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Abstract

Few-shot named entity recognition (NER) tar-
gets generalizing to unseen labels and/or do-
mains with few labeled examples. Existing
metric learning methods compute token-level
similarities between query and support sets, but
are not able to fully incorporate label seman-
tics into modeling. To address this issue, we
propose a simple method to largely improve
metric learning for NER: 1) multiple prompt
schemas are designed to enhance label seman-
tics; 2) we propose a novel architecture to ef-
fectively combine multiple prompt-based rep-
resentations. Empirically, our method achieves
new state-of-the-art (SOTA) results under 16
of the 18 considered settings, substantially out-
performing the previous SOTA by an average
of 9.12% and a maximum of 34.51% in rela-
tive gains of micro F1. Our code is available at
https://github.com/AChen-qaq/ProML.

1 Introduction

Named entity recognition (NER) is a key natural
language understanding task that extracts and clas-
sifies named entities mentioned in unstructured
texts into predefined categories. Few-shot NER
targets generalizing to unseen categories by learn-
ing from few labeled examples.

Recent advances for few-shot NER use metric
learning methods which compute the token-level
similarities between the query and the given sup-
port cases. Snell et al. (2017) proposed to use
prototypical networks that learn prototypical repre-
sentations for target classes. Later, this method was
introduced to few-shot NER tasks (Fritzler et al.,
2019; Hou et al., 2020). Yang and Katiyar (2020)
proposed StructShot, which uses a pretrained lan-
guage model as a feature extractor and performs
viterbi decoding at inference. Das et al. (2022)
proposed CONTaiNER based on contrastive learn-
ing. This approach optimizes an objective that
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characterizes the distance of Gaussian distributed
embeddings under the metric learning framework.

Despite the recent efforts, there remain a few crit-
ical challenges for few-shot NER. First of all, as
mentioned above, metric learning computes token-
level similarities between the query and support
sets. However, the architectures used for comput-
ing similarities in previous work are agnostic to the
labels in the support set. This prevents the model
from fully leveraging the label semantics of the
support set to make correct predictions. Second,
while prompts have been demonstrated to be able
to reduce overfitting in few-shot learning (Schick
and Schiitze, 2020), due to a more complex se-
quence labeling nature of NER, the optimal design
of prompts remains unclear for few-shot NER.

In light of the above challenges, we explore a bet-
ter architecture that allows using prompts to fully
leverage the label semantics. We propose a simple
method of Prompt-based Metric Learning (ProML)
for few-shot NER, as shown in Figure 1. Specifi-
cally, we introduce mask-reducible prompts, which
is a special class of prompts that can be easily re-
verted to the original input by using a mask. By
performing a masked weighted average over the
representations obtained from multiple prompts,
our method accepts multiple choices of prompts as
long as they are mask-reducible. These prompts
improve label efficiency by inserting semantic an-
notations into the text inputs. As instantiations of
this framework, we design an option prefix prompt
to provide the model with the candidate label op-
tions, and a label-aware prompt to associate each
entity with its entity type in the input. As shown in
Figure 2, a single prompt provides useful informa-
tion but has some shortcoming. However, with a
weighted average, multiple prompts are combined,
which fully leverages label information.

In our experiments, we find that using multiple
prompts with the masked weighted average is ef-
fective for few-shot NER. Empirically, our method
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achieves new state-of-the-art (SOTA) results under
16 of the 18 considered settings, substantially out-
performing the previous SOTA by an average of
9.12% and a maximum of 34.51% in relative gains
of micro F1.

2 Related Work

Few-Shot NER. Few-shot NER targets gener-
alizing to unseen categories by learning from
few labeled examples. Noisy supervised meth-
ods (Huang et al., 2020) perform supervised pre-
training over large-scale noisy web data such as
WINER (Ghaddar and Langlais, 2017). Self train-
ing methods (Wang et al., 2021) perform semi-
supervised training over a large amount of unla-
belled data. Alternative to these data-enhancement
approaches, metric learning based methods have
been widely used for few-shot NER (Fritzler et al.,
2019; Yang and Katiyar, 2020; Das et al., 2022).
Recently, prompt-based methods (Ma et al., 2021;
Cui et al., 2021; Lee et al., 2022) are proposed for
few-shot NER as well. To introduce more fine-
grained entity types in few-shot NER, a large-scale
human-annotated dataset Few-NERD (Ding et al.,
2021) was proposed. Ma et al. (2022b); Wang et al.
(2022) formulate NER task as a span matching
problem and decompose it to several procedures.
Ma et al. (2022b) decomposed the NER task into
span detection and entity typing, and they sepa-
rately train two models and finetune them on the
test support set, achieving SOTA results on Few-
NERD (Ding et al., 2021). Different from the above
related works, our approach is a general framework
of using prompts for token-level metric learning
problems.

Meta Learning. The idea of meta learning was
first introduced in few-shot classification tasks for
computer vision, attempting to learn from a few ex-
amples of unseen classes. Since then metric-based
methods have been proposed, such as matching
networks (Vinyals et al., 2016) and Prototypical
networks (Snell et al., 2017), which basically com-
pute similarities according to the given support
set, learn prototypical representations for target
classes, respectively. It has been shown that these
methods also enable few-shot learning for NLP
tasks such as text classification (Bao et al., 2019;
Geng et al., 2019), relation classification (Han et al.,
2018), named entity recognition (Fritzler et al.,
2019; Yang and Katiyar, 2020; Das et al., 2022),
and machine translation (Gu et al., 2018). Our ap-

proach also falls into the category of metric-based
meta learning and outperforms previous work on
NER with an improved architecture.

