performance of the base model is marked in bold. The results of
TAU-DR are significant compared to C,s. (paired student’s t-test, p < 0.05).

The same set of hyperparameters is used for the
training of Cse, for training without the original
data, and for training with the generated data. The
performance of Cj, . is evaluated during training
using X,,4;.

We compare TAU-DR to the methods discussed
in Section 4.1: The rule-based data augmenta-
tion methods EDA (Wei and Zou, 2019); CBERT
(Wu et al., 2019), LAMBADA (Anaby-Tavor et al.,
2020), and PromDA (Wang et al., 2022) which is
implemented with a T5-large model (700M param-
eters). All hyperparameters used for these methods
are those recommended by the authors. We repeat
the experiments five times and report the averaged
accuracy for each shot-k dataset.

For TAU-DR we used the T5-large model for all
of our experiments. This model was fine tuned an
additional 100k steps on the C4 dataset using the
regular LM loss, to achieve better adaptivity to soft
prompt tuning (Lester et al., 2021)°. We choose
M LP with 2 hidden layers and a ReLU activation.
The prompt-length is set as 10 in all of our exper-
iments. TAU-DR was trained for 100 epochs. We
checkpointed the model every 20 epochs, resulting
in 5 checkpoints. The pre-trained classifier Chqe
used in our method is the same classifier discussed
above. For the dynamic filtering, we use 10 classi-
fiers with the same configuration as the pre-trained
classifier, where each classifier is trained on a dif-
ferent portion of the generated dataset ordered by
the softmax score of Cp,s.. The experimental re-
sults are shown in Table 1 for shot-5 and shot-10
for the different multi-class benchmarks.

4.2 Datasets

All datasets used are classification datasets, with
different numbers of classes and across several do-

Shttps://huggingface.co/google/t5-large-Im-adapt

mains, three of which are available in the public
domain.

Name | # Classes | Domain

ATIS 17 Flight reservation

TREC 50 Open-domain questions
Banking77 77 Banking

T-Bot 87 Telco customer support

Table 2: Properties of the used multi-class datasets

Airline Travel Information Systems (ATIS,
Hemphill et al. 1990): The ATIS dataset pro-
vides a large set of queries about flight information
along with the intent, the subject of the various
questions.

Text Retrieval Conference (TREC, Hovy et al.
2001): TREC is a question classification dataset
that consists of a variety of questions from different
areas and their intent.

Banking77 (Casanueva et al., 2020): The
Banking77 dataset offers questions from single-
domain banking, annotated with their labels.

Teleco-Bot (T-Bot): An internal intent classifi-
cation dataset, includes data used for the training
of chatbots used by telco companies for customer
support.

The datasets used are summarized in Table 2

4.3 Main results

First, we can observe that the addition of the gen-
erated data from TAU-DR to the classification
models significantly improves the performance of
Chpase and outperforms the existing method. Over-
all, the EDA rule-based approach does not lead
to a significant improvement over Cp,s. On the
more challenging datasets Banking77 and T-Bot
on both shot-5 and shot-10. On the other hand, the
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language-model-based approaches, i.e., C-BERT,
LAMBADA, PromDA and TAU-DR outperform
the rule-based approach. PromDA can provide bet-
ter results than LAMBADA on the ATIS and TREC
datasets. However, with the exception of Bank-
ing77 (shot-5) it fails when considering domain-
specific datasets with a larger number of classes,
such as Banking77 and T-Bot.

On T-Bot and Banking77 in the shot-10 setting
none of the methods expect TAU-DR where able
to give a statistically significant improvement over
Cbase-

The accuracy improvements of TAU-DR over
Chase On the ATIS dataset are approximately 20%
for both shot-5 and shot-10. For TREC the im-
provement rate is 29% for the shot-5 setting and
9% for the shot-10 setting. For Banking77, the
average improvement rate is 4.5% and for the chal-
lenging T-Bot dataset the average improvement rate
is 5%.

4.4 Estimating the Generation Quality

We now turn to estimate the quality of text gener-
ated by the different methods. We use the following
measures:

* Recall and Precision (Sajjadi et al., 2018):
Given two distributions P, (), this measure
compares their "precision”, or how much of
@ can be generated by a "part" of P, while
"recall" measures how much of P can be gen-
erated by a "part" of (). Recall and Precision
are summarized as F1.

* Complexity (Kour et al., 2021): Quantifies
how difficult observations are, given their true
class label and how they will challenge the
classifier. The measure can be used to auto-

matically determine a baseline performance
threshold..

e MAUVE (Pillutla et al., 2021): This metric
measures the gap between two text distribu-
tions by calculating the area under the infor-
mation divergence curve.

