DUB: Discrete Unit Back-translation for Speech Translation

Dong Zhang'*!, Rong Ye?, Tom Ko?, Mingxuan Wang”*, Yagian Zhou'*
! School of Computer Science, Fudan University
2 ByteDance
dongzhang22@m. fudan.edu.cn

{yerong, tom.ko,

wangmingxuan.89}@bytedance.com

zhouyagian@fudan.edu.cn

Abstract

How can speech-to-text translation (ST) per-
form as well as machine translation (MT)? The
key point is to bridge the modality gap between
speech and text so that useful MT techniques
can be applied to ST. Recently, the approach of
representing speech with unsupervised discrete
units yields a new way to ease the modality
problem. This motivates us to propose Discrete
Unit Back-translation (DUB) to answer two
questions: (1) Is it better to represent speech
with discrete units than with continuous fea-
tures in direct ST? (2) How much benefit can
useful MT techniques bring to ST? With DUB,
the back-translation technique can successfully
be applied on direct ST and obtains an average
boost of 5.5 BLEU on MuST-C En-De/Fr/Es.
In the low-resource language scenario, our
method achieves comparable performance to
existing methods that rely on large-scale ex-
ternal data. Code and models are available
at https://github.com/0Onutation/
DUB.

1 Introduction

Speech-to-text translation (ST) converts the spoken
source language into the written target language,
which is a closely related task to machine transla-
tion (MT). In recent years, direct ST that does not
rely on intermediate transcription has received con-
siderable attention due to its potential applications
in unwritten language scenarios and various do-
mains (Bérard et al., 2016; Sung et al., 2019; Han
et al., 2021; Papi et al., 2021; Fang et al., 2022; Ye
et al., 2022; Cheng et al., 2023). One of the ma-
jor challenges faced by ST is data scarcity, which
is similar to the low-resource scenarios encoun-
tered in MT. Intuitively, techniques developed for
low-resource MT (Imamura et al., 2018; Xia et al.,
2019; Chen et al., 2020; Liu et al., 2020; Tang
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et al., 2020) should be utilized to improve ST per-
formance. However, these techniques are hard to
be transferred to ST due to the modality gap be-
tween speech and text, where ST takes continuous
speech as input and MT takes discrete tokens as
input. Generally speaking, if there is a way to effi-
ciently remove the modality gap, a large number of
useful NLP techniques can be applied and facilitate
the improvement of ST.

Recently, representing speech with unsupervised
discrete units has become popular and successful
in the field of speech processing (Baevski et al.,
2019, 2020; Hsu et al., 2021; Lakhotia et al., 2021).
Instead of losing relevant information, discretizing
continuous speech has been found to have the ad-
vantage of filtering out extraneous signals (Sicher-
man and Adi, 2023; Lakhotia et al., 2021), leading
to significant improvements in the speech tasks,
such as automatic speech recognition (Meng et al.,
2022), text-to-speech (Dunbar et al., 2019), and
speech-to-speech translation (Zhang et al., 2021;
Lee et al., 2022; Inaguma et al., 2022). Based on
this observation, we are motivated to explore the
answers to the following two questions: (1) Is it
better to represent speech with discrete units and
use them as model input than with continuous fea-
tures for direct ST? (2) By narrowing the modality
gap with discrete speech units, how much benefit
can useful MT techniques bring to direct ST?

In this paper, we propose Discrete Unit Back-
translation (DUB), which migrates the useful back-
translation technique from MT to ST by discretiz-
ing the speech signals into unit sequences. In
our proposed method, we first convert speech into
discrete units using the clustering indices on Hu-
BERT (Hsu et al., 2021) representations. To com-
plete the translation task, we feed the discrete units
into the Unit-to-Text Translation (U2TT) model.
For the back-translation training strategy, DUB em-
ploys a text-to-unit translation model that learns
to predict the source discrete units from the target
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text. By leveraging the additional easily accessible

text in the target language, we utilize the synthetic

parallel data generated by the text-to-unit transla-
tion model in conjunction with the original parallel
data to update the final unit-to-text model.

Our contributions include the following.

* We design a novel unit-text translation (U2TT)
framework for direct ST by discretizing the
speech feature in an unsupervised manner. Our
analysis shows that in such a framework, the unit
retains the semantic information for translation
and can be used as model input.