Label Semantics for NER. There have been
some approaches that make use of label seman-
tics (Ma et al., 2022a; Hou et al., 2020). Hou
et al. (2020) propose a CRF framework with label-
enhanced representations based on the architecture
of Yoon et al. (2019). However, they mainly focus
on slot tagging tasks while their performance on
NER tasks is poor. Ma et al. (2022a) introduce
label semantics by aligning token representations
with label representations. Both of them only use
label semantics for learning better label representa-
tions. In contrast, our approach incorporates label
semantics into the inputs so that the model is able to
jointly model the label information and the original
text samples. This makes the similarity scores de-
pendent on the support set labels and is particularly
crucial for metric learning. Our experiments also
verify the advantages of our approach compared to
previous work using labels semantics.

Prompt-Based Approaches for NER. With the
emergence of prompt-based methods in NLP re-
search, very recently, some prompt-based ap-
proaches for few-shot NER have been pro-
posed (Cui et al., 2021; Lee et al., 2022; Ma et al.,
2021). However, they use prompts to help with the
label predictions based on classification heads in-
stead of metric learning. Moreover, some of these
methods require searching for templates (Cui et al.,
2021), good examples (Lee et al., 2022), or label-
aware pivot words (Ma et al., 2021), which makes
the results highly dependent on the search quality.
Different from these methods, our approach does
not rely on a search process. More importantly, an-
other key difference is that we employ prompting
in the setting of metric learning.

3 Task Definition
3.1 Few-shot NER

Named entity recognition (NER) is a sequence
labeling task!. Formally, for a sentence x con-
sisting of n tokens x = [z, 9, - ,xzy], there
is a corresponding ground-truth label sequence
y = [y1,92, - , yn) where each y; is an encoding
of some label indicating the entity type for token
x;. Then a collection of these (x,y) pairs form a

'There also exist other formulations such as span predic-
tion or question answering.
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Figure 1: An overview of the architecture of our proposed ProML . The prompts associated with the input sequence are
passed through a transformer backbone to obtain intermediate representations. A masked weighted average is then applied to
produce token-level representations. Following Das et al. (2022), Gaussian embeddings for each token are produced using linear
projections. The similarity scores between query tokens and support tokens are then computed according to the distance metric.

Prompt pattern

The University of Chicago is a private

Option education, location, other: The University of Chicago Label- [The University of Chicago|education] is a private
research university in Chicago, Illinois. prefix is a private research university in Chicago, Illinois. aware research university in [Chicago, Illinois|location].
.

Prompts for support set 3 Prompts for query set

'
'
'
! education

@rtm @titen The University of Washington is a public research university in Seattle, Washington.
prefix prefic location

education location

education

i
'
i
Label- :
aware ;
Label- option NN Option
aware prefix ' prefix

education

——> The University of Washington_is a public research university in Seattle, Washington.

The University of Washington_is a public research university in Seattle, Washington.

(Only for support)

Tagging results for query set

——> The University of Washington is a public research university in Seattle , Washington.| Lack of label information.
education location

Reduce label space, but no direct demonstration.

Provide full label information to support.

location education

Fully label information.

location

Figure 2: A manually constructed example to illustrate different prompts. Prompted inputs for the support set are listed at the
top and the tagging results of the query set for 4 prompt combinations are shown at the bottom.

dataset D. After training on the training dataset Dg,
the model is required to predict labels for sentences
from the test dataset D7

Different from the standard NER task, the few-
shot NER setting consists of a meta training phase
and a test phase. At the meta training phase, the
model trains on a training dataset Dgs. At the test
phase, for various test datasets { D7)}, with only
few labeled samples, the model is required to per-
form quick adaptions. In this paper, we mainly
focus on two evaluation protocols and two task
formulations which will be explained as follows.

3.2 Evaluation protocols

Following Ding et al. (2021); Ma et al. (2022a), we
summarize two evaluation protocols as follows.

Episode Evaluation An episode, or a task, is de-
fined as a pair of one support set and one query set
(S, Q) each consisting of sentences downsampled
from the test set. For an N-way K-shot downsam-
pling scheme, there are N labels among the support
set S where each label is associated with K exam-
ples. The query set Q shares the same label set
with the support set. Based on the support set, the

model is required to predict labels for the query set.
To perform an episode evaluation, a collection of
T episodes {(S;, Q;)}1_, are prepared. The evalu-
ation results are computed within each episode and
are averaged over all T" episodes.

Low-resource Evaluation Different from the
few-shot episode evaluation, low-resource evalu-
ation aims to directly evaluate the model on the
whole test set. For a test dataset D with a label
set C1, a support set S associated with the labels
from Cr is constructed by K -shot downsampling
such that each label has K examples in S. Based
on the support set S, the model is required to pre-
dict labels for the query set which is the rest of the
test set D7. To perform a low-resource evaluation,
T different runs of support set sampling are run
and averaged.

