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Abstract

Pretrained language models (PLMs) encode a
large amount of world knowledge. However, as
such knowledge is frozen at the time of model
training, the models become static and lim-
ited by the training data at that time. In order
to further improve the capacity of PLMs for
knowledge-intensive tasks, we consider aug-
menting PLMs with the large-scale web using
search engine. Unlike previous augmentation
sources (e.g., Wikipedia data dump), the web
provides broader, more comprehensive and con-
stantly updated information. In this paper, we
present a web-augmented PLM – UNIWEB,
which is trained over 16 knowledge-intensive
tasks in a unified text-to-text format. Instead
of simply using the retrieved contents from
web, our approach has made two major im-
provements. Firstly, we propose an adaptive
search engine assisted learning method that
can self-evaluate the confidence level of PLM’s
predictions, and adaptively determine when to
refer to the web for more data, which can avoid
useless or noisy augmentation from web. Sec-
ondly, we design a pretraining task, i.e., contin-
ual knowledge learning, based on salient spans
prediction, to reduce the discrepancy between
the encoded and retrieved knowledge. Experi-
ments on a wide range of knowledge-intensive
tasks show that our model significantly outper-
forms previous retrieval-augmented methods.
Our code and data can be accessed at this link
https://github.com/RUCAIBox/UniWeb

1 Introduction

With large-scale neural networks, pretrained lan-
guage models (PLMs) (Brown et al., 2020; Zhao
et al., 2023) can encode a large amount of world
knowledge, showing phenomenal capability in
knowledge-intensive tasks such as fact checking
and open-domain question answering (QA). How-
ever, this capacity is naturally limited by the in-
formation contained in pretraining or finetuning

∗Corresponding author

Question Which popular Korean show was recently
green lit for a new season?

Answer Squid Game

Wikipedia There are no results for the question.

Web [...] Netflix announce Sunday that the wildly
popular South Korean show is green lit for a second season.
“And now, Gi-hun returns” “The Front Man returns. Season
2 is coming.” “Squid Game” is a fictional drama from South
Korea in which contestants who are desperately in need of
money play deadly children’s games to win cash prizes. [...]

URL: https://www.cnn.com/2022/06/1
2/media/squid-game-season-2/index.html

T5 w/o Web The Walking Dead%
T5 w/ Web Squid Game"

Table 1: An example showing that the web covers both
more comprehensive (e.g., Korean show) and up-to-date
(e.g., recently) information than Wikipedia. Based on
the latest news returned by Google Search, T5-LARGE
can answer the question correctly.

datasets (usually fixed once collected), which are
neither up-to-date nor complete (Komeili et al.,
2021; Ji et al., 2022). Although model scal-
ing (Brown et al., 2020; Chowdhery et al., 2022;
Thoppilan et al., 2022) is a viable way to improve
the knowledge capacity of PLMs, it still uses static
pretraining datasets, and also leads to significantly
larger computational costs with increased model
sizes. As a result, the outdated or incomplete
knowledge encoded by PLMs may lead to hallu-
cination or incorrect generations even though the
results look plausible (Ji et al., 2022).

Recently, by drawing the idea from semi-
parametric approaches (Zhao et al., 2022; Guu
et al., 2020; Lewis et al., 2020b; Borgeaud et al.,
2022), retrieval-augmented approaches have been
proposed to equip PLMs with the ability to directly
access an external database. As a major knowledge
resource, Wikipedia has been widely used in pre-
vious work. While being highly accurate and well-
structured, Wikipedia only covers limited informa-
tion, both in scope and in time. Besides, even for
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the topics that Wikipedia covers, grounding PLMs’
decisions on a single source of knowledge may
create biases (Wagner et al., 2016). Considering
these issues, it is time to look beyond Wikipedia (or
similar single-source databases) and access more
broader, in-depth, and up-to-date knowledge from
more sources. Inspired by (Komeili et al., 2021;
Piktus et al., 2021), we select the web as the re-
trieval resource for enlarging the knowledge capac-
ity of PLMs. To motivate our approach, Table 1
presents a sample question that T5 successfully an-
swers with the support of the web (providing the
latest news), but not Wikipedia. As we can see,
timely and relevant supporting evidence is the key
to solve such tasks for PLMs.

In this paper, we aim to capitalize on the web as a
source of up-to-date and comprehensive knowledge
to solve a wide range of knowledge-intensive tasks.
Unlike previous web-augmented studies (Nakano
et al., 2021; Menick et al., 2022) that mostly fo-
cus on single tasks, we seek to develop a unified
framework to integrate the use of the web in PLMs
for multi-task solving. Although the idea of lever-
aging the web for improving PLMs is appealing,
it is non-trivial to develop an effective solution.
First, PLMs do not always need external evidence
for task solving, especially considering the fact
that the web contains noisy, biased, or harmful in-
formation (Luccioni and Viviano, 2021). Simply
retrieving knowledge without considering the ex-
ample difficulty and PLMs’ own capabilities may
steer models towards unexpected outputs. Second,
PLMs are usually pretrained at an earlier time on a
limited corpus, leading to a discrepancy between
the encoded knowledge and the retrieved knowl-
edge (i.e., web contents). Therefore, we need more
principled approaches to properly integrating the
new knowledge into PLMs.

To address the above issues, we present a web-
augmented PLMs, UNIWEB, to improve the ca-
pacity in knowledge-intensive tasks. Instead of
using neural network-based retriever, we employ
a commercial search engine (i.e., Google Search)
to obtain high-quality and comprehensive retrieval
results from the web. Based on this idea, we make
two major technical contributions. First, we pro-
pose a search engine assisted learning method that
can selectively query the web only when PLM is
unconfident in its predictions. For this purpose,
we design a self-evaluation mechanism to estimate
the confidence level of PLMs on the task exam-

ples. Secondly, to reduce the discrepancy between
the encoded and retrieved knowledge, we design
a pretraining task, continual knowledge learning,
to integrate the retrieved knowledge into PLMs by
predicting the salient masked spans in web docu-
ments. To train the UNIWEB model, we convert
different knowledge-intensive tasks into a unified
text-to-text format, and conduct supervised multi-
task training over 16 tasks across seven categories.

To the best of our knowledge, our model is the
first unified web-augmented PLM for a wide range
of knowledge-intensive tasks. Extensive experi-
ments show that PLMs can significantly benefit
from such an approach and a single unified PLM
(UNIWEB) is able to achieve (near) state-of-the-art
performance on all 16 tasks.