* Based on the U2TT framework, we propose
DUB, which successfully applies the back-
translation technique to direct ST. Experimen-
tal results show that DUB can further yield an
average 5.5 BLEU gain over the U2TT model
on the MuST-C English-to-German, French, and
Spanish translation directions.

* Our approach is particularly beneficial for low-
resource or unwritten languages in the world be-
cause unit extraction does not require any textual
supervision and only speech-translation pairs are
used for training.

2 Related Work

Speech translation Without using textual tran-
scriptions during inference or training, translat-
ing audio directly into the target language is very
meaningful for languages that do not have a writ-
ten form. Bérard et al. (2016) first proposed an
end-to-end encoder-decoder architecture for such
direct speech-to-text translation. Later, novel mod-
els (Di Gangi et al., 2019b; Dong et al., 2021a,b;
Zheng et al., 2021) and training techniques, such
as multi-task learning (Indurthi et al., 2021; Tang
et al., 2021; Ye et al., 2021), knowledge distilla-
tion (Liu et al., 2019; Dong et al., 2021b), and pre-
training methods (Zheng et al., 2021; Zhang et al.,
2022c), were developed to improve end-to-end per-
formance. However, these training methods often
rely on the use of source text or knowledge from the
pre-trained models. Without using transcripts or
pretraining, Zhang et al. (2022a) proposed the pa-
rameterized distance penalty to better model speech
locality in the self-attention structure and provided
results on ST benchmarks covering 23 languages.

Back-translation Back-translation (BT) is a
widely used method for improving machine trans-
lation systems by training a target-to-source model
and creating synthetic parallel data from monolin-

gual target text. This approach has been shown to
be effective in both statistical (Bertoldi and Fed-
erico, 2009; Bojar and Tamchyna, 2011) and neural
machine translation models (Sennrich et al., 2016;
Edunov et al., 2018; Hoang et al., 2018), and is fre-
quently used to improve translation performance
in WMT competitions (Farhad et al., 2021; Wen-
zek et al., 2021; Adelani et al., 2022). A simi-
lar data augmentation idea through synthesizing
speech from utterances can be applied to automatic
speech recognition (ASR) (Tjandra et al., 2017,
Hayashi et al., 2018; Ueno et al., 2021). How-
ever, applying BT in ST is not trivial. Zhang et al.
(2022b) augmented the triplet data by TTS genera-
tion from transcription, but the experiment showed
that such scaling yields minimal improvement to
the final ST model.

Discrete speech representation Discrete speech
representations are often studied in the work on
self-supervised speech representation learning (Van
Den Oord et al., 2017; Baevski et al., 2019, 2020;
Hsu et al., 2021; Meng et al., 2022). For exam-
ple, Van Den Oord et al. (2017) proposed Vec-
tor Quantised-Variational AutoEncoder (VQ-VAE)
to map continuous signals, like speech or image,
into a discrete sequence space. Hsu et al. (2021)
proposed HuBERT, which learns self-supervised
speech representation by extracting speech features
and clustering them offline, and iteratively train-
ing the clustering indexes of features at masked
locations. Although the clustered discrete repre-
sentations are only a by-product of HuBERT, they
are used to build the generative spoken language
model (Lakhotia et al., 2021; Kharitonov et al.,
2022), enhance speech representation (Chung et al.,
2021; Meng et al., 2022; Chen et al., 2022; Wu
et al., 2022; Zhang et al., 2022c), and model direct
speech-to-speech translation (Lee et al., 2022; In-
aguma et al., 2022). In the prior literature, probably
the most similar task to ours is the textless speech-
to-speech translation (Lee et al., 2022; Nguyen
et al., 2022), but the difference is that they dis-
cretized the target-side speech and convert speech-
to-speech generation into speech-to-discrete-unit
generation, while we discretize the speech at the
source side. Zhang et al. (2022c¢) leveraged the dis-
crete unit as an interface to align speech and text,
and proposed a unified-modal encoder-decoder pre-
training model, SpeechUT. SpeechUT aims to im-
prove speech representation via the units, while we
use the units to construct a unified framework for
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Figure 1: Left: The model structure of our approach. The offline discrete unit extractor converts speech into
discrete units. The unit-to-text translation (U2TT) model translates the discrete units into the translation and the
text-to-unit (U2TT) model does the opposite. Right: An illustration of the discrete unit back-translation (DUB)

training procedure.