3.3 Task formulation
Following Yang and Katiyar (2020), we formulate
few-shot NER tasks in the following two ways.

Tag-Set Extension To mimic the scenario that
new classes of entities emerge in some domain,
Yang and Katiyar (2020) propose the tag-set exten-
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sion formulation. Starting with a standard NER
dataset (Dyyain, Diest) With label set C, they split
C into d parts, namely C1,Cs, -+ ,Cq. Then for
each label split C;, a train set Dt(glm is constructed
from Dy,qin by masking the labels in C; to O (rep-
resenting non-entities), and the corresponding test
set D\, is constructed from Dyey; by masking the

labels in C \ C; to O.

Domain Transfer Another task formulation is
the domain transfer setting. Let Dgs be a training
set of a standard NER task, and let {D7"} be the
test sets of standard NER tasks but from a different
domain. The training set Ds is referred to as a
source domain, and the test sets { D7)} constitute
various target domains. In this setting, there may
exist some overlapping entity classes between the
source and target domains, but due to the domain
gaps, it is still considered a few-shot setting.

Note that the task formulation is independent of
the evaluation protocol, and different combinations
will be considered in our experiments.

4 Method

4.1 Prompt Schemas

Motivated by existing prompt-based methods (Liu
et al., 2021; Paolini et al., 2021) and the metric
learning framework, our ProML provides label se-
mantics by introducing prompts to metric learn-
ing models. We proposed a simple yet effective
prompt class called the “mask-reducible prompts”.
Through this class of prompts, we can provide flex-
ible prompts to the model which is consistent with
metric learning methods that use token-level sim-
ilarities as the metric. Starting with this schema,
we will introduce two prompts that are used in
ProML , the option-prefix prompt and the label-
aware prompt.

4.2 Mask-Reducible Prompts

Suppose the raw input sequence is x =
(21,22, ,x1]. Let fpromp: be a prompt func-
tion mapping x to the prompted result x’. We
call this fprompt is @ mask-reducible prompt func-
tion if for all x and its prompted result x' =
Forompt(X), there exists a mask m € [0, 1] such
that x’'[m == 1] = x. Intuitively, this means there
is only some insertions in the prompt construction
so that we can revert x’ back to x through a simple
masking operation. The corresponding prompt of
fprompt 18 called a mask-reducible prompt.

Given a length preserving sequence-to-sequence
encoder Enc(x;0), a sequence of input tokens x,
and a mask-reducible prompt function fy,;ompt, We
first construct the prompted result X' = fp,ompt (%),
then pass the sequence x’ through the encoder to
get representations h’ = Enc(x’; 6).

Since Enc(-;0) is length preserving, the length
of h' is the same as x’, and we can compute h =
h/[m == 1] to get the representation for input
tokens, where m is the desired mask that could
reduce x’ to x (i.e. X'[m == 1] = x).

Through this process, the encoder receives the
full prompts as its input while only the representa-
tions of raw input tokens are extracted.

Prompt A: Option Prefix Prompts An option
prefix prompt takes the concatenation of all an-
notations as an option prefix to incorporate label
semantics into modeling. Formally, for a given
set of label options 8 = {s1,s2,""-,s/g/}, we
construct a mask-reducible prompting function
fa(x,S) associated with S using the template
“s1,82,° -+ ,8|s| : X_. An example is given in Fig-
ure 2, where option prefix prompts reduce the label
space to avoid incorrectly classify non-entities. The
option prefix prompts inform the main model of
which labels to predict, which can be used to learn
label-dependent representations for computing the
similarities.

Prompt B: Label-Aware Prompts A label-
aware prompt appends the entity type to each entity
occurrence in the input so that the model is aware of
such information. While the aforementioned option
prefix prompts incorporate global label informa-
tion, the label-aware prompts introduce local infor-
mation about each entity. Specifically, let f5(x,y)
be the prompt function. Given a sequence of in-
put tokens x and its ground-truth label sequence
y, for each entity e that occurs in x, we obtain its
corresponding label E from the sequence y, and
replace e with an label-appended version “[e|E]”
to construct the prompted result X' = fp(x,y).
Both the entity e and its label E are sequences of
tokens. Because the label-aware prompt can be
applied when the ground-truth label is available, in
our few-shot learning setting, we do not apply this
prompt to the query set. An example is given in
Figure 2, where label-aware prompts provide full
label information in prompted inputs. More details
will be explained in the following descriptions of
our model architecture.
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Note that it is possible to design other mask-
reducible prompts for NER, which will be naturally
handled by our framework. In our study, we find
these two prompts work well practically and use
them as instantiations to demonstrate the effective-
ness of our framework.

4.3 Model and Training

The overall architecture of ProML is shown in Fig-
ure 1. Compared to the contrastive learning frame-
work utilized by CONTaiNER (Das et al., 2022),
our architecture uses a transformer backbone to
encode different prompted inputs separately and
employs a masked weighted average to obtain to-
ken representations, which will be elaborated as
follows. These modifications significantly enhance
the performance of our model when compared to
the baseline method.

At the meta training phase, we sample mini-
batches from the training set Dipqin, Where
each mini-batch contains a few-shot episode
(Strain, Qirain)- We obtain the label set associ-
ated with the support set Strqin and use a look-
up dictionary to translate each label id to its nat-
ural language annotation. This leads to a set
of label annotations S. Then for an input se-
quence X = [z, z2,- - ,x;] and its label sequence
y = [y1,y2, -,y from the support set Syyqin,
we collect the prompted results pa = fa(x,S),
pB = fB(x,y) and the corresponding masks
ma, mp. These prompted results are then passed
through a pretrained language model PLM. The
average of outputs from the last four hidden layers
are computed as the intermediate representations

hA = PLM(pA), hB = PLM(pB).