2 Related Work

Retrieval-Augmented PLMs. Augmenting a pre-
trained language model with retrieval has been ex-
tensively studied in existing literature (Lewis et al.,
2020b; Borgeaud et al., 2022; Izacard et al., 2022;
Lee et al., 2019; Guu et al., 2020). For example,
REALM (Guu et al., 2020) and RAG (Lewis et al.,
2020b), incorporate a differentiable retriever into
pretrained models, leading to promising results on
question answering. However, these studies usually
rely on a sub-optimal retriever to access a static
and limited knowledge resource, i.e., Wikipedia.
By contrast, our model utilizes the well-developed
search engine to gain broader, more in-depth, and
up-to-date knowledge from the web. Several stud-
ies have also looked at how Internet can help the
models, but only focus on single tasks such as ques-
tion answering (Nakano et al., 2021; Menick et al.,
2022) and dialogue (Komeili et al., 2021). We-
bGPT (Nakano et al., 2021) uses human feedback
to optimize answer quality by hiring massive label-
ers to judge the accuracy of answers. Komeili et al.
(2021) retrieves knowledge from the web for every
dialogue without considering the necessity. Piktus
et al. (2021) only presents an empirical study to in-
vestigate the impact of replacing Wikipedia with a
large-scale web-like corpus and adopting different
retrieval models. We are also aware of some related
studies (Jiang et al., 2023), but we have taken a dif-
ferent active approach for knowledge retrieval. In
this paper, we develop a unified language model for
solving a wide spectrum of knowledge-intensive
tasks. Our model can selectively decide whether
to access the web, and continuously learn from the
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Slot 
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Dialogue Fact 
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Natural Language 
Inference

The football manager who 
recruited David Beckham 
managed Manchester United 
during what timeframe?

1995-96 Manchester 
United F.C. season

The 1995-96 season was 
Manchester United's fourth 
season in the Premier League 
..... Alex Ferguson had sold 
experienced players Paul Ince, 
Mark Hughes. Instead, he had 
drafted in young players like 
Nicky Butt, David Beckham, 
Paul Scholes and the Neville 
brothers , Gary and Phil.

No

Yes

top-𝐾

Search Engine Assisted Learning

knowledge

Open-domain QA

Language
Models

Knowledge-Intensive Tasks Pretraining Objectives

Continual Knowledge Learning

The [MASK] season was 
Manchester United’s [MASK] 
season in the ... sold experienced 
players Paul Ince, [MASK]. 
Instead, he had drafted in young 
players like Nicky Butt, David 
Beckham, [MASK] and .....
⟶ Output:1995-96, fourth, Mark 
Hughes, Paul Scholes

Knowledge-Intensive Learning

Context: [Knowledge] Input:
[Question] ⟶ Output:1995-96

filter

Figure 1: Overview of our proposed web-augmented pretrained language model UNIWEB.

retrieved knowledge.

Knowledge-Intensive Learning. Recent work
has shown that PLMs’ parameters have implic-
itly stored linguistic or factual knowledge (Petroni
et al., 2019; Roberts et al., 2020). However, the
implicitly encoded knowledge is limited by the
model’s scale and training data, contradicting the
dynamic nature of the world. Hence, many re-
searchers propose to fuse relevant external knowl-
edge from texts with the encoded knowledge of
PLMs to deal with knowledge-intensive tasks such
as open-domain QA (Guu et al., 2020; Lewis et al.,
2020b), entity linking (Wu et al., 2019), fact veri-
fication (Liu et al., 2019b), and commonsense rea-
soning (Lin et al., 2020). Wikipedia has been the
most widely used knowledge source for these tasks,
which is still limited despite its wide coverage. In-
stead, we rely on the real-time web. The existing
studies usually design task-specific training, archi-
tecture, and knowledge fusion method to exploit
knowledge sources. In this work, we aim to de-
velop a single unified framework that can be used
for most knowledge-intensive tasks.

3 Task Formulation

Knowledge-intensive tasks (Yin et al., 2022) aim
to leverage external knowledge resources to accom-
plish a broad range of tasks such as open-domain
question answering and fact verification.

Following prior work (Lewis et al., 2020b; Guu
et al., 2020), we employ a retrieval-augmented gen-
eration framework that consists of two components:
a retriever R and a generator G. Given an input
text X such as a question, the retriever R learns to
retrieve a set of top-K passages P = {p1, ..., pK}
from a knowledge resource. Conditioned on the
input text X and the retrieved passages P , the gen-

erator G aims to generate the output text Y . The
model is trained to maximize the joint likelihood:

Pr(Y|X ) =
∑

R,G
Pr(P|X )Pr(Y|P,X ). (1)

To implement the framework, previous studies
usually adopt a trainable neural retriever based on a
(single) knowledge resource such as Wikipedia or
knowledge bases. However, such an approach can
only access limited, static knowledge. In this paper,
we rely on a general, off-the-shelf search engine
as the retriever to access both comprehensive and
up-to-date knowledge from the whole web.

4 Approach

Our proposed web-augmented PLM, UNIWEB, is
depicted in Figure 1. We first transform knowledge-
intensive tasks into a unified text-to-text paradigm
and consider the web as a general form of knowl-
edge source. Based on the retrieved knowledge, we
further design two training objectives to build our
model. In the next sections, we will describe our
method in detail.

4.1 Knowledge-Intensive Tasks Unification
Previous retrieval-augmented approaches usually
adopt diverse architectures and different types of
knowledge resources (Yin et al., 2022). Instead,
we aim to leverage the general knowledge source
(i.e., the web) to develop a unified framework that
can fulfill various (or most) knowledge-intensive
tasks. Specifically, we unify 16 typical knowledge-
intensive tasks across 7 task families, including fact
checking, slot filling, dialogue, open-domain ques-
tion answering, commonsense question answering,
commonsense reasoning, and natural language in-
ference. We convert these tasks as a general text-
to-text transformation for training a unified PLM.
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These tasks are mainly from the studies (Petroni
et al., 2020; Piktus et al., 2021), in which the orig-
inal tasks of fact checking, slot filling, dialogue,
and open-domain QA are designed specifically
based on the retrieved knowledge from Wikipedia,
while other tasks of commonsense QA, common-
sense reasoning, and natural language inference
focus on some more specific commonsense knowl-
edge, going beyond Wikipedia. We consider these
knowledge-intensive tasks as typical NLP tasks to
show that the large-scale web can be specially use-
ful for satisfying diverse information needs. More
details about each task can be found in Appendix A.