ST and MT, and to explore transferable training
methods from NLP to speech.

3 Our Approach

3.1 Problem Formulation

Unlike cascade systems or existing end-to-end ST
work that utilizes speech-transcription-translation
triplet (s, x, y), we aim to build and train the model
that translates speech directly into text in another
language without using the transcription x. The
training dataset is denoted as Dsy = {(s,y)}.
Also, we introduce the monolingual corpus of the
target language Dy, = {y'}, enhance the model via
the discrete unit back-translation (DUB) method
(described in Section 3.3).

3.2 Model Structure

As illustrated in Figure 1(a), our model consists
of three main components: discrete unit extrac-
tor, unit-to-text translation model, and text-to-unit
translation model.

Discrete Unit Extractor The discrete unit extrac-
tor converts continuous speech signals into a se-
quence of discrete units, which we use the Hidden-
unit BERT (HUBERT) (Hsu et al., 2021). HuBERT
is a self-supervised model learned by predicting
discrete labels of masked audio segments from
k-means clustering on the model’s intermediate
representations. It consists of a stack of 1-D con-
volutional layers and a Transformer encoder to
encode the speech into continuous intermediate
representations, and a k-means model to convert
the representations into a sequence of cluster in-

dices. We then remove the adjacent duplicate in-
dices to obtain the discrete units sequence, denoted
asu = (up,uy,...,ur),u; € {0,1,..., K — 1},
V1 < ¢ < T, where K is the number of clusters.
Note that the discrete unit extractor used offline
during the pre-processing stage before translation,
can be considered as a feature extractor.

Unit-to-Text Translation (U2TT) Model The
U2TT model 6,,_,, performs the forward trans-
lation. It consists of a discrete unit embedding
layer and a Transformer. The discrete unit embed-
ding layer converts discrete units u into the em-
bedding e = (e, e, ...,er). In order to retain
more contextual and textual information from Hu-
BERT, we adopt the intermediate representations
of HuBERT’s k-means cluster centroids as prior
knowledge to initialize the unit embedding. This
initialization operation is referred to as pre-trained
embedding in the later analysis (Section 6.1). The
Transformer follows the vanilla Transformer archi-
tecture (Vaswani et al., 2017), consisting of a Trans-
former encoder and a Transformer decoder. The
encoder takes unit embedding e plus sinusoidal po-
sitional embedding as input and outputs semantic
representation. The decoder generates the transla-
tion sequence y = (y1,y2,---,Y|y|) autoregres-
sively based on the semantic representation.

Text-to-Unit Translation (T2UT) Model The
T2UT model 60,_,, has the same structure as the
U2TT model, but with a randomly initialized text
embedding layer. It is added to perform the text-to-
unit translation and to incorporate the DUB train-
ing.
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3.3 Discrete Unit Back-Translation (DUB)

Training Steps Given ST parallel dataset Dg , =
{(s,y)}, extra target-language corpus Dy, = {y'},
and the discrete unit extractor E. As shown in
Figurel(b), the DUB training steps are as follows.

1. Extract unit for each speech input u = E(s),
and get unit-translation pairs Dy y = {(u,y)};

2. Train the T2UT model based on Dy, y, with cross-
entropy loss as in Eq. (2);

3. For each texty’ € D!, generate corresponding
synthetic units @’ through the BT model (gener-
ation methods will be discussed in Section 3.4).
Then, add special <BT> indicator at the begining
of &’ (Caswell et al., 2019). The synthetic units-
translation set is denoted as Dy, , = {(0',y')};

4. Upsample the original training data by a rate of
r and train U2TT model based on Dy y U Dy,
and loss in Eq. (1).

Training Objective The training objectives for

U2TT and T2UT models are the negative log-

likelihood losses based on the unit-translation

pairs:

Luart = —E(uyeplog P (y | u,0u-y) (1)
Lrour = ~Euy)epn, , log P(u |y, 0y—u) (2)

, where D refers to Dy, y U D{l,y for DUB training,
and when D = D, y, Eq. (1) is the loss function
for training U2TT from scratch.

3.4 Generation methods for back-translated
units

We explore the following generation methods for
producing synthetic units: beam search, sampling,
and top-k sampling. We also apply a speech nor-
malization method to remove speaker information
when generating units.