A recent study (Kour et al., 2022) compared sev-
eral statistical and distributional measures. The
different measures were compared over several de-
sired criteria. In their experiments, MAUVE turned
out to be the most robust performance measure for
text generation quality.

In this set of experiments, we took the generated
text and compared it to the test set, which repre-
sents the actual text distribution. A desired property
of the augmented texts is that their distribution will
expand the intersection between the support of the
train distribution with the test distribution. Thus,
we can compare the generation quality of the dif-
ferent methods by looking on how close they are
to the test distribution.

We report the average results on Table 3. The
implementation details for this experiment are de-
tailed on Appendix B. The measures of the text
generated by TAU-DR are superior to 2 out of 3 in
all configurations. Showing that we can generate
text that is close to the actual distribution of the
data. In addition, by looking at the Atis dataset, we
observe that we were able to produce more chal-
lenging and complex sentences for the classifier.

It has not been explored if or how these measures
relate to the classifier’s performance. Nevertheless,
these measures can provide some insight into how
well a model can reproduce the test distribution.

4.5 Dynamic Consistency Filtering with no
Evaluation

Our suggested dynamic filtering method is shown
to be effective in filtering out low-quality generated
data. However, the existence of such datasets is not
obvious in real-world scenarios.

In this subsection, we suggest an approach for
filtering the generated data without relying on the
existence of an evaluation dataset. The method
can be described as follows: As in the Dynamic
Consistency Filtering approach, for each class we
order the generated examples according to their
softmax scores obtained from the pre-trained classi-
fier Cpgse. We then filter out all instances on which
the classifier disagrees with the pseudo-label. Then
we train k classifiers on a different quantile of the
ordered data (i.e., for £ = 5, we train the i-th clas-
sifieri = 1, ..., 5, on the 7 /5 quantile). We then use
the obtained classifiers to filter out the generated
instances based on the majority vote of the classi-
fiers, we denote this approach as TAU-DR,,,4;. As
shown in Table 4, with the exception ATIS (shot-5)
and Banking77 (shot-5), TAU-DR,,,,; also outper-
forms the benchmark methods and on average only
slightly degrades the performance of TAU-DR.
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| Shot-5 | Shot-10
Method | FIt MAUVE{ Complexity? [ FIt MAUVE? Complexity?
ATIS ATIS
LAMBADA | 0.66 0.78 10.01 0.76 0.8 5.43
PromDA | 0.7 0.71 8.44 0.74 0.76 4.67
TAU-DR | 0.75 0.7 13.67 0.73 0.82 5.91
Banking77 Banking77
LAMBADA | 0.79 0.72 2.67 0.86 0.8 2.56
PromDA | 0.83 0.75 3.66 0.85 0.75 3.65
TAU-DR | 0.86 0.78 2.61 0.88 0.87 2.31

Table 3: The average of the generation quality measures two of the multi-class classification tasks, ATIS and
Banking77. The best performing approach in each configuration is marked in bold.

Shot-5 Shot-10
Method ATIS TREC Banking77 T-Bot || ATIS TREC Banking77 T-Bot
BASE 0.739 0.495 0.689 0.681 || 0.792 0.713 0.798 0.741
TAU-DR 0.906 0.641 0.733 0.71 | 0.933 0.773 0.839 0.788
TAU-DR,,,,; | 0.847 0.615 0.738 0.726 || 0.911 0.761 0.833 0.767

Table 4: The average accuracy obtained by the base classifier Cp,se and TAU-DR with the dynamic filtering
approach and with TAU-DR equipped with the weighted majority filtration approach not relying on the existence

of evaluation dataset.

5 Conclusion and Future Work

In this paper, we present TAU-DR, a novel text-
augmentation method for low-resource classifica-
tion using dataset reconstruction. We test our
method on four multi-class classification datasets
in various few-shot scenarios and show that our ap-
proach outperforms the state-of-the-art approaches.
In the future, we plan to explore the learned prompt
space and check how it can be used for generating
helpful sentences. In our preliminary experiment,
we found that the averages of the prompts were
concentrated in a narrow cone. This concentra-
tion hinders the exploitation of the geometry in the
learned prompt space. The above observation is
aligned with other findings regarding the anisotropy
of the word embedding space in pre-trained lan-
guage models (Li et al., 2020; Ethayarajh, 2019).
Finally, we wish to explore if and how additional
information (e.g, in-domain textual-data) might im-
prove the performance of text augmentation meth-
ods on highly specialized domains.