4.2 Web-based Knowledge Retrieval

Unlike prior work that retrieves documents from
offline corpora such as Wikipedia (Guu et al.,
2020; Lewis et al., 2020b), we propose to retrieve
comprehensive and up-to-date information from
the online web through a general-purpose search
engine. Although it is intuitive to extend the
retrieval-augmented framework with the web as the
knowledge resource, it is non-trivial to effectively
leverage the knowledge found on the web. The
documents on the web have inconsistent quality,
and contain noisy, biased, or even harmful con-
tents (Luccioni and Viviano, 2021). Low-quality
content may steer PLMs towards seemingly plausi-
ble but factually incorrect outputs (Ji et al., 2022).
On the other hand, compared to a local neural re-
triever, black-box search engines can only be ac-
cessed through queries, which is less controllable
and not easy to filter out noisy contents from the
search results. In addition, PLMs do not always
need external knowledge for task solving, espe-
cially for easy tasks. Therefore, we should request
for more knowledge only when needed.

4.2.1 PLM Knowledge Evaluation
To address the above challenges, it is essential to
evaluate PLMs’ own capabilities in a task and the
necessity to refer to external knowledge. In our
approach, we consider a non-trivial question before
retrieval: does a PLM need to retrieve knowledge
for a specific task instance? For this purpose, we in-
vestigate whether or not PLMs can correctly answer
questions without using external evidence. Ac-
cording to the recent study (Kadavath et al., 2022),
PLMs can self-evaluate the confidence level of their
generation results (e.g., True or False). Hence, we
propose to utilize the self-evaluation mechanism to
determine whether it is necessary to access addi-

tional web information.

Self-Evaluation. Specifically, we hypothesize that
when a model “knows” the true output (i.e., confi-
dent about its output) for a specific input, sampling
the outputs many times would result in an output
distribution with small entropy. Following Kada-
vath et al. (2022), we sample n (n = 200) different
outputs for each input and estimate the entropy of
the output distribution as follows:

H(Ŷ|X ) = E[− log Pr(Ŷ|X )] (2)

= E


−

∑

wi∈Ŷ
log Pr(wi|X , w<i)


 ,

where Ŷ = ⟨w1, ..., wi, ..., wm⟩ is the output text
generated by the model G. Then, we set an entropy
threshold η. If H(Ŷ|X ) is higher than η, it means
that the model is unconfident about its outputs and
needs supporting evidence from the web, otherwise,
it does not. We will further demonstrate the pre-
dictive power of the entropy (Eq. (2)) in estimating
the model confidence for knowledge retrieval.

4.2.2 Web Knowledge Retrieval
In active learning (Ren et al., 2021), a prediction
model can interactively query for labeling exam-
ples with low confidence levels. This learning
method can not only reduce the cost of data la-
beling, but also remove those noisy and unhelpful
data that models cannot benefit from. Inspired by
this, we propose a search engine assisted learning
approach, in which PLMs choose those hard cases
that they cannot solve (assessed by self-evaluation)
to query the off-the-shelf search engine for knowl-
edge retrieval. Different from active learning, our
approach does not directly query for the final an-
swer (largely reducing the labeling efforts), but
instead the supporting evidence for solving the
task. After retrieving knowledge from the web,
it is critical to filter out noisy contents and select
the most helpful and relevant knowledge that can
enhance PLMs’ confidence to generate correct out-
puts. Therefore, we elaborate a two-stage filter
mechanism to filter the retrieved knowledge.

Search Engine Assisted Learning. Specifically,
for those hard examples, we take their input text
X verbatim as a search query and issue a call
to Google Search via API. For each query, we
retrieve top-K HTML pages and parse them to
obtain clean texts, resulting in a set of passages
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P = {p1, ..., pK}. To filter out noisy and irrele-
vant information, in the first stage, we chunk each
passage into paragraphs, compute the cosine sim-
ilarity between input and paragraph embeddings,
and select the five most relevant paragraphs to form
the final passage. In the second stage, we adopt the
same method as self-evaluation (Eq. 2) to compute
the model confidence given the input and each pro-
cessed passage and select those passages with high
confidence as the final evidence.

4.3 Knowledge-based Model Pretraining
In most previous work, the retrieval model is either
pretrained using self-supervised objective such as
MLM (Guu et al., 2020; Borgeaud et al., 2022)
or trained for specific tasks (Lewis et al., 2020b).
In this work, we focus on explicitly training web-
augmented PLMs in a supervised and massively
multi-task fashion (Aribandi et al., 2022) using the
mixture of knowledge-intensive tasks (Section 4.1).
Besides, to integrate the retrieved knowledge into
PLMs, we design a continual knowledge learning
task based on the retrieved passages.

Knowledge-Intensive Learning. This pretraining
objective uses the retrieved knowledge and labeled
data from the unified knowledge-intensive tasks.
Formally, given an input text X and retrieved pas-
sages P , this objective is to minimize the negative
log-likelihood loss over the output text Y:

LKIL = −
m∑

i=1

log Pr(wi|w<i,X ,P), (3)

where wi denotes the i-th token of the output text Y .
We concatenate the input text X and retrieved pas-
sages P using the manually-written task-specific
prompts (shown in Appendix A). Pretrained on the
unified knowledge-based text-to-text format, our
model can be easily applied to diverse knowledge-
intensive tasks. It has been reported that ensem-
bling many tasks, distributions and domains during
pretraining can improve PLMs’ generalization to
new tasks (Aribandi et al., 2022).

Continual Knowledge Learning. Due to the lim-
ited pretraining on single static corpus, the knowl-
edge encoded in PLMs has a discrepancy with the
retrieved knowledge from the web. Thus, to reduce
the discrepancy and integrate the newly retrieved
knowledge into PLMs, we design a self-supervised
pretraining task, i.e., continual knowledge learning.
For most knowledge-intensive tasks such as slot

filling and fact verification, named entities are of
special importance. Thus, this pretraining task aims
to predict the salient masked spans (i.e., named
entities) in retrieved passages. Firstly, we use a
BERT-based (Devlin et al., 2019) tagger trained on
CoNLL-2003 data (Sang and De Meulder, 2003) to
identify name entities and then mask entities such
as “United States”. Then, our model will be trained
to predict these masked spans by minimizing the
masked span prediction loss:

LCKL = −
K∑

k=1

m∑

j=1

log Pr(sj |p̃k), (4)

where sj is the j-th masked span for the passage
pk, and p̃k denotes the unmasked tokens in pk.

