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Abstract

The usefulness of part-of-speech tags for pars-
ing has been heavily questioned due to the suc-
cess of word-contextualized parsers. Yet, most
studies are limited to coarse-grained tags and
high quality written content; while we know
little about their influence when it comes to
models in production that face lexical errors.
We expand these setups and design an adversar-
ial attack to verify if the use of morphological
information by parsers: (i) contributes to error
propagation or (ii) if on the other hand it can
play a role to correct mistakes that word-only
neural parsers make. The results on 14 diverse
UD treebanks show that under such attacks,
for transition- and graph-based models their
use contributes to degrade the performance
even faster, while for the (lower-performing)
sequence labeling parsers they are helpful. We
also show that if morphological tags were utopi-
cally robust against lexical perturbations, they
would be able to correct parsing mistakes.

1 Introduction

The use of morphological tags was a core com-
ponent of dependency parsers to improve perfor-
mance (Ballesteros and Nivre, 2012). With the rise
of neural models, feeding explicit morphological
information is a practice that has greatly vanished,
with (often) the exception of part-of-speech (PoS)
tags. In this line, Ballesteros et al. (2015) already
found that character-based word vectors helped im-
proving performance over purely word-level mod-
els, specially for rich-resource languages, for which
the use of morphological information is more rele-
vant (Dehouck and Denis, 2018). Related, Dozat
et al. (2017) showed that predicted PoS tags still im-
proved the performance of their graph-based parser,
even when used together with character-based rep-
resentations. Smith et al. (2018) and de Lhoneux
et al. (2017) studied the impact that ignoring PoS
tag vectors had on the performance of a biLSTM
transition-based parser (Kiperwasser and Goldberg,

2016). They conclude that when considering PoS
tags, word-level, and character-level embedddings,
any two of those vectors are enough to maximize
a parser performance, i.e., PoS tag vectors can be
excluded when using both word-level and character-
level vectors. Zhou et al. (2020) showed the util-
ity of PoS tags when learned jointly with parsing.
Recently, Anderson and Gómez-Rodríguez (2021)
and Anderson et al. (2021) have explored the differ-
ences between using gold and predicted PoS tags,
showing that the former are helpful to improve
the results, while the latter are often not, with the
exception of low-resource languages, where they
obtain small but consistent improvements. Further-
more, Muñoz-Ortiz et al. (2022) showed that the
efficacy of PoS tags in the context of sequence la-
beling parsing is greatly influenced by the chosen
linearization method.

However, most of such work has focused on:
(i) studying the effect of the universal PoS tags
(Zeman et al., 2021), and (ii) its impact on non-
perturbed inputs. Yet, NLP models are very sen-
sible and brittle against small attacks, and simple
perturbations like misspellings can greatly reduce
performance (Ebrahimi et al., 2018; Alzantot et al.,
2018). This has been shown for tasks such as
named-entity recognition, question answering, se-
mantic similarity, and sentiment analysis (Moradi
and Samwald, 2021). In parallel, defensive strate-
gies have been tested to improve the robustness
of NLP systems, e.g., placing a word recognition
module before downstream classifiers (Pruthi et al.,
2019), or using spelling checks and adversarial
training (Li et al., 2019). Yet, as far as we know, no
related work has been done on testing perturbed in-
puts for parsing and the effect, positive or negative,
that using morphological information as explicit
signals during inference might have in guiding the
parsers.1

1The code related to this work is available at https://
github.com/amunozo/parsing_perturbations.
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2 Adversarial framework

Perturbed inputs occur for several reasons, such as
for instance on-purpose adversarial attacks (Liang
et al., 2018) or, more likely, unintended mistakes
made by human writers. In any case, they have an
undesirable effect on NLP tools, including parsers.
Our goal is to test if under such adversarial setups,
coarse- and fine-grained morphological tags: (i)
could help obtaining more robust and better results
in comparison to word-only parsers (going against
the current trend of removing any explicit linguistic
input from parsers); or (ii) if on the contrary they
contribute to degrade parsing performance.

Below, we describe both how we generate (i,
§2.1) linguistically-inspired attacks at character-
level, and (ii, §2.2) the tested parsers.