We perform a masked weighted average to obtain
token representations

h = pha[ma == 1]+ (1 — p)hg[mp == 1],

where p € (0,1) is a hyperparameter.

The token representations for the query set are
computed similarly. However, during both training
and testing, we only use the option-prefix prompt
for the query set since the ground-truth label se-
quence will not be available at test time. As a
result, we do not perform a weighted average for
the query set. After obtaining the token representa-
tions, two projection layers f,, fs, are employed to
produce two Gaussian embeddings, i.e., the mean

and precision parameters of a d-dimensional Gaus-
sian distribution ./\/'( u,x) for each token in the query
and support sets (Das et al., 2022).

Given the Gaussian embeddings for samples in
both the support and query sets, we compute the
distance metrics. Similar to CONTaiNER (Das
et al., 2022), for a token z; from the support set
Strain and a token x; from the query set Qyrgin,
the distance between two tokens x;, x} is defined
as the Jenson-Shannon divergence (Fuglede and
Topsge, 2004) of their Gaussian embeddings, i.e.,

dist(x;, x;) = DJS(-/\[iy-N})
1
= i(DKL(A/-(W,Ei)HMM}»E}))
+ DKL(/\/'(MQ.,Z’].)’|/\/’(M,E¢)))>

where Dy, refers to the Kullback—Leibler diver-
gence.

The similarity between z; and 33; is then de-
fined as s(z;,2}) = exp(—dist(z;,27)). Let
Strain, Qirain be collections of all tokens from sen-
tences in Strain, Qirain. For each ¢ € Qirqin, the
associated loss function is computed as

ZpEXq s(q,p) /||
Zpegtrain 8(q7p)

{(q) = —log

)

where A, is defined by X, = {p €
Strain|p, ¢ have the same labels}. The overall loss
function within a mini-batch is the summation of
_ 1 _
token-level losses, L = o > 40 L(a)-

4.4 Nearest Neighbor Inference

At test time, we compute the intermediate repre-
sentations for tokens from the support and query
sets just as we did during the meta training phase.
Following CONTaiNER (Das et al., 2022), we no
longer use the projection layers f,, fx. at test time
but directly perform nearest neighbor inference us-
ing the token representations h. For each query
token, according to the Euclidean distance in the
representation space, we compute the distance to
each entity type by the distance to the nearest to-
kens from the support set associated with that entity
type and assign the nearest entity type to the query
token. For the k shot setting where & > 1, we also
use the average distance of the nearest k& neighbors
associated with each entity type as the distance to
the entity types.
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Table 1: Evaluation results of ProML and 8 baseline methods in low-resource evaluation protocol for both tag-set extension and
domain transfer tasks. Results with x are reported by the original paper, and those with t are reproduced in our experiments. We
report the averaged micro-F1 score together with standard deviation. “Onto-A” denotes group-A set of OntoNotes dataset.