Beam search tries to identify the maximum a
posteriori (MAP) output and generate the sentence
with the largest estimated probability given an in-
put. Sampling means sampling from the distribu-
tion randomly at each step, which generates diverse
outputs. Top-k sampling is a middle ground be-
tween beam search and sampling. At each time
step, we select the k most likely tokens from the
output distribution, re-normalize and then sample
from this restricted set.

The discrete unit extractor produces various unit
sequences for speech with the same content when
delivered by multiple speakers (Lee et al., 2022).
These variations pose a challenge for training the

BT model. In order to address this issue, we adopt
a Speech Normalization module from (Lee et al.,
2022), which removes speaker information from
the discrete units and produces norm units. Specif-
ically, it is an off-the-shelf HUBERT-CTC model
trained on VoxPopuli (Wang et al., 2021a) that nor-
malizes variant speech input to a single speaker to
eliminate such influence (denoted as Speech Norm).
We implement back-translation with norm units
and use the resulting BT model to generate pseudo
norm units.

4 Experiments

4.1 Datasets

MuST-C MuST-C' (Di Gangi et al., 2019a), one
of the most widely-used ST benchmarks, contains
translations from English to 8 languages collected
from TED talks. We train and validate our approach
in three ST directions: English-German (En-De),
English-French (En-Fr), and English-Spanish (En-
Es).
CoVoST-2 X-En CoVoST-2 (Wang et al., 2021b)
is a multilingual ST corpus derived from the Com-
mon Voice project, which offers translations from
English to 15 languages and from 21 languages
to English. We conducted experiments on X-En,
including high-resource languages (> 10 hours of
speech) such as French (Fr) and German (De), and
low-resource languages (< 2 hours of speech), like
Arabic (Ar), Swedish (Sv), Japanese (Ja), etc. With-
out the need for transcription, the evaluation fo-
cuses on the capability of our method to generalize
to the low-resource unwritten multi-languages.
Monolingual text corpus Monolingual target-
language text corpora are introduced for back-
translation. For MuST-C we include 48M German,
79M French and 64M Spanish sentences sampled
from TED'! (Duh, 2018), WMT! (Bojar et al., 2016)
and CCMartix' (Schwenk et al., 2019) datasets for
En-De/Fr/Es respectively. For CoVoST-2 X-En
experiments, we introduce 1M extra English sen-
tences sampled from the transcriptions of Common
Voice Corpus 11.0' (Ardila et al., 2020).

All statistics of the datasets are in Appendix A.

4.2 Experimental setups

Pre-processing The model accepts 16-bit 16KHz
mono-channel raw waveform speech and then dis-
cretizes them into units. We denote the discrete
units clusters by the numbers (e.g. #1, #2), and

'All released under CC BY NC ND 4.0 International
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combining with the target-language sentences, we
learn the joint vocabulary via SentencePiece (Kudo
and Richardson, 2018). We set the joint vocabulary
size to 8000 for both MuST-C and CoVoST-2.
Model Configuration For MuST-C experiments,
we use the HuBERT-base” (pre-trained on Lib-
rispeech without fine-tuning) with a 500-cluster
k-means quantizer based on the 9th layer represen-
tation as the discrete unit extractor. For CoVoST-2,
we employ the mHuBERT? with a 1000-cluster k-
means quantizer based on the 11th layer represen-
tations pre-trained on the VoxPopuli (Wang et al.,
2021a) speech in English, Spanish, and French.
The U2TT and T2UT models have the same model
architecture, consisting of a 12-layer Transformer
encoder and a 6-layer Transformer decoder, with
hidden size d = 768, 16 attention heads, and 4096
FFN hidden states. Additionally, we implement
the BASE and LARGE versions of the model, with
hidden sizes of 768 and 1024, respectively. Both
versions are performed in the main experiments,
while in the analysis, we primarily investigate the
BASE model. More information on model size
and scalability experiments can be found in Ap-
pendix D.
Evaluation We evaluate the models using case-
sensitive sacreBLEU* (Post, 2018) on the MuST-C
tst—COM sets and CoVoST-2 test sets.

See Appendix B for more details on vocabulary
learning, training, and test.

4.3 Baseline models

We compare our method with the baselines as listed
in Table 1 ~ 3 (Appendix C for details). In particu-
lar, we explain the following baselines that do not
involve transcriptions during training.