Limitations

To address the low-resource data in the training of
TAU-DR, we apply two heuristics, dataset enrich-
ment and generation from different checkpoints.
Despite being effective, they require additional

computational time that might be challenging in
applications with low-computational resources. A
possible approach to reduce the computational time
might be to average the checkpoints. We believe
that this might lead to competitive results, with a
significant reduction in computational time, since
checkpoint averaging proved to be an effective ap-
proach in low-resource settings. Another limita-
tion is when the original dataset is in a highly-
specialized domain that might contain domain-
specific phrases that were most likely not included
in the pre-training data of the language model. The
results obtained by existing data augmentation ap-
proaches will most likely exhibit only marginal
improvement.

Ethics Statement

Text generation by nature entails a number of ethi-
cal considerations when considering possible appli-
cations. The main failure is when the model gener-
ates text with undesirable properties (bias etc.) for
training the classifier but these properties are not
present in the original training data.

Because our model converges and learns to gen-
erate data close to the underlying source material,
the above considerations, in our approach, are neg-
ligible. As a result, the generated text may be harm-
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ful if users of such models are unaware that such
issues appear on their training data or if they fail
to consider them, e.g., by selecting and evaluating
data more carefully.
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A Ablation

In our ablation studies, we evaluated the inde-
pendent effect of 5 different components on our
method: enrichment, intra-class, inter-class, check-
pointing and dynamic filtering. In this ablation
study we want to emphasize the contribution of
each module for the success of our method. Re-
sults are summarized in Table 5. During the M L P
training we used dataset enrichment in order to add
more reference points. As we can observe from the
results this enrichment is an important aspect of our
method as our method without dataset enrichment
results in an average degradation of 4.5 accuracy
points. In addition, we evaluated the effect of each
generation method we proposed — intra-class and
inter-class. The intra-class generation is meant to
enrich the number of examples in a given class,
whereas inter-class is meant to highlight the dif-
ference between different classes. We can see that
both generation methods are vital components of
our method, with degradation of 2 and 3.25 accu-
racy points when not using intra-class or inter-class,
respectively.

Moreover, we determined the efficacy of the
checkpointing paradigm. We utilized checkpoint-
ing to overcome the over training affects as dis-
cussed on Section 3. Based on the results, we can
see that the checkpointing paradigm plays an im-
portant role in the method’s success. Generating
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sentences using only the last checkpoint results in
degradation of 3.75 accuracy points. The last ab-
lation conducted is to evaluate the performance of
the dynamic filtering method. As discussed ear-
lier in all the generation methods this plays a vital
component in keeping high-quality instances. On
the ablation experiment we kept all the sentences
on which C,,. agrees with the pseudo-label. Not
surprisingly this approach caused a major decrease
in the accuracy with an average of 6.5 accuracy
points.

B Additional implementation details

The optimizer used for training the MLP is AdamW,
we tested the following learning rate {le — 3, le —
2,1e — 4} and a le — 2 weight decay. We experi-
mented with the following batch sizes {16, 32, 64}.
he size of the hidden layer is set as dim(h) % n/2,
where n is the prefix-length. The M L P architec-
ture was not optimized during our experiments. We
experiment also with prefix-lengths of 5, 10, 15, 20.
These different prefix lengths have a negligible im-
pact, since we used a medium-sized model. This
aligns with the findings of Lester et al. (2021) . We
used an internal multi-class dataset which was not
reported in the main paper to search for the best
training configuration. The classifier was trained
for 5000 steps with 8 batch size with AdamW op-
timizer and le — 5 learning rate We run all exper-
iments on a single NVIDIA A100 GPU. For the
generation phase, we used the nucleus sampling
(Holtzman et al., 2019) with £k = 100,p = 0.95
both for the intra- and inter-generation approaches.

To calculate Precision and Recall, MAUVE and
Complexity we sampled 1000 instances and com-
pared against 1000 sentences in the generated set.
We repeated this process 10 times for every one of
the 5 splits for each dataset.
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Shot-5
Method ATIS TREC BANKING77 WVA
TAU-DR 0.906 0.641 0.733 0.71
TAU-DR w/o enrichment 0.858  0.596 0.713 0.679
TAU-DR w/o intra-gen. 0.894 0.617 0.728 0.672
TAU-DR w/o inter-gen. 0.837 0.631 0.702 0.695
TAU-DR w/o checkpointing | 0.875  0.602 0.717 0.694
TAU-DR w/o dynamic filtering | 0.761  0.57 0.697 0.708

Table 5: The average accuracy results of the different components of TAU-DR on the multi-class classification
tasks.
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