Tag-Set Extension

Domain Transfer

Method Onto-A  Onto-B  Onto-C | CoNLL  WNUT  I2B2 cum | A
1-shot
ProtoBERT (%) 19.34+3.9 22.7489 18.947.9 49.948.6 17.444.9 13.443.0 17.843.5 |22.77
NNShot(x) 28.5492  27.3+123  21.4497 61.24+104 22.7+74 15.3+1.6 10.5+29 | 26.7
StructShot(x) 30.5+123  28.8+£11.2 20.849.9 62.4+105  24.2480 21.4+38 7.842.1 |27.99
CONTaiNER (%) 322453 30.9+116 3294127 57.8455 2424724 1644319 17.9+2.28 | 30.33
ProtoBERT(}) 8.394+2.16 17.12+4.04 8.4+1.94 | 53.0949.89 21.17+4.71 15.85+4.89 11.91+3.01|19.42
NNShot(t) 21.97+7.11 33.894+7.1 21.73+6.78 | 59.76+8.63 26.53+454 15.04+3.63 10.33+3.08|27.03
StructShot(t) 24.0246.24 36.424+822 22.70+6.65 | 60.8447.62 29.164+4.88 18.34+270 11.17+2.18|28.95
CONTaiNER(Y}) 31.63+11.74 51.334+8.97 39.97+3.81 | 57.89+16.79 26.67+8.65 18.964+397 12.07+1.53|34.07
TransferBERT(7) 7.444597 8.974+4.94 7344342 |47.09+£11.02 11.83+£5.07 35.25+4.21 8.97+2.56 | 18.13
DualEncoder(t) 0.83+0.62 2.864+1.70 2.55+1.37 | 54.63+3.43 36.03+2.02 14.63+3.10 11.87+0.76 | 17.63
EntLM(}) 5794422 10.11+£4.13  8.49+50 | 50.47+6.74 27.7£766 7.85+281 8.85+1.17 | 17.04
DemonstrateNER(1) | 0.98+0.83  2.02+2.1  4.024+323 | 16.124+7.33 20.3848.02 13.29+473 3.24+134 | 8.58
ProML 37.94+6.08 53.74+3.6 46.27+£10.72| 69.16+4.47 43.89+2.17 24.98+3.44 15.29+1.89 | 41.61
5-shot
ProtoBERT (%) 30.5+435 38.7456  41.1433 61.3+9.1 22.8+45 17.941.8 19.5434 |33.11
NNShot(x) 44.04+2.1 51.64+5.9 47.6+2.8 T4.14+23 27.34+54 22.0+1.5 15.9+1.8 |40.36
StructShot(x) 47.5+4.0 53.0£79 48.7+2.7 74.8+£2.4 30.4+6.5 30.3+2.1 13.3+1.3 |42.57
CONTaiNER(x) 51.2459 55.94+6.2 61.54+2.7 72.842.0 27.7+22 24.1+19 244422 |45.37
ProtoBERT(Y) 25.8143.0 31.49446 32.084+2.12 | 65.76+534 32.8148.78 35.05+12.25 25.0242.66 | 35.43
NNShot(t) 39.49+596 50.18+4.99 4598+4.61 | 70.7943.44 33.68+521 29.50+2.89 19.04+2.38|41.24
StructShot(}) 35.6846.17 51.30+4.61 47.85+4.74 | 71.2343.62 35.36+2.99 27.08+£3.17 19.67+2.45|41.17
CONTaiNER(Y}) 45.6246.58 67.70+2.80 59.84+2.62 | 75.484+2.80 35.834+5.51 30.14+335 16.19+0.68 |47.26
TransferBERT() 21.48+4573 41974565 45.24+433 | 69.934£398 35.64+355 47.89+7.02 27.50+1.27|41.38
DualEncoder(}) 7.61+250 16414122 26.37+7.25 | 67.05+3.69 36.824+1.09 23.274+226 24.55+1.12|28.87
EntLM(Y) 21294577 357462  28.8+£6.62 | 60.5849.39 30.264+3.99 13.51+24 13.35+19 |[29.07
DemonstrateNER(}) | 49.254+10.34 63.024+4.64 61.07+8.08 | 73.134+4.01 43.8542.56 36.36+4.58 18.01+2.81(49.24
ProML 5246571 69.69+2.19 67.58+3.25 | 79.16+4.49 53.41+239 58.21+3.58 36.99+1.49 | 59.64

5 Experiments

5.1 Setup

Datasets We conduct experiments on multiple
datasets across two few-shot NER formulations,
tag-set extension and domain transfer. Follow-
ing Das et al. (2022); Yang and Katiyar (2020),
we split OntoNotes 5.0 (Weischedel et al., 2013)
into Onto-A, Onto-B, and Onto-C for the tag-set
extension formulation. For the domain transfer for-
mulation, we use OntoNotes 5.0 (Weischedel et al.,
2013) as the source domain, CoNLL’03 (Sang
and Meulder, 2003), WNUT’17 (Derczynski et al.,
2017), 12B2’14 (Stubbs and Uzuner, 2015), and
GUM (Zeldes, 2017) as target domains. We also
take Few-NERD (Ding et al., 2021) as one of
the tag-set extension tasks, which is a large-scale
human-annotated dataset speciallly designed for
few-shot NER. The datasets statistics are presented
in Table 3. We adopt the IO tagging scheme, where
a label “O” is assigned to non-entity tokens and an

entity type label is assigned to entity tokens. We
also transform the abbreviated label annotations
into plain texts; e.g., [LOC] to [location].

Baselines Our baselines include metric learn-
ing based methods such as the prototypical net-
works ProtoBERT (Snell et al., 2017; Fritzler et al.,
2019; Hou et al., 2020), a nearest neighbor based
network NNShot and its viterbi decoding vari-
ant StructShot (Yang and Katiyar, 2020), and
a contrastive learning method CONTaiNER (Das
et al., 2022). We also include a classification head
based method TransferBERT (Hou et al., 2020)
based on a pretrained BERT (Devlin et al., 2019).
Existing method that make use of label seman-
tics, DualEncoder (Ma et al., 2022a) is also re-
produced for comparison. Recent prompt-based
methods EntLM (Ma et al., 2021) and Demon-
strateNER (Lee et al., 2022) are also employed
as the baselines as well. We also compare our
model with the recently-introduced based meth-
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Table 2: Evaluation results of ProML and 7 baseline methods in episode evaluation protocol for FewNERD dataset. Results
with * are reported by the original paper, and those with } are reproduced in our experiments. We report the averaged micro-F1

score together with standard deviation.

1-shot 5-shot

Method INTRA  INTER | INTRA INTER | A&

ProtoBERT (%) 20.76 38.83 42.54 58.79 40.23

NNShot(x) 25.78 47.24 36.18 55.64 41.21

StructShot(x) 30.21 51.88 38.00 57.32 44.35

CONTaiNER(%) 40.43 53.70 55.95 61.83 52.98

ESD(%) 36.08+1.60 59.29+1.25(52.1441.50 69.0640.80 | 54.14

DecomposedMetaNER(x) | 49.48+0.85 64.7540.35|62.92+0.57 71.4940.47|62.16

ProtoBERT () 25.84035 47.5940.84 | 50.19+0.65 65.0540.39|47.16

NNShot(}) 33.3240.69 52.29+0.88 | 45.6140.52 59.63+0.48 [ 47.71

StructShot(T) 34.514+0.68 53.1+0.92 |46.88+0.48 60.45+0.51 | 48.74

CONTaiNER(Y) 37.1241.01 55.19+043|49.22+0.34 62.64+0.33|51.04

TransferBERT(}) 22.43+1.49 38.26+2.36|48.954+1.23 62.2+1.36 |42.96

ProML 58.08+0.75 68.76+0.4 | 68.95+0.36 75.11+0.52|67.73

Table 3: Statistics of Datasets For low-resource evaluation, 10 different runs of
support set sampling is performed.