5 Experiments

In this section, we detail the experimental setup and
then highlight the main observations of our results.

5.1 Experimental Setup

Knowledge Source. In large-scale pretraining, we
leverage an open massive web corpus CCNet (Wen-
zek et al., 2020) to provide documents with diverse
topics, approximating the realistic web. Following
Piktus et al. (2021), we select the CCNet snapshot
corresponding to the August 2019 Common Crawl
snapshot which covers a wide range of 134M web
documents and finally yields 906M passages of 100
tokens. CCNet processes Common Crawl through
deduplication, language identification and quality
filtering based on perplexity calculated by a lan-
guage model. In downstream fine-tuning, we test
with the off-the-shelf search engine, i.e., Google
Search, to retrieve documents from the real-time
web. Specifically, we utilize the input text verbatim
as query and request a call to Google Search via
API1. Besides, for the Wikipedia-based baselines,
we use the 2019/08/01 Wikipedia snapshot from
the KILT benchmark (Petroni et al., 2020), consist-
ing of 5.9M documents split into 22.2M passages
of 100 tokens. This data snapshot is temporally the
closest to the CCNet corpus for fair comparison.

Pretraining Tasks. As described in Section 4.1,
we unify 16 knowledge-intensive tasks across seven
task families during pretraining:

• Fact Checking: FEVER (Thorne et al., 2018).

1https://developers.google.com/custom-search
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Models
Fact Checking Slot Filling Dialogue Open-domain QA

FEVER T-REx zsRE WoW NQ HotpotQA TriviaQA ELI5

w/o Retrieval
BARTLARGE 78.93 45.06 9.14 12.86 21.75 15.37 32.39 20.55

T5LARGE 80.31 50.63 10.34 12.67 28.50 18.98 35.90 20.60

w/ Wikipedia
REALM 76.22 53.35 39.38 - 40.40 22.23 65.44 10.23

RAG 86.31 59.20 44.74 13.11 44.39 26.97 71.27 14.05
BART+DPR 86.74 59.16 30.43 15.19 41.27 25.18 58.55 17.41

BART+DPRMULTI 86.32 78.50 57.95 15.33 39.75 31.77 59.60 17.07
FID+DPRMULTI 88.99 82.19 71.53 15.66 49.86 36.90 71.04 16.45

w/ CCNet
FID+DPRMULTI 85.74 52.06 28.47 15.22 45.15 27.29 67.49 16.14

FID+DPRCCNET 87.43 57.02 36.55 15.29 48.61 31.64 73.06 15.76
FID+BM25 89.12 62.12 43.92 17.28 46.05 34.10 78.21 15.59

w/ Web
UniWeb 91.69 83.58 72.42 20.87 54.37 40.73 77.01 18.34

Table 2: Evaluation results on the test set for fact checking, slot filling, dialogue, and open-domain QA. We report
Accuracy for FEVER, T-REx, and zsRE; EM for NQ, HotpotQA, and TriviaQA; ROUGE-L for ELI5 and F1-score
for WoW. These results come from no-retrieval models (top section), Wikipedia/CCNet-based models (middle
section), and Web-based models (bottom section). Bold and underline denote the best and second best methods.

• Slot Filling: T-REx (ElSahar et al., 2018) and
zero-shot RE (Levy et al., 2017).

• Dialogue: Wizard-of-Wikipedia (Dinan et al.,
2019).

• Open-domain QA: TriviaQA (Joshi et al., 2017),
Natural Questions (Kwiatkowski et al., 2019),
HotpotQA (Yang et al., 2018), and ELI5 (Shuster
et al., 2020).

• Commonsense QA: CommonsenseQA (Talmor
et al., 2019), SocialIQa (Sap et al., 2019), Cos-
mosQA (Huang et al., 2019), and PIQA (Bisk
et al., 2020).

• Commonsense Reasoning: NumerSense (Lin
et al., 2020) and WinoGrande (Sakaguchi et al.,
2020).

• Natural Language Inference: αNLI (Bhagavat-
ula et al., 2020) and HellaSwag (Zellers et al.,
2019).

We convert these tasks into a unified text-to-text
format. We take the input text as query to retrieve
top 10 passages from CCNet. After pre-processing,
we mix the training set of these datasets to pretrain
our model. We present the statistics of datasets and
pre-processing details in Appendix A.

Baselines. We compare UniWeb to a wide range
of models as follows:

• BART (Lewis et al., 2020a) and T5 (Raffel et al.,
2020). These are two representative text-to-text

PLMs for solving knowledge-intensive tasks. We
adopt the large version for a fair comparison.

• REALM (Guu et al., 2020) and RAG (Lewis
et al., 2020b). They are two well-known retrieval-
augmented PLMs combining with a nonparamet-
ric memory of Wikipedia via a neural retriever.

• Fusion-in-Decoder (FID) (Izacard and Grave,
2020). It is based on T5 where the encoder en-
codes the input text with each passage and the
decoder combines the encoded representations.

• Maillard et al. (2021) and Piktus et al. (2021)
equip BART and FID with retrieval models, i.e.,
BM25 (Robertson et al., 2009), DPR (Karpukhin
et al., 2020), DPRMULTI trained in a multi-task
fashion, and DPRCCNET trained on CCNet.

Note that these models are trained on individual
tasks and datasets, while our model is pretrained in
a multi-task manner. We use BM25 to retrieve pas-
sages from CCNet during pretraining. The BM25
and DPR indices are collected from the previous
word (Piktus et al., 2021). Since it lacks the re-
trieval supervision to train DPR for those tasks in
Table 3, we only report the BM25 results. The
implementation details are shown in Appendix B.