2.1 Perturbed inputs

To perturb our inputs, we use a combination of four
adversarial misspellings, inspired by Pruthi et al.
(2019) who designed their method relying on pre-
vious psycholinguistic studies (Davis, 2003; Rawl-
inson, 1976). In particular, we consider to: (i) drop
one character, (ii) swap two contiguous characters,
(iii) add one character, and (iv) replace a charac-
ter with an adjacent character in a QWERTY key-
board. These changes will probably transform most
words into out-of-vocabulary terms, although some
perturbations could generate valid tokens (likely
occurring in an invalid context). We only apply
perturbations to a fraction of the content words of
a sentence2 (details in §3), as function words tend
to be shorter and a perturbation could make them
unrecognizable, which is not our aim.

Finally, we only allow a word to suffer a sin-
gle attack. Since we will be evaluating on a mul-
tilingual setup, we considered language-specific
keyboards to generate the perturbations. We re-
strict our analysis to languages that use the Latin
alphabet, but our adversarial attack would be, in
principle, applicable to any alphabetic script.

2.2 Parsing models

Since we want a thorough picture of the impact of
using morphological information on parsers, we
include three models from different paradigms:

1. A left-to-right transition-based parser with
pointer networks (Fernández-González and

2Those which universal PoS tags is ADJ, ADV, INTJ, PROPN,
NOUN or VERB.

Gómez-Rodríguez, 2019). It uses biLSTMs
(Hochreiter and Schmidhuber, 1997) to con-
textualize the words, and the outputs are then
fed to a pointer network (Vinyals et al., 2015),
which keeps a stack and, in a left-to-right fash-
ion, decides for each token its head.

2. A biaffine graph-based parser (Dozat et al.,
2017). This model also uses biLSTMs to
first contextualize the input sentence. Differ-
ently from Fernández-González and Gómez-
Rodríguez, the tree is predicted through a bi-
affine attention module, and to ensure well-
formed trees it uses either the Eisner (1996)
or Chu (1965); Edmonds (1968) algorithms.3

3. A sequence labeling parser (Strzyz et al.,
2020) that uses a 2-planar bracketing encod-
ing to linearize the trees. Like the two other
parsers, it uses biLSTMs to contextualize sen-
tences, but it does not use any mechanism on
top of their outputs (such as biaffine atten-
tion or a decoder module) to predict the tree
(which is rebuilt from a sequence of labels).

Particularly, we use this third model to: (i) es-
timate how sensitive raw biLSTMs are to attacks,
(ii) compare their behavior against the transition-
and graph-based models and the extra mechanisms
that they incorporate, (iii) and verify if such mech-
anisms play a role against perturbed inputs.

Inputs We concatenate a word vector, a sec-
ond word vector computed at character level, and
(optionally) a morphological vector. This is the
preferred input setup of previous work on PoS
tagging plus its utility for neural UD parsing
(de Lhoneux et al., 2017; Anderson and Gómez-
Rodríguez, 2021).4 Note that character-level vec-
tors should be robust against our attacks, but it is
known that in practice they are fragile (Pruthi et al.,
2019). In this respect, our models use techniques to
strengthen their behaviour against word variation,
by using character-level dropout. This way, we
inject noise during training and give all our models
a lexical-level defensive mechanism to deal with
misspellings. We kept this feature to keep the setup
realistic, as character-level dropout is implemented

3This is true for the supar implementation that we use,
although Dozat et al. relied on heuristics.

4Some authors (Zhou et al., 2020) exploit PoS tags for
parsing in a multi-task learning setup instead, but the differ-
ences in the experiments are small (∼0.3 points) and they are
limited to English and Chinese on non-UD treebanks.
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by default in most of modern parsers, and ensure
stronger baselines.

Training and hyperparameters We use non-
perturbed training and development sets,5 since
our aim is to see how parsers trained in a stan-
dard way (and that may use explicit morphological
features) behave in production under adversarial
attacks. Alternatively, we could design additional
techniques to protect the parsers against such per-
turbations, but this is out of the scope of this paper
(and for standard defensive strategies, we already
have character-level dropout). For all parsers, we
use the default configuration specified in the cor-
responding repositories. We use 2 GeForce RTX
3090 for training the models for around 120 hours.

Morphological tags To predict them, we use a
sequence labeling model with the same architec-
ture than the one used for the sequence labeling
parser. We use as input a concatenation of a word
embedding and a character-level LSTM vector.

3 Experiments

We now describe our experimental setup:

Data We selected 14 UD treebanks (Zeman et al.,
2021) that use the Latin alphabet and are anno-
tated with universal PoS tags (UPOS), language-
specific PoS tags (XPOS), and morphological feats
(FEATS). It is a diverse sample that considers differ-
ent language families and amounts of data, whose
details are shown in Table 1. For the pre-trained
word vectors, we rely on Bojanowski et al. (2017).6

Also, note that we only perturb the test inputs.
Thus, when the input is highly perturbed, the model
will mostly depend on the character representations,
and if used, the morphological tags fed to it.