Dataset Domain  # Class # Sample

. 5.2 Main Results
Few-NERD Wikipedia 66 188K
OntoNotes  General 18 76K The main results of low-resource evaluation and
CoNLL’03 News 4 20K episode evaluation are shown in Tables 1 and 2
12B2’14 Medical 23 140K respectively. Training details are provided in Ap-
WNUT’17  Social 6 5K pendix A.1. Our method achieves new state-of-
GUM Mixed 11 3.5K the-art (SOTA) results under 16 out of the 18 con-

ods DecomposeMetaNER (Ma et al., 2022b) and
ESD (Wang et al., 2022). 2 For a fair comparison,
we use bert-base-uncased (Devlin et al., 2019) as
the PLM encoder and adopted the same pre-trained
encoder in all the reproducible experiments of the
baseline methods.

Evaluation Protocols Following Das et al
(2022); Yang and Katiyar (2020), we use the low-
resource evaluation protocol for domain transfer
tasks and for the tag-set extension tasks Onto-
A, Onto-B, and Onto-C. Since Few-NERD (Ding
et al., 2021) is specifically designed for episode
evaluation, all of our experiments on Few-NERD
dataset are evaluated under episode evaluation pro-
tocol. We follow the N-way K -shot downsampling
setting proposed by Ding et al. (2021). For episode
evaluation, we conduct 5 different runs of experi-
ments, each of them contains 5000 test episodes.

’The dataset we used is Few-NERD Arxiv V6 Version,
while Ma et al. (2022b); Wang et al. (2022) reported
their performances in the papers based on an earlier ver-
sion (i.e. Arxiv V5 Version). We find the performances on
the latest Few-NERD dataset on their official github repo
at https://github.com/microsoft/vert-papers/tree/
master/papers/DecomposedMetaNER.

sidered settings. To compare with previous SOTA
across different settings, we collect the relative im-
provement fractions from all settings and then com-
pute an average and a maximum over these frac-
tions. The result shows that ProML substantially
outperforming the previous SOTA by an average
of 9.12% and a maximum of 34.51% (from 28% to
37% on GUM 5-shot) in relative gains of micro F1.
These outstanding results show that our method is
effective for few-shot NER tasks.

The generalization difficulties are affected by
both the label space and the domain gap. For ex-
ample, Onto-A, B, and C datasets share the same
domain but are constructed to have disjoint label
space. CoNLL is a subset of the OntoNotes dataset,
so its performance is much better than other do-
mains.

Compared with the other baselines, the perfor-
mances of prompt-based baselines decrease by a
larger margin in the 1-shot settings since they heav-
ily rely on finetuning on support sets.

5.3 Ablation Study and Analysis

The ablation study results for prompts choices and
averaging weights on all tag-set extension tasks
are shown in Table 4, 5. We adopt the episode
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Table 4: Ablation Study for ProML . The tuple indicates which prompts are used in the support set and query set. The variant A,
A refers to using the option prefix prompt only in both the support set and query set. plain+A (p = 0.5), plain refers to that the
original inputs and option prefix prompts are used for the support set with an averaging weight p = 0.5, while the query set only

use origin inputs. A+B, A is our ProML method.

Setting | Model |  Onto-A Onto-B Onto-C INTRA INTER
plain, plain 42.1+1.03 62.87+0.52 50.58+0.98 53.08+0.85 65.66+0.08
A A 47.04+1.01 65.42+0.62 55.77+1.19 66.19+0.72 73.94034
B, plain 39.58+2.26 51.17+1.01 40.2843.55 49.941.68 65.31+1.36
plain+A (p = 0.3), plain 40.43+1.64 62.41+13 49.51+2.78 56.4+1.02 68.15+0.42

5-shot plain+A (p = 0.5), plain 42.35+1.32 64.3740.48 51.9441.06 56.6940.93 68.7340.25
plain+A (p = 0.7), plain 42.75+2.18 64.52+0.57 53.07+£1.79 55.33+1.34 68.37+0.26
plain+B (p = 0.3), plain 46.85£1.32 58.0+1.68 50.54+1.71 54.18+1.25 67.03+0.7
plain+B (p = 0.5), plain 52.34+0.31 62.07+2.15 55.9+05 57.75+0.32 68.22+0.25
plain+B (p = 0.7), plain 52.37+0.57 66.39+1.22 57.7+0.71 57.52+0.81 69.04+0.2
A+B (p=10.3), A 52.76+0.82 59.3441.49 55.5240.89 66.95+0.82 73.5140.3
A+B (p=0.5), A 55.29+0.98 62.49+1.2 59.99+0.99 68.41+0.27 74.5240.44
A4B (p=0.7), A 55.76+1.06 67.09+0.49 62.57+0.47 68.95+0.36 75.11+0.52

evaluation protocol due to its low variance. More
ablations and the training curve, case study are
placed in Appendix A.3, A.2, A.4, respectively.