Evaluation Metrics. We adopt various tasks and
datasets in our experiments, which need to be eval-
uated differently. Following Petroni et al. (2020),
we use Exact Match (EM) for datasets with extrac-
tive (i.e., Natural Questions, TriviaQA) or short ab-
stractive output text (i.e., HotpotQA); for datasets
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Models
Commonsense QA Commonsense Reasoning NLI

CSQA SocialIQA CosmosQA PIQA NumerSense WinoGrande HellaSwag αNLI

w/o Retrieval
BARTLARGE 62.50 74.00 75.11 77.40 55.30 62.40 76.60 75.12

T5LARGE 72.56 74.16 79.23 78.67 59.71 76.48 79.84 77.48

w/ Wikipedia
REALM 63.11 62.52 71.33 70.65 57.34 62.12 73.21 71.40

RAG 69.51 68.32 76.55 75.23 59.22 63.35 75.01 74.45
BART+BM25 70.16 70.83 76.14 77.04 57.50 65.09 76.34 74.66

FID+BM25 73.63 74.36 78.83 79.65 62.30 76.72 79.96 77.94
w/ CCNet

FID+BM25 73.63 73.64 79.63 81.66 66.70 76.80 81.96 77.74

w/ Web
UniWeb 75.34 73.17 80.96 79.77 69.23 78.74 82.12 77.23

Table 3: Evaluation results at Accuracy on the dev set for commonsense QA, commonsense reasoning, and natural
language inference (NLI). Bold and underline numbers denote the best and second best performance. Following
Piktus et al. (2021), since it lacks the retrieval supervision to train DPR, we only report the BM25 results.

with long abstractive output text, we use ROUGE-
L (Lin, 2004) for ELI5 and F1-score for Wizard
of Wikipedia; we use Accuracy for the remaining
tasks. To compute EM and F1-score, we conduct
post-processing on the gold and predicted output
texts such as lowercasing, stripping, punctuation,
and duplicate whitespace (Rajpurkar et al., 2016).

5.2 Main Results

Table 2 and Table 3 show the results of UNIWEB

and baselines on 16 knowledge-intensive tasks.
First, on almost all knowledge-intensive tasks,

combining PLMs with explicit retrieved knowledge
can achieve higher performance. From Wikipedia
and CCNet to the web, we can observe that a
broader coverage of knowledge will lead to better
results. Compared to BART and T5, retrieval-based
models benefit from the retrieved knowledge.

Second, the tasks in Table 2 are specially de-
signed based on the knowledge from Wikipedia.
Thus, there is a strong bias towards Wikipedia as
the knowledge resource. We can observe that CC-
Net only achieves comparable results or even suf-
fers from a large performance drop. However, for
the tasks in Table 3 requiring knowledge beyond
Wikipedia, CCNet is more competitive.

Finally, our UNIWEB model achieves the best
results on most knowledge-intensive tasks. On one
hand, our model is trained in a multi-task manner,
which can benefit from knowledge sharing across
tasks. On the other hand, our model can access
broad and up-to-date knowledge from the web via
the fine-tuned search engine. The web knowledge

Models zsRE WoW CSQA PIQA αNLI

UniWeb 72.42 20.87 75.34 79.77 77.23

w/ Wikipedia 70.23 16.34 62.77 77.45 74.46
w/ CCNet 43.25 17.23 70.89 79.45 76.01
w/o SE 68.34 19.17 67.44 76.80 73.90
w/o CKL 69.70 19.09 66.70 76.57 75.01

Table 4: Ablation study on five tasks.

can fulfill more diverse information needs. More-
over, the search engine works much better than
traditional sub-optimal retrieval methods that rely
on end-to-end training or word matching.

5.3 Detailed Analysis

We report detailed analysis of UniWeb in several
datasets – we have similar finding in other datasets.

Ablation Study. Our UNIWEB model is the first
unified PLM using the web as knowledge source
for knowledge-intensive tasks. To examine the im-
portance of the web, we design two counterparts:
(1) w/ Wikipedia or (2) w/ CCNet replaces the web
with Wikipedia or CCNet and adopts BM25 to
retrieve documents. Besides, to avoid the nega-
tive impact of noisy and biased information, we
adopt the self-evaluation method to adaptively ac-
cess knowledge from the web. Thus, we remove
this method to test its effect (w/o SE). Finally, we
remove the pretraining task, i.e., continuous knowl-
edge learning, to test its importance (w/o CKL).
The results are shown in Table 4. We can see that
replacing the web with Wikipedia or CCNet suffers
from a large performance drop. Besides, the self-
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Question: With France and Argentina set to battle it out on Sunday in the World Cup final 2022, which teams will go head
to head for the third place?
Gold Answer: Croatia and Morocco

Top-1 Wikipedia Passage Top-1 CCNet Passage Top-1 Web Passage

... Third place play-off The Nether-
lands defeated Brazil 3–0 to secure
third place, the first for the Dutch
team in their history. Overall, Brazil
conceded 14 goals in the tournament;
this was the most by a team at any
single World Cup since 1986, and
the most by a host nation in history...
https://en.wikipedia.org
/wiki/2014_FIFA_World_Cup

... France and Belgium go head-to-head
in the first semi-finals of World Cup
2018. Both teams have impressed in
Russia so far, but only one can make
it through to Sunday’s final. How-
ever, Les Bleus have won four of their
five matches at World Cup 2018 and
shown flashes of quality in the process...
https://myarsenalblog.com
/category/uncategorized

... Third place for Croatia Zlatko Dalic’s
Croatia followed up their runners-up
effort at the Russia 2018 World Cup
with third place in Qatar as Mislav
Orsic’s fine effort secured victory over
the tournament’s surprise package Mo-
rocco at Khalifa International Stadium...
https://ca.sports.yahoo.com
/news/today-world-cup-argen
tina-head-085045315.html

Prediction: The Netherlands and Brazil Prediction: France and Belgium Prediction: Croatia and Morocco"

Table 5: A qualitative example showing the top-1 retrieved passages from Wikipedia, CCNet, and web, and their
corresponding model prediction. The words in red denote the keywords related to the question.
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Figure 2: (a) Entropy of samples in HotpotQA; (b)
Accuracy w.r.t different top-K documents.

evaluation method benefits our model a lot in terms
of knowledge filtering. The pretraining task also
improves the knowledge capacity of our model.

Sensitivity Analysis. In the self-evaluation mecha-
nism, we use entropy to evaluate the model confi-
dence. To verify its effectiveness, we present the
distribution of H(Ŷ|X ) depending on whether or
not the model gets the question correct. As shown
in Figure 2(a), the average entropy of the questions
for which our model gets correct is lower than that
of questions for which our model gets incorrect.
This indicates that the entropy has some predictive
power of model confidence. Besides, the quality of
retrieved documents will largely affect the predic-
tion of our model. Thus, in Figure 2(b), we test the
model accuracy by varying the top-K search results
in the set of {1-5, 6-10, 11-15, 16-20}. We can see
that PLM performance drops with the increase of
rank of documents, thus the decrease of document
quality. However, the retrieved top 6-10 passages
also achieve comparable results to the top 1-5 ones.
This is the motivation of our setting K = 10.