Revisit ST (Zhang et al., 2022a) is a direct speech-
to-translation model with parameterized distance
penalty (PDP) and CTC regularization. Its frame-
work and training objectives are sorely different
from ours.

Unit-to-text Translation (U2TT) has the structure
as described in Section 3.2 and is trained using
only speech-translation supervision from the ST
dataset from scratch, without applying DUB. As a

https://dl.fbaipublicfiles.com/
hubert/hubert_base_1s960.pt

*https://dl.fbaipublicfiles.com/
hubert/mhubert_base_vp_en_es_fr_it3.pt

*nttps://github.com/mjpost/sacrebleu,
BLEU Signature: nrefs:1 1 bs:1000 | seed:12345 | case:mixed
| eff:no | tok:13a | smooth:exp | version:2.0.0

Method ‘ De Fr Es | Avg.

Methods that utilize transcriptions
Fairseq ST (Wang et al., 2020) 227 329 2721276

NeurST (Zhao et al., 2021) 22.8 333 274|278
Espnet ST (Inaguma et al., 2020) | 22.9 32.8 28.0 | 27.9
E2E-ST-JT (Du et al., 2022) 23.1 328 275|278
Speechformer (Papi et al., 2021) | 23.6 - 28.5 -
Cascaded (Inaguma et al., 2020) | 23.6 33.8 28.7 | 28.7
MTL (Tang et al., 2021) 239 33.1 28.6 | 285
Self-training (Pino et al., 2020) 252 345 - -
SpeechT5 (Ao et al., 2022) 252 353 - -

Methods that do not involve transcriptions
Revisit ST (Zhang et al., 2022a) | 23.0 33.5 28.0 | 28.2

Transformer-ST 18.0 285 24.1 | 23.5
U2TT (BASE) 204 303 253|253
w/ DUB 25.8 347 30.2 | 30.2
U2TT (LARGE) 20.5 30.1 24.7 | 25.1
w/ DUB 26.2 353 304 | 30.6

SoTA: use much more speech and various pre-training tasks
SpeechUT (Zhang et al., 2022¢)* ‘ 30.1 414 336 ‘ 35.0

Table 1: BLEU Scores on MuST-C En-X t st -COM set.
* is the state-of-the-art system, which designed various
mask-predict pre-training tasks and trained using extra
1.4k hours of speech and parallel MT data from WMT.
Random sampling is the decoding strategy for DUB.

baseline, comparison with this model helps to see
the influence of DUB.

Transformer-ST stands for training the Speech-
Transformer (Dong et al., 2018) from scratch,
but without ASR pre-training as in the previous
work (Wang et al., 2020; Inaguma et al., 2020;
Zhao et al., 2021). The training details are in Ap-
pendix C.

4.4 Main results on Speech-to-text Translation

MuST-C As shown in Table 1, compared to the
methods that do not involve the transcribed text, our
method, U2TT (LARGE) with DUB, gets the best
ST results by introducing extra target-language text,
and DUB obtains an average boost of 5.5 BLEU
compared with U2TT in the three En-X directions.
Encouragingly, we find that our method achieves
comparable performance to previous models that
utilize transcriptions through multi-task learning
or pre-training. As for the baseline, U2TT outper-
forms the Transformer-ST, where we believe that
the discrete units still retain the semantic informa-
tion of the audio feature (e.g. log Mel-filter bank,
abbr. Fbank) for translation. As for the gap be-
tween our method and the SoTA system, we argue
that SpeechUT (Zhang et al., 2022c) performed
various mask-predict pre-training tasks using extra
1.4k hours of speech and parallel MT data from
WMT, which is not included in our approach.
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Aux. Data

Methods ASR  Text Fr De Es Ca It Ru Zh \ Avg.
Transformer-ST? - - 4.3 8.4 120 144 02 1.2 1.4 8.8
Transformer-ST + ASR pre-train’ v - 263 17.1 23.0 188 113 148 58 | 16.7
Cascaded ST v - 27.6 21.0 274 213 135 168 7.0 | 19.2
Revisit ST (Zhang et al., 2022a) - - 269 141 157 172 24 36 20| 11.7
U2TT (LARGE) - - 274 167 28.1 231 200 219 59| 205

w/ DUB - vVIM | 295 195 309 252 239 232 6.1 | 226

Table 2: Test BLEU scores on CoVoST-2 X-En language pairs with more than 10 hours of speech. Auxiliary data
refers to all data at training excluding <speech,translation> pairs. T: Results from (Wang et al., 2021b). Random

sampling is the decoding strategy for DUB.