Option Prefix Prompts & Label-Aware Prompts
According to Table 4, overall, by comparing the
best variant of prompting methods to “plain”, using
prompting consistently outperforms the methods
without prompting. The improvements are con-
sistent with our motivation in the earlier sections.
With the help of label semantic annotations, the
model is able to leverage this information to bet-
ter learn the representation of each token. In ad-
dition, the model does not need to spend much
capacity memorizing and inferring the underlying
entity types for input tokens, which is crucial in the
few-shot setting where labels are scarce.

The performance of variant “B, plain” is not
good since only the support set leverages label-
aware prompts so that there is a gap between the
amounts of additional information from support to
query. Thus there is a potential risk that the model
only emphasizes these labels in support inputs
while neglecting the semantics for tokens them-
selves, causing an overfitting problem. However,
after introducing a weighted average, as shown
in “plain+B, plain”, the performance significantly
improves. This observation suggests that the label-
aware prompt is useful and the weighted average
mitigates the overfitting by reducing the gaps be-
tween support and query.

As we will show in the next section, combining
the two prompts always leads to the best perfor-
mance because the model is able to dynamically
adapt to the two representations.

Effect of Masked Weighted Average As re-
ported before, a weighted average could reduce
the gaps between computing representations for
the support set and the query set and make use of
the information provided by label-aware prompts.
By adjusting the averaging weight p, we are able
to balance the weights of the two representations
for different data distributions.

We compared different averaging settings in 4.
The option prefix only variant “A, A” performs bet-
ter than “plain+A, plain” because the label option
information is provided to both support and query.
The performance of “plain+B, plain” and “A+B, A”
improve as p increases, which is consistent with
our motivation

According to Table 4, with a properly selected
averaging weight p, our ProML outperforms all
baselines by a large margin among all tested
datasets, which indicates that both prompts con-
tribute to our final performance. Importantly,
p = 0.7 tends to work well in most of the settings,
which can be used as the default hyperparameter in
our framework without tuning.

Visualizing Embedding Space We visualize the
token representations from support sets and query
sets over several episodes from the test set of Few-
NERD INTRA, as Figure 3 shows. We observe that
the token representations produced by ProML are
concentrated in different clusters. In addition, we
shall observe a clear decision boundary between
different clusters. On the contrary, CONTaiNER
seems to learn scattered, less separable features.
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Figure 3: TSNE visualization of token representations un-
der the Few-NERD test set for CONTaiNER (on the left)
and ProML (on the right), where each color represents an
entity type (grey for non-entities). We only keep a fraction of
20% among the non-entities to make the TSNE visualization
clearer.

6 Conclusions

We propose a novel prompt-based metric learning
framework ProML for few-shot NER that leverages
multiple prompts to guide the model with label se-
mantics. ProML is a general framework consistent
with any token-level metric learning method and
can be easily plugged into previous methods. We
test ProML under 18 settings and find it substan-
tially outperforms previous SOTA results by an
average of 9.12% and a maximum of 34.51% in
relative gains of micro F1. We perform ablation
studies to show that multiple prompt schemas ben-
efit the generalization ability for our model. We
demonstrate the visualization results for embedding
space to unseen entities, showing that comparing
with previous SOTA, ProML learns better represen-
tations. We also present case studies and perform
some analysis.

7 Limitations

Although we discussed different task formulations
and evaluation protocols, the few-shot settings are
simulated by downsampling according to existing
works, which is slightly different from the real
scenario.
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A Appendix

A.1 Training Details

We use AdamW (Loshchilov and Hutter, 2019)
for optimization and the learning rate is set to
3 x 107°, linearly warming up during first 10%
of all 10* training iterations. We use bert-base-
uncased (Devlin et al., 2019) as the PLM encoder.
The weight decay is set to 0.01 for all parameters
of the model except the biases and layer norm lay-
ers. The value of hyperparameter p is chosen from
{0.1,0.3,0.5,0.7,0.9} and is set to 0.7 by default
(which is good enough for almost all cases). For
fair comparison, we use the same Gaussian em-
bedding dimension d = 128 as CONTaiNER (Das
et al., 2022). A single experiment run takes about 1
hour on a single RTX3090.

A.2 Training Curve

Our architecture of using multiple prompts also
mitigates overfitting. We conduct two experiments
on Few-NERD to prove this empirically. Fig-
ure 4 demonstrates the training curves for CON-
TaiNER (Das et al., 2022) and our model. From the
curves we can see that the trends of performances
over training set are similar while the performance
of CONTaiNER on dev set stops increasing much
earlier than ProML . Compared with CONTaiNER,
our model gets much better in the later epochs. This
shows that ProML suffers less from overfitting in
the few-shot setting.

A.3 Ablations

Ablation Table for both 1-shot and 5-shot Due
to page limit, we leave ablation for 1-shot to the
appendix. The full version is in Table 5.