5.4 Case Study

In this section, we perform the qualitative analysis
on REALTIME QA (Kasai et al., 2022), a bench-
mark requiring real-time, up-to-date, and compre-
hensive knowledge with a broad range of topics
(such as politics, business, sports, and entertain-
ment) to solve questions. The evaluation results
are shown in Appendix C. Our UniWeb model with
Google Search performs the best. We present an ex-
ample in Table 5 about “World Cup final 2022” in
the sports topic. By using the question text as query,
we can retrieve top-1 passages from Wikipedia,
CCNet, and web. Since Wikipedia and CCNet are
both static and limited knowledge resources, the
retrieved passages are not fresh in time (“2014”
and “2018”) even though they are on the same
topic “World Cup”. The typical retrieval methods
(BM25 or DPR) are largely reliant on fuzzy se-
mantic matching, also leading to incorrect retrieval.
While, retrieving from the web using search engine
can ensure our model to obtain the most up-to-date
and relevant information, based on which it can
generate the correct answer “Croatia and Morocco”.
We present more examples in Appendix D.

6 Conclusion

This paper presented a unified web-augmented
framework for a wide range of knowledge-intensive
tasks, called UNIWEB. We convert 16 tasks into
a text-to-text generation task for training. We pro-
pose a search engine assisted learning method to se-
lectively retrieve documents from the web through
Google Search. Furthermore, to reduce the discrep-
ancy between the encoded and retrieved knowledge,
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we design a pretraining task, i.e., continual knowl-
edge learning, to integrate the retrieved knowledge
into LLMs. Experiments on 16 tasks show the ef-
fectiveness of our web-augmented model compared
to previous retrieval-augmented models. In future
work, we will investigate the effect of web content
in detail and consider applying our model to more
types of downstream tasks.

7 Limitations

For web-augmented models including our work,
the deterioration of search results from search
engine highlights the importance of deriving an
effective method to interact with the huge web.
Search engines are often perceived as black-box
and non-transparent for end users. Therefore, many
works proposed “leaning to search” to decompose
complex questions into simpler queries, which
may improve the performance of web-based mod-
els (Nakano et al., 2021; Komeili et al., 2021).

In our model, we used a commercial search en-
gine as the retriever to work with the whole web
as a knowledge source. Since the web is not cu-
rated and well-structured like Wikipedia, we may
encounter unexpected safety issues, including mis-
information and harmful contents. While we have
relied on the security control of the search engine,
more attention should be paid to better understand
the risks and provide effective ways to mitigate
them. We hope our simple approach and strong
results could encourage more future work by the
community to tackle these questions. To encour-
age the community to investigate the question and
ensure reproducibility, after the reviewing process,
we will release the search URLs used in our exper-
iments.

As for the potential concern, since we use the
search engine to access real-time information, we
do not have a tight control over retrieved results as
traditional end-to-end retrieval (Guu et al., 2020;
Lewis et al., 2020b). Not only the changes of search
engine logic, but also the newly published infor-
mation, might create discrepancies over the course
of time. This is also an issue we have to tackle to
build a stable web-based solution for PLMs.
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Appendix

We provide some experiment-related information
as supplementary materials. The appendix is orga-
nized into three sections:

• Details of pretraining tasks are presented in
Appendix A;

• Model architecture and pretraining details are
presented in Appendix B;

• Supplementary experiments are presented in
Appendix C;

• Examples with retrieved knowledge are pre-
sented in Appendix D.

A Pretraining Tasks

As described in Section 4.1, to pretrain our model,
we unify 16 knowledge-intensive tasks across seven
categories into a general text-to-text format:

• Fact checking is the task of assessing whether a
natural language claim is true (Guo et al., 2022).
It requires deep knowledge about the claim. We
consider the claim as input and the classification
label (e.g., true/false) as output.

• Slot filling aims to complete the missing infor-
mation for certain relations of entities (Surdeanu
and Ji, 2014) (e.g., subject entity Star Trek and
relation creator). It requires entity disambigua-
tion and the relational knowledge for entities. We
model the structured string “subject entity [SEP]
relation” as input and the object entity as output.

• Dialogue focuses on building an engaging chat-
bot that can discusses a wide range of open-ended
topics such as whether (Huang et al., 2020). It
requires models to know about the background
knowledge for the conversational topics. We con-
sider the dialogue history as input and the next
utterance as output.

• Open-domain question answering is the task
of producing answers to factoid questions in nat-
ural language (Zhu et al., 2021). The questions
could be about nearly anything relying on world
knowledge. We consider the question as input
and the answer as output.

• Commonsense question answering aims to test
if models can answer questions regarding com-
monsense knowledge that everyone knows (Dou
and Peng, 2022). Similarly, we consider the ques-
tion as input and the answer as output.
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• Commonsense reasoning is intended to utilize
commonsense knowledge to reason about certain
aspects of the given text (Sakaguchi et al., 2020).
Therefore, we consider the given text as input
and the prediction as output.

• Natural language inference is the task of deter-
mining whether the given “hypothesis” logically
follows from the “premise” (Storks et al., 2019).
It acquires deep knowledge about the relationship
between hypothesis and premise. We consider
the premise as input and the hypothesis as output.

For each category, we choose several representa-
tive tasks to construct our pretraining corpus. The
detailed information of these included tasks is listed
in Table 6. To mitigate the huge disparity between
dataset sizes, we follow (Raffel et al., 2020) to use
the temperature-scaled mixing strategy with a rate
of T = 2 for setting the proportion of data coming
from each task. During pretraining, for each task
example, we use BM25 to retrieve top-10 passages
from CCNet as our external knowledge. The input
texts are concatenated with the retrieved passages
using manually-written prompts. The final input is
constructed in the following format:

Context: [passage1]...[passage10]

[Task Instruction]: [the original input text]

Option 1: [option1]...Option n: [optionn]

The “Option” string is applied only when the input
text is provided with several candidate answers.
The blanks “[passagen]” and “[optionn]” is filled
with the retrieved passages and candidate answers.
The blank “[Task Instruction]” aims to indicate
the task for our model, which is task-specific and
detailed in Table 7.