Generating perturbed treebanks For each test
set, we create several versions with increasing per-
centages of perturbed content words (from 0% to
100%, with steps of 10 percent points) to monitor

5For the models that use morphological information we
went for gold tags for training. The potential advantages
of training with predicted PoS tags vanish here, as the error
distribution for PoS tags would be different for non-perturbed
(during training) versus perturbed inputs (during testing).

6We exclude experiments with BERT-based models for a
few reasons: (i) to be homogeneous with previous setups (e.g.
Smith et al. (2018), Anderson et al. (2021)), (ii) because the
chosen parsers already obtain competitive results without the
need of these models, and (iii) for a better understanding of
the results, since it is hard to interpret the performances of in-
dividual languages while not extracting conclusions biased on
the language model used, instead of the parsing architecture.

Treebank # Sent. Family #UPOS #XPOS #FEATS
AfrikaansAfriBooms 1 315 Germanic (IE) 16 95 55
BasqueBDT 5 396 Basque 16 - 573
EnglishEWT 12 543 Germanic (IE) 18 51 153
FinnishTDT 12 217 Uralic 16 14 1 786
GermanGSD 13 814 Germanic (IE) 17 52 458
HungarianSzeged 449 Uralic 16 - 384
IndonesianGSD 4 477 Austronesian 18 45 48
IrishIDT 4 005 Celtic (IE) 17 72 653
LithuanianHSE 153 Baltic (IE) 16 30 215
MalteseMUDT 1 123 Afro-Asiatic 17 47 -
PolishLFG 13 774 Slavic (IE) 15 623 1 037
SpanishAnCora 14 305 Latin (IE) 18 318 243
SwedishLinES 3 176 Germanic (IE) 17 214 171
TurkishPenn 14 851 Turkic 15 - 490

Table 1: Relevant information for the treebanks used.

how the magnitude of the attacks affects the results.
For each targeted word, one of the four proposed
perturbations is applied randomly. To control for
randomness, each model is tested against 10 per-
turbed test sets with the same level of perturbation.
To check that the scores were similar across runs,
we computed the average scores and the standard
deviation (most of them exhibiting low values).

Setup For each parser we trained four models:
a word-only (word) baseline where the input is
just the concatenation of a pre-trained word vec-
tor and a character-level vector, and three extra
models that use universal PoS tags (word+UPOS),
language-specific PoS tags (word+XPOS), or feats
(word+FEATS). For parsing evaluation, we use la-
beled attachment scores (LAS). For the taggers, we
report accuracy. We evaluate the models on two
setups regarding the prediction of morphological
tags: (i) tags predicted on the same perturbed in-
puts as the dependency tree, and (ii) tags predicted
on non-perturbed inputs. Specifically, the aim of
setup ii is to simulate the impact of using a tagger
that is very robust against lexical perturbations.

3.1 Results

Tables 2 and 3 show the average LAS results across
all treebanks and models for tags predicted on per-
turbed and non-perturbed inputs, respectively. Fig-
ures 1, 2, and 3 display the mean LAS difference
between the word and the other model configura-
tions, using tags predicted on both perturbed and
non-perturbed inputs for each parser.

3.1.1 Results using morphological tags
predicted on perturbed inputs

Figure ??.a shows the score differences for the
transition-based parsers. The average difference
between the baseline and all the models using mor-
phological tags becomes more negative as the per-
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% Perturbed Transition-based Graph-based Sequence labeling Tagger accuracy
word UPOS XPOS FEATS word UPOS XPOS FEATS word UPOS XPOS FEATS UPOS XPOS FEATS