Ablation for Replacing Labels with Noises & Re-
moving Separators We made an experiment to
replace labels with random strings (both in train
and test, same entity type shares same label) to
show the effect of label semantics. According to
Table 6, the results from “ProML noise-label” are
significantly worse than our ProML, but still com-
parable with the previous SOTA on Few-NERD
dataset. This shows that the semantics of the label
really help and label-aware prompts can provide
useful information even if the labels are noisy. We
also made an abbreviation for the selection of sep-
arator. In the experiment “ProML no-sep” from
Table 6 where all separators were removed, the
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Figure 4: Training curves for CONTaiNER (Das et al., 2022)
baseline (on the left) and our model (on the right). The exper-
iments are conducted under Few-NERD INTRA 1-shot and
INTER 1-shot setting.

performances drops to some extent but there is no
significant difference.

A.4 Case Study

We present several randomly-selected cases from
ProML and CONTaiNER using the test-set results
of WNUT 1-shot domain transfer task. The results
are in Table 7. We can see that ProML gives better
predictions than CONTaiNER (Das et al., 2022)
for most cases. Specifically, CONTaiNER often
misses entities or incorrectly classifies non-entities.
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Table 5: Ablation Study for ProML (1-shot and 5-shot). The tuple indicates which prompts are used in the support set and query
set. The variant A, A refers to using the option prefix prompt only in both the support set and query set. plain+A (p = 0.5),
plain refers to that the original inputs and option prefix prompts are used for the support set with an averaging weight p = 0.5,
while the query set only use origin inputs. A+B, A is our ProML method. All results in this table are produced by the episode
evaluation protocol.

Setting | Model |  Onto-A Onto-B Onto-C INTRA INTER
plain, plain 27.440.93 49.91+1.22 32.5140.98 37.1740.98 54.1140.72
A A 30.99+0.91 52.57+0.82 37.44+13 51.0+0.74 65.86+0.56
B, plain 25.840.89 34.76+33 24.0241.1 37.99+2.555 58.98+1.57

1-shot plain+A (p = 0.3), plain 29.794+1.79 50.43+1.04 33.51+1.86 43.35+1.0 59.954+0.35
plain+A (p = 0.5), plain 30.81+1.41 50.51+0.83 34.8+1.05 43.25+0.54 60.060.49
plain+A (p = 0.7), plain 28.32+£1.37 50.79+0.87 34.2740.92 41.42+0.55 59.1+05
plain+B (p = 0.3), plain 31.03+0.91 40.39+15 31.67+1.8 45.16+0.39 62.27+0.63
plain+B (p = 0.5), plain 33.58+0.44 45.11+0.85 36.25+0.93 45.1+0.41 62.67+0.78
plain+B (p = 0.7), plain 33.42+0.46 49.4440.96 38.67+0.61 43.0740.44 61.0940.5
A+B (p=0.3), A 33.43+1.42 42.07+1.49 35.26+1.1 57.16+1.52 68.04+0.82
A+4B (p=0.5), A 33.31+0.57 42.9442.1 39.27+0.52 58.08+0.75 68.4340.6
A+B (p=0.7), A 35.58+0.4 50.53+1.03 42.1240.84 57.1940.91 68.76+0.4
plain, plain 42.1+1.03 62.87+0.52 50.58+0.98 53.08+0.85 65.66+0.08
A A 47.04+1.01 65.42+0.62 55.77+1.19 66.19+0.72 73.940.34
B, plain 39.58+2.26 51.17+1.01 40.28+3.55 49.941.68 65.31+1.36
plain+A (p = 0.3), plain 40.43+1.64 62.41+13 49.51+2.78 56.4+1.02 68.15+0.42

5-shot plain+A (p = 0.5), plain 42.35+1.32 64.3740.48 51.9441.06 56.6940.93 68.7340.25
plain+A (p = 0.7), plain 42.75+2.18 64.52+0.57 53.07+£1.79 55.33+1.34 68.37+0.26
plain+B (p = 0.3), plain 46.85+£1.32 58.0+1.68 50.54+1.71 54.18+1.25 67.03+0.7
plain+B (p = 0.5), plain 52.34+031 62.07+2.15 55.9+05 57.75+0.32 68.22+0.25
plain+B (p = 0.7), plain 52.37+0.57 66.39+1.22 57.7+0.71 57.52+0.81 69.04+0.2
A+B (p=0.3), A 52.76+0.82 59.3441.49 55.5240.89 66.95+0.82 73.5140.3
A+B (p=0.5), A 55.29+0.98 62.49+1.2 59.99+0.99 68.41+0.27 74.5240.44
A4B (p=0.7), A 55.76+1.06 67.09+0.49 62.57+0.47 68.95+0.36 75.11+0.52

Table 6: Ablations for removing separators in prompts and replacing labels with random noises. All methods are evaluated in
episode evaluation protocol for Few-NERD dataset.

1-shot 5-shot
Method ‘ INTRA  INTER ‘ INTRA  INTER ‘Avg'
ProML 58.08+0.75 68.76+0.4 |68.95+036 75.11+0.52|67.73
ProML no-sep 55.664+0.75 68.03+0.27 | 67.82+0.17 74.8240.32 | 66.58
ProML noise-label | 51.99+0.84 65.8+0.69 | 62.09+044 72.5+043 |63.10

Table 7: Case study: An illustration of some cases from the WNUT test set. There are 6 entities: person (PER), location (LOC),
product (PRO), creative work (CW), miscellaneous (MIS), group (GRO). Here blue color represents correct predictions, while

red color represents mistakes.
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