Aux. Data Sv Lv SI Ta Ja Id Cy | Avg.

Methods ASR  Text | 2h 2h 2h 2h 1h 1h 2h -
Transformer-ST? - - 02 01 03 03 03 04 03] 03
Transformer-ST A2Ef - - 06 04 12 01 02 03 26| 08
Transformer-ST + ASR pre-train® v - 27 25 30 03 15 25 27| 24
Larger models based on large-scale multilingual speech, text or joint pre-training, involving more data
XLS-R (0.4B)* v - 53 31 53 00 20 33 34| 38
Wav2seq (0.4B)" v - 105 88 48 59 00 19 50 57| 53
XLS-R + mBART-50 (0.7B)* v v 103 60 66 02 06 14 25| 38
LNA-E,D (0.7B)* v v 59 46 46 07 17 29 28| 34
U2TT (LARGE) - - 80 63 68 03 16 66 27| 49

w/ DUB - v IM 89 69 79 05 21 7.0 57| 58

Table 3: Test BLEU scores on CoVoST-2 low-resource X-En language pairs with less than 2 hours of speech. :
results from (Wang et al., 2021b). *: results from (Wu et al., 2022) ©: results from (Babu et al., 2021). *: results
from (Li et al., 2021). The numbers in parentheses are their parameter sizes. Random sampling is the decoding

strategy for DUB.

CoVoST-2 Our method performs similarly to
MuST-C on the high-resource En-X (Table 2).
Without considering auxiliary data or pre-training
methods, adding only 1M additional English text,
DUB improves by an average of 2.1 BLEU over
7 language pairs compared to U2TT, and by an
average of 3.4 BLEU over the cascaded ST sys-
tem. For the low-resource setting, our method can
bring improvement on almost every language pair
and achieve better performance than the large-scale
multilingual speech or text pre-training models,
like XLS-R+mBART-50 model (Babu et al., 2021),
with much fewer parameters. The discrete unit ex-
tractor is unsupervised, so our method does not
require transcriptions, which is particularly advan-
tageous for unwritten ST. This experiment mimics
such low-resource nature of unwritten languages
in practice. The results also show that the U2TT
model and the DUB training have the potential to
translate low-resource unwritten languages.

Aux. Data
Method Speech Text | BLEU
Transformer-ST - - 18.0
w/ Cascaded BT - 10M 20.3
U2TT - - 20.4
w/ Bimodal BART 10kh 10M 22.4
w/ DUB - 10M 25.0
w/ Bimodal BART + DUB 10kh 10M 25.4

Table 4: MuST-C En-De t st-COM BLEU scores for
different methods that utilize 10M monolingual text
data in ST. Transformer-ST and U2TT are described in
Section 4.3.

5 Analysis on the Effect of Discrete Unit
Back-translation (DUB)

5.1 1Is DUB better than other methods that
leverage extra raw data?

The key benefit of the DUB is to make use of a lot
of monolingual text. Here, alternative techniques
such as pseudo-labeling and pre-training (imple-
mented as Cascaded BT and Bi-modal BART) are
also evaluated on the MuST En-De translation, by
introducing an equivalent corpus of 10 million Ger-
man sentences.
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* Cascaded BT aims to build a target-to-source
MT-TTS pipeline to construct pseudo-speech
translation augmented data for the training.
Specifically, we use transcription-translation
pairs of MuST-C to train a back-translation MT
model and use the released FastSpeech2’ (Ren
et al., 2020) and a HiFi-GAN (Kong et al., 2020)
vocoder for TTS generation.

* Bi-modal BART has the same structure as
U2TT, and is pre-trained by denoising large-scale
corrupted discrete units and monolingual text,
following the recipe of mBART (Liu et al., 2020).
We combine the 10M additional text with 7M dis-
crete units extracted from 10k hours of speech in
GigaSpeech (Chen et al., 2021) to pre-train the
model and fine-tune it based on MuST-C unit-
translation pairs. See Appendix B for training
details.