0 75.66 74.93 76.28 74.84 79.35 77.44 78.38 77.28 68.29 68.98 70.96 66.79 89.76 87.80 83.38
10 74.93 73.68 75.07 73.53 78.59 75.69 76.77 75.49 66.71 67.31 69.34 64.97 88.56 86.17 81.68
20 74.11 72.45 73.92 72.13 77.81 73.93 75320 73.73 65.18 65.61 67.76 63.16 87.38 84.59 79.94
30 73.33 71.19 72.66 70.74 76.99 72.22 73.56 71.92 63.62 63.96 66.17 61.37 86.17 82.91 78.22
40 72.52 69.86 71.45 69.33 76.10 70.36 71.88 70.06 62.09 62.24 64.59 59.55 84.93 81.30 76.50
50 71.66 68.58 70.13 67.93 75.27 68.63 70.14 68.09 60.52 60.50 62.94 57.81 83.71 79.61 74.68
60 70.78 67.26 68.75 66.46 74.37 66.72 68.37 66.09 58.94 58.91 61.36 56.10 82.48 77.90 72.92
70 69.87 65.88 67.40 64.92 73.49 64.96 66.64 66.06 57.44 57.24 59.77 54.36 81.19 76.13 71.13
80 68.96 64.50 66.03 63.46 72.48 63.05 64.80 62.27 55.90 55.61 58.17 52.65 79.93 74.42 69.37
90 67.99 63.12 64.61 61.90 71.57 61.12 62.97 60.16 54.42 53.95 56.54 50.96 78.62 72.64 67.56
100 67.04 61.74 63.16 60.34 70.59 59.23 61.14 58.13 52.92 52.30 54.97 49.23 77.30 70.85 65.74

Table 2: On the left, average LAS scores for all treebanks and degrees of perturbation for the word, word+UPOS,
word+XPOS, and word+FEATS models using morphological tags predicted on perturbed input. On the right, the
average scores for the taggers used.

% Perturbed Transition-based Graph-based Sequence labeling
word UPOS XPOS FEATS word UPOS XPOS FEATS word UPOS XPOS

0 75.66 74.93 76.28 74.84 79.35 77.44 78.38 77.28 68.29 68.98 70.96 66.79
10 74.93 74.64 76.05 74.55 78.59 76.91 78.01 76.78 66.71 68.60 70.53 66.19
20 74.11 74.36 75.82 74.23 77.81 76.46 77.58 73.62 65.18 68.19 70.08 65.62
30 73.33 74.02 75.60 73.94 76.99 75.88 77.20 75.82 63.62 67.76 69.62 64.99
40 72.52 73.71 75.36 73.66 76.10 75.44 76.78 75.27 62.09 67.34 69.13 64.46
50 71.66 73.41 75.17 73.35 75.27 74.94 76.42 74.80 60.52 66.88 68.66 63.79
60 70.78 73.06 74.87 73.04 74.37 74.46 76.02 74.25 58.94 66.40 68.19 63.18
70 69.87 72.74 74.64 72.70 73.49 73.99 75.53 73.76 57.44 65.95 67.72 62.56
80 69.86 72.39 74.40 72.37 72.48 73.46 75.13 73.26 55.90 65.45 67.23 61.92
90 67.99 72.08 74.13 72.10 71.57 72.92 74.46 72.73 54.42 64.93 66.75 61.27

100 67.04 71.73 73.93 71.74 70.59 72.45 74.35 72.15 52.92 64.41 66.27 60.63

Table 3: Average LAS scores for all treebanks and degrees of perturbation for the word, word+UPOS, word+XPOS,
and word+FEATS models using morphological tags predicted on non-perturbed input.

(a) Perturbed (b) Non-perturbed

Figure 1: Average ∆LAS across all treebanks for the
transition-based models word+upos, word+xpos, and
word+feats vs word, using morphological tags pre-
dicted on perturbed and non-perturbed inputs.

centage of perturbed words increases. Such differ-
ence is only positive for word+XPOS when none or a
few percentage of words are perturbed. All morpho-
logical tags show a similar tendency, word+FEATS
degrading the performance the most, followed by
the ‘coarse-grained’ word+UPOS.

Figure 2.a shows the results for the graph-based
parsers. Again, most morphological inputs con-
tribute to degrade the performance faster than the
baseline. In this case, no model beat the base-
line when predicting tags on the perturbed inputs.
The performance of word+FEATS and word+UPOS

(a) Perturbed (b) Non-perturbed

Figure 2: Average ∆LAS across all treebanks for
the graph-based models word+upos, word+xpos, and
word+feats vs word, using morphological tags pre-
dicted on perturbed and non-perturbed inputs.

is similar (performing word+UPOS a bit better), and
the word+XPOS models improve the performance
the most.