B Implementation Details

Our UniWeb model uses a Transformer with
12 layers in both encoder and decoder (406M
parameters), the same as the model size of
BARTLARGE (Lewis et al., 2020a). The hidden
size is 1,024 and the inner hidden size of the feed-
forward network is 4,096. We employ the byte-
pair-encoding (BPE) tokenizer, and the vocabulary
size is 50,267. We initialize the backbone with the
MVP model (Tang et al., 2022), a supervised pre-
trained PLM, to provide a good starting point for
generation following previous work (Dong et al.,
2019; Zhang et al., 2020). We pretrain the model
with batch size 8,192 on Tesla A100 40GB GPUs.

Algorithm 1 The pseudo code for UNIWEB.
Require: A search engine (i.e., Google Search)

connecting with the large-scale web
1: Input: Training data D
2: Output: Model parameters Θ
3: Initialize Θ
4: while not convergence do
5: for iteration = 1 to |D| do
6: Acquire an input-output pair ⟨X ,Y⟩

▷ Self-Evaluation
7: Compute the entropy H(Ỹ|X ) of the sam-

pled output distribution (Eq. 2)
▷ Search Engine Assisted Learning

8: if H > η then
9: Use X as a query to the search engine

10: Return top-K passages P
11: else

The passages P are null ∅
12: end if

▷ Knowledge-Intensive Tasks
13: Generate the output text Ỹ and compute

the loss L1 based on X and P (Eq. 3)
▷ Continual Knowledge Learning

14: Mask salient spans of P for the CKL pre-
training and compute the loss L2 (Eq. 4)
▷ Model Optimization

15: Compute the gradients and update model
parameters Θ based on L1 and L2

16: end for
17: end while
18: return Θ

For our model, the maximum length of both in-
put and output sequences is set to 1,024 for support-
ing examples to contain more tokens. We optimize
the model with a constant learning rate of 2×10−5

using standard sequence-to-sequence cross-entropy
loss. We apply the AdamW optimizer (Loshchilov
and Hutter, 2019) with β1 = 0.9, β2 = 0.98,
ϵ = 1 × 10−6 to improve training stability (Liu
et al., 2019a). The weight decay coefficient is
0.1. For testing, we select the checkpoint with
the highest validation performance. According to
the results shown in Figure 2(a), we set the en-
tropy threshold η as 4.0. The overall pipeline of
our model is listed in Algorithm 1.

Since the tasks of fact checking, slot filling, dia-
logue, and open-domain QA are specially designed
based on the knowledge from Wikipedia, we re-
quire the search engine to retrieve the top-1 passage
from the website https://en.wikipedia.org.
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Task Families Tasks #Train #Validation #Test

Fact Checking FEVER (Thorne et al., 2018) 134,287 14,342 10,100

Slot Filling
T-REx (ElSahar et al., 2018) 2,999,272 26,833 5,000

zsRE (Levy et al., 2017) 154,826 3,771 4,966

Dialogue WoW (Dinan et al., 2019) 63,734 3,054 2,944

Open-domain QA

NQ (Kwiatkowski et al., 2019) 108,890 6,008 1,444

TriviaQA (Joshi et al., 2017) 1,835,943 168,358 6,586

HotpotQA (Yang et al., 2018) 88,869 5,600 5,569

ELI5 (Shuster et al., 2020) 804,370 18,037 600

Commonsense QA

CSQA (Talmor et al., 2019) 9,741 1,221 1,140

SocialIQa (Sap et al., 2019) 33,410 1,954 2,059

CosmosQA (Huang et al., 2019) 25,262 2,985 6,963

PIQA (Bisk et al., 2020) 16,113 1,838 3,084

Commonsense Reasoning
NumerSense (Lin et al., 2020) 10,444 200 3,146

WinoGrande (Sakaguchi et al., 2020) 40,398 1,267 1,767

Natural Language Inference
HellaSwag (Zellers et al., 2019) 39,905 10,042 10,003

αNLI (Bhagavatula et al., 2020) 169,654 1,532 3,059

Table 6: The statistics of our 16 knowledge-intensive tasks.

Tasks Task Instructions

Fact Checking Verify the following claim

Slot Filling Predict the missing fact

Open-domain
QA

Answer the following question

Commonsense
QA

Answer the following question

Dialogue Response to the following dialogue

Natural Language
Inference

Inference on the following context

Commonsense
Reasoning

Reason about the following sentence

Table 7: Task instructions for each task category.

C Supplementary Experiments

RealTime QA. Previous QA systems mostly as-
sume that answers are static regardless of the time
of query (Chen and Yih, 2020). In this section,
we use the REALTIME QA benchmark (Kasai
et al., 2022) to test models about real-time, instan-
taneous information. At each week, REALTIME

QA will retrieve news articles and ~30 human-
written, multiple-choice questions from news web-
sites (CNN, THE WEEK, and USA Today), which
covers diverse topics such as politics, business,
sports, and entertainment. We adopt the origi-

Models
REALTIME QA

Original NOTA

T5 40.0 33.3
GPT-3 56.7 23.3

RAG+DPR 10.0 16.7
RAG+Google Search 63.3 50.0

UniWeb +Google Search 66.7 56.7

Table 8: Accuracy results for the questions at week
from 2022/12/11 through 2022/12/17. We utilize DPR
to retrieve top-5 documents from Wikipedia and use
Google Search to retrieve top-5 news articles.

nal and NOTA (none of the above) settings and
test our models over questions from 2022/12/11
through 2022/12/17. The results are shown in Ta-
ble 8. Since one of the original choices is randomly
replaced with “none of the above”, the NOTA set-
ting results in a distinct performance degradation.
Besides, due to the real-time nature of the ques-
tions, only using DPR to retrieve texts from static
Wikipedia achieves worse results. Our UniWeb
model with Google Search performs the best. This
indicates that UniWeb can answer questions based
on the real-time information, rather than relying on
past information from pretraining.

Self-Evaluation Criteria. To evaluate the model
confidence in task examples, we adopt the entropy
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as criterion in Section 4.2.1. In this part, we test
with more kinds of criteria compared to the entropy
following Kadavath et al. (2022). First, we consider
a sample-enhanced prompting method, where we
generate five samples with beam search and ask the
model about the validity of the first sample with
the highest score. We show an example at below:

Question: Who is the third

president of the United States?