As shown in Table 4 introducing equivalent
raw text, DUB is superior to the above two ap-
proaches and has a greater potential to exploit
monolingual raw text. We find that the gain from
cascaded BT-synthesized speech is limited because
the synthetic speech is robotic and monotonic, mak-
ing it easy to overfit the model to the synthetic
pairs. Although the bi-modal BART pre-training
can bring about 2 BLEU improvements, it is still in-
ferior to DUB. We attribute this to the gap between
the denoising pre-training task and the downstream
generation tasks, while DUB does not have such a
gap. Meanwhile, we observe that combination of
bi-modal BART and DUB can bring further perfor-
mance improvements, which indicates that they are
complementary to each other.

5.2 The better the pseudo-unit, the more
effective the DUB method?

In Section 3.3, we presented four generation meth-
ods to create synthetic pseudo-units based on the
BT model, namely beam search, sampling, top-k
sampling, and speech normalization. In the ex-
periments, we set a beam size of 5 for the beam
search, k=10 for top-k sampling, and use an off-
the-shelf speech normalizer® from Lee et al. (2022)
for Speech Norm.

Does the forward model gain more from synthe-
sized pairs when the synthesized units are of higher

5https ://github.com/ming024/
FastSpeech2

*https://dl.fbaipublicfiles.com/
fairseq/speech_to_speech/speech_
normalizer/en/en_10h.tar.gz

quality? We calculate the Unit Error Rate (UER) on
the MuST-C validation set to assess the synthesis
quality. A lower UER indicates that the generated
units are closer to the directly extracted units, i.e.
of higher quality. We systematically vary the back-
translated data from 1M to 10M, and present the
BLEU scores and UERS of the generation methods
in Table 5 and Figure 2. The Speech Norm mod-
ule produces the highest quality synthesized units,
while the sampling-based methods have lower qual-
ity. Interestingly, the sampling method with the
lowest synthesis quality has the most significant
improvement over the forward model.

We conjecture that the richness and irregular-
ity of the synthesized data can better improve
the forward ST model, while regular pseudo-
units, e.g. generated by MAP-based beam search,
are more predictable and not conducive to per-
formance improvement. This is consistent with
previous findings of BT techniques in machine
translation (Edunov et al., 2018). In addition,
Speech Norm, which normalizes speech to a
single speaker, is not necessary for our DUB
method. Although such an operation makes the ST
model easier to learn and the UER smaller, it com-
promises the diversity of the synthetic data, which
is also not helpful for performance improvement.
The model generalization ability weakens when
these single-speaker synthesis units increase.

UER(%) ABLEU
Speech Norm 73.0 0.7
Beam Search 83.0 1.7
Top-10 Sampling 89.0 3.6
Sampling 92.0 4.6

Table 5: The quality of generated pseudo-units using
different generation methods and their BLEU increases
from 10M extra texts, evaluated by Unit Error Rate
(UER) on MuST-C En-De Dev, the smaller the better.

6 Why does DUB work? — Analysis on
the Property of Discrete Unit

Why does DUB work? To answer this question, we
examine the properties of the discretized speech
unit. Specifically, (1) do the units make sense to
replace the original speech input in the forward
translation process? (2) Do the units generated by
back translation also contain semantic information
and can they even restore the speech?
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Figure 2: MuST-C En-De t st -COM BLEU scores for
the increasing amounts of BT data (1M, 5M, and 10M),
obtained using different generation methods. Note that
the unit extractor of Speech Norm is mHuBERT, so
without extra text, the BLEU score is 20.9, which is
slightly higher than HuBERT, but the gap is quite small.

6.1 Are discrete units suitable features for ST
input?

We show how much semantic information is re-
tained for different input forms by comparing the
results of the downstream ST task (shown in Ta-
ble 6). Training from scratch, we find that the
U2TT model translates better than Transformer-
ST (19.9 vs.18.0), indicating that compared to the
speech feature, like Fbank, the discrete unit is
a better choice for input and has no informa-
tion loss in terms of the semantic information
required for translation. We assume that this is
strongly correlated with the HuBERT-based dis-
crete unit extractor, since HuBERT is designed
to learn a combined acoustic and language model
over the continuous speech input, which preserves
much textual information for the speech. But rigor-
ously, compared to the continuous representation of
HuBERT, the discretization procedure does suffer
from semantic information loss. Comparing Line 11
and III, there is a gap of 2.9 BLEU between U2TT
and HuBERT-Transformer (where frozen HuBERT
Layer-9 continuous representation is taken as input
to perform ST), in terms of ST metrics. Fortunately,
the gap can be compensated by a) initializing the
unit embedding as its corresponding K-means clus-
ter centroid on continuous HuBERT representa-
tions as described in Section 3.2 (denoted as pre-
trained embedding, Line IV), which can slightly
close the gap by 0.5 BLEU; and b) simply intro-
ducing only 1M additional text and applying DUB,
which can achieve 2.7 BLEU improvement (Line V
vs. IV).