Figure 3.a shows the results for the sequence
labeling parsers: differences between the baseline
and the models utilizing morphological information
exhibit minor changes ranging from 0% to 100%
of perturbed words. Also, the usefulness of the
morphological information depends on the specific
tags selected. While word+UPOS obtains similar re-
sults to the baseline, word+XPOS scores around 2-3
points higher for the tested percentages of pertur-
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(a) Perturbed (b) Non-perturbed

Figure 3: Average ∆LAS across all treebanks for the
sequence-labeling models word+upos, word+xpos, and
word+feats vs word, using morphological tags pre-
dicted on perturbed and non-perturbed inputs.

bations, and word+FEATS harms the performance
in a range between 1 and 4 points.

The results show that feeding morphological tags
to both graph- and transition-based parsers has a
negative impact to counteract such attacks, degrad-
ing their performance faster. On the contrary, the
sequence labeling parsers, that rely on biLSTMs to
make the predictions, can still benefit from them.
In addition, the different trends for the sequence
labeling parser versus the transition- and graph-
based parsers, which additionally include a module
to output trees (a pointer network and a biaffine
attention, respectively), suggest that such modules
are likely to be more effective against adversarial
attacks than explicit morphological signals.

3.1.2 Results using morphological tags
predicted on non-perturbed inputs

As mentioned above, we use this setup to estimate
whether morphological tags could have a positive
impact if they were extremely robust against lexical
perturbations (see also Figures 1.b, 2.b and 3.b). In
the case of the transition-based parser, we observe
that morphological tags predicted on non-perturbed
inputs help the parser more as the inputs’ pertur-
bation grows, being word+XPOS the most helpful
information, while UPOS and FEATS become useful
only when sentences are perturbed over 20% (but
they also become more and more helpful). The
graph-based parser also benefits from the use of
more precise tags: word+XPOS models beat the
baseline when the perturbation is over 30%; and
over 50% for word+UPOS and word+FEATS setups.
Finally, for the sequence-labeling parser, morpho-
logical information from a robust tagger helps the
model surpass the baseline for any percentage of
perturbed words (except in the case of word+FEATS,

when it only happens with perturbations over 20%).

3.1.3 Discussion on slightly perturbed inputs

Unintended typos are commonly found among
users. For experiments with a small percentage of
perturbed words (< 20%), transition-based parsers
show improvement solely with the word+XPOS
model, even when using non-robust taggers. Con-
versely, graph-based parsers do not benefit from
morphological tags in this setup. Last, sequence
labeling parsers benefit from incorporating XPOS
and UPOS information, irrespective of the tagger’s
robustness, but not FEATS.

3.1.4 Differences across morphological tags

Averaging across languages, the language-specific
XPOS tags have a better (or less bad, for setup i)
behavior. These tags are specific to each language.
The coarse-grained UPOS tags have a common an-
notation schema and tagset. This eases annotation
and understanding, but offer less valuable informa-
tion. For FEATS, the annotation schema is common,
but in this case they might be too sparse.

4 Conclusion

This paper explored the utility of morphological
information to create stronger dependency parsers
when these face adversarial attacks at character-
level. Experiments over 14 diverse UD treebanks,
with different percentages of perturbed inputs,
show that using morphological signals help creat-
ing more robust sequence labeling parsers, but con-
tribute to a faster degradation of the performance
for transition- and graph-based parsers, in compari-
son to the corresponding word-only models.
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Limitations

Main limitation 1 The experiments of this paper
are only done in 14 languages that use the Latin
alphabet, and with a high share of Indo-European
languages, with up to 4 Germanic languages. This
is due to two reasons: (i) the scarcity of XPOS
and FEATS annotations in treebanks from other lan-
guage families, and (ii) the research team involved
in this work did not have access to proficient speak-
ers of languages that use other alphabets. Hence,
although we created a reasonable diverse sample
of treebanks, this is not representative of all human
languages.

Main limitation 2 Although we follow previ-
ous work to automatically generate perturbations at
character-level, and these are inspired in psycholin-
guistic studies, they might not be coherent with
the type of mistakes that a human will make. In
this work, generating human errors is not feasible
due to the amount of languages involved, and the
economic costs of such manual labour. Still, we
think the proposed perturbations serve the main
purpose: to study how morphological tags can help
parsers when these face lexical errors, while the
used method builds on top of most of previous work
on adversarial attacks at character-level.
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Olga Loginova, Stefano Lusito, Andry Luthfi, Mikko
Luukko, Olga Lyashevskaya, Teresa Lynn, Vivien
Macketanz, Menel Mahamdi, Jean Maillard, Aibek
Makazhanov, Michael Mandl, Christopher Manning,
Ruli Manurung, Büşra Marşan, Cătălina Mărăn-
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