Possible Answer: James Monroe

Here are some brainstormed ideas:

Thomas Jefferson

John Adams

Thomas Jefferson

George Washington

Is the possible answer:

(A) True

(B) False

The possible answer is:

If the model self-evaluate the possible answer is
False, our model will leverage the search engine
to access the web, otherwise not. We show the prob-
ability of predicting True depending on whether
the model gets the question correct in Figure 3(a).
However, according to Kadavath et al. (2022), this
self-evaluation method is mainly suitable for ques-
tion answering tasks with short-form answers but
benefits less on question answering tasks with long-
form answers. Second, we consider using loss as
the criterion to evaluate the model confidence. This
approach is to generate a sample, and then look at
the model’s loss on this sample, averaged over all
tokens, like the knowledge-intensive learning loss
(Eq. 3). If the loss for an example is higher than a
threshold (e.g., 0.5), we consider that the model is
unconfident about this example and we will query
the web to retrieve knowledge. In Figure 3(b), we
show the loss of samples that the model gets correct
or incorrect.

D Case Study

In Table 9, we present three examples from Triv-
iaQA (Joshi et al., 2017), CommonsenseQA (Tal-
mor et al., 2019), and NumerSense (Lin et al.,
2020). The first TriviaQA dataset is specially de-
signed based on the knowledge from Wikipedia.
Therefore, we can observe that Wikipedia con-
tains the most relevant passage about the topic
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Figure 3: (a) Probability of True for prompts in Hot-
potQA; (b) Loss of samples in HotpotQA.

“US nuclear reactor accident in 1979”. In addition,
the web can provide another source of knowledge
about this topic. Although CCNet covers this con-
tent, it does not give a clear answer to this question
(i.e., full name of the US nuclear reactor). The sec-
ond CommonsenseQA dataset involves questions
related to commonsense knowledge going beyond
Wikipedia. Therefore, Wikipedia can only provide
a fuzzy description passage about “Guitar”. The
web and CCNet return diverse knowledge but the
passage returned by search engine is more helpful.
The thrid NumerSense dataset requires models to
reason about the number. For the third example,
CCNet provides a passage with incorrect informa-
tion. While, the web and Wikipedia return passages
about the rule of “tic-tac-toe”, which can result in
the correct answer “three”.
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Question: Which US nuclear reactor had a major accident in 1979?
Gold Answer: Three Mile Island Unit 2 reactor

Top-1 Wikipedia Passage Top-1 CCNet Passage Top-1 Web Passage

... The Three Mile Island accident was
a partial meltdown of the Three Mile
Island, Unit 2 (TMI-2) reactor in
Pennsylvania, United States. It began at
4 a.m. on March 28, 1979. It is the most
significant accident in U.S. commercial
nuclear power plant history. On the
seven-point International Nuclear
Event Scale, it is rated Level 5 –
Accident with Wider Consequences...
https://en.wikipedia.org/wiki
/Three_Mile_Island_accident

... The US and former Soviet Union
had been operating nuclear power for
267 and 162 reactor-years respectively
before a major accident occurred. At
the time of the Three Mile Island
accident in 1979, the US had 52
nuclear power stations, which had been
operating for 267 reactor years, or
an average of 5.1 years per reactor...
https://chinadialogue.net/
article/show/single/en/5808
-Chinese-nuclear-disaster-
highly-probable-by-2-3-

... The Three Mile Island Unit
2 reactor, near Middletown, Pa.,
partially melted down on March
28, 1979. This was the most se-
rious accident in U.S. commercial
nuclear power plant operating his-
tory, although its small radioactive
releases had no detectable health
effects on plant workers or the public...
https://www.nrc.gov/reading
-rm/doc-collections/fact-
sheets/3mile-isle.html

Question: What do people typically do while playing guitar?
Candidate Answers: A. cry B. hear sounds C. singing D. arthritis E. making music
Gold Answer: singing

Top-1 Wikipedia Passage Top-1 CCNet Passage Top-1 Web Passage

... The guitar is a fretted musical instru-
ment that typically has six strings. It
is usually held flat against the player’s
body and played by strumming or
plucking the strings with the dominant
hand, while simultaneously pressing se-
lected strings against frets with the fin-
gers of the opposite hand. A plec-
trum or individual finger picks may
also be used to strike the strings...
https://en.wikipedia.org/
wiki/Guitar

... I was playing a brand-new game
that had no rules and nothing estab-
lished. I was really shy about it at
first, because I hadn’t looked out into
the world to find other people who,
of course, had done things like this.
I heard Fred Frith play, and I knew
he played his guitar with objects not
typically associated with the guitar...
https://www.premierguitar.
com/articles/24026-janet-
feder-prepared-for-all-genres

... Practicing the guitar regularly can en-
hance your concentration and expand
your attention span. It takes an ade-
quate focus to become an expert gui-
tarist. Focusing becomes a habit for
your mind and will help you concentrate
better on other everyday chores too...
https://www.chasingsound.
com/posts/10-health-bene
fits-of-playing-guitar

Question: How do you win at tic-tac-toe get <mask> of your symbols in a row?
Gold Answer: three

Top-1 Wikipedia Passage Top-1 CCNet Passage Top-1 Web Passage

... Tic-tac-toe (American English),
noughts and crosses (Commonwealth
English), or Xs and Os (Canadian or
Irish English) is a paper-and-pencil
game for two players who take turns
marking the spaces in a three-by-
three grid with X or O. The player
who succeeds in placing three of
their marks in a horizontal, verti-
cal, or diagonal row is the winner...
https://en.wikipedia.org/
wiki/Tic-tac-toe

... You just make a 4x4 box instead of
a 3x3 box. Then the same rules ap-
ply, only you need to get 4 in a row
to win. When playing, does putting
my symbol in the middle guarantee
me winning? No. With both play-
ers playing optimally, the result is al-
ways a draw. How many X’s and
O’s do I need to play tic tac toe on
a board game? Since the board it-
self has nine spaces, I recommend that
you have nine for both X’s and O’s...
https://www.wikihow.com/
Play-Tic-Tac-Toe

... 1. The game requires two players, X
and O. 2. The game board is a set 3x3
grid in which players will place their
symbol to claim that segment. 3. X typi-
cally players first, then players alternate
turns. 4. The goal is to claim three seg-
ments of the grid in a row, either hori-
zontally, vertically, or diagonally. 5. No
additional sides can be added to the grid.
6. The game is over either when one
player achieves three segments in a row,
or when the grid is filled without any-
one achieving three segments in a row....
https://www.siammandalay.
com/blogs/puzzles/how-to-
win-tic-tac-toe-tricks-to
-always-win-noughts-
crosses

Table 9: Three qualitative example from TriviaQA, CommonsenseQA, and NumerSense. We present the top-1
retrieved passages from Wikipedia, CCNet, and web. The words in red denote the keywords related to the question.
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