No. Methods BLEU
I Transformer-ST 18.0
II'  HuBERT + Transformer 22.8
Ir U2TT 19.9
IV — w/ pre-trained embedding | 20.4*
A% — w/ DUB-1M 23.1

Table 6: BLEU scores on MuST-C En-De tst-COM
set. DUB-1M means to introduce 1M unpaired text via
the DUB method. *: the improvement over U2TT is
statistically significant (p < 0.05)

6.2 Can we recover faithful speech from
pseudo-units?

Do the back-translated units capture the semantics
of the target language text? Since it is difficult to di-
rectly evaluate the correctness of the pseudo-units
generated by the back-translation model, we con-
catenate a unit-based HiFi-GAN vocoder’ with our
back-translation model to recover speech from the
generated pseudo-units, thus completing the text-
to-speech (TTS) translation task. TTS generation
quality is measured by ASR-BLEURT, where we
transcribe the speech output using a high-quality
open-source ASR model® and calculate BLEURT®
with reference transcription.As shown in Table 7,
the ASR-BLEURT of beam search and sampling is
0.6 and 0.47 respectively, indicating that the unit
sequence back-translated from a given target
language text can convey its general semantic
meaning, which is the guarantee for the success
of DUB. We conduct the listening test by checking
30 randomly sampled BT-recovered speeches for
semantic consistency with ground-truth. 22 of 30
sentences matched ground-truth speech, while the
remaining 8 had minor issues, with only 1 being
of low quality and the other 7 missing or repeating
1-2 details. We also provide some generated audio
samples in Appendix F to help illustrate the degree
of speech restoration.

7 Conclusion

In this paper, we propose Discrete Unit Back-
translation (DUB), as well as the Unit-to-Text

"https://dl.fbaipublicfiles.com/
fairseq/speech_to_speech/vocoder/code_
hifigan/mhubert_vp_en_es_fr_it3_400k_
layerll_kml000_173/g_00500000

$https://huggingface.co/facebook/
wav2vec2-large-960h-1v60-self

*https://github.com/google-research/
bleurt
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Generation Method | ASR-BLEURT

0.60
0.47

beam search
sampling

Table 7: MuST-C En-De t st -COM ASR-BLEURT for
text-to-speech translation

Translation (U2TT) model for direct speech trans-
lation. Our approach successfully migrates the
back-translation technique from MT to ST by dis-
cretizing the speech signals into unit sequences and
making use of extra widely accessible text in the
target language. Without using transcription, DUB
can achieve an average increase of 5.5 BLEU on
MuSTC En-De/Fr/Es over the raw U2TT frame-
work, and achieves comparable performance to the
large-scale speech-text joint pre-training models
on CoVoST-2 low-resource ST. The analysis ex-
periments also show the potential of such discrete
audio units as inputs and outputs for text or speech
generation tasks.

Broader Impact

Our proposed model structure with a discrete unit
extractor for speech and the unit-to-text transla-
tion model, which does not need any transcrip-
tions during training, is particularly relevant for
speech translation for more than 3,000 languages
and dialects in the world that cannot be transcribed.
Since these unwritten languages are typically low-
resource, we emphasize that boosting ST perfor-
mance via text-to-unit back-translation data aug-
mentation, i.e. DUB, is very promising. Mean-
while, as a by-product of DUB, TTS translation
has significant implications for assisting visually
impaired or dyslexic people in understanding the
world as well as preserving low-resource unwritten
spoken languages.

However, as exploratory work, we focus on in-
vestigating the potential of using BT to enhance
ST performance, while popular large-scale pre-
training methods are not employed in this paper.
This makes our method slightly inferior to these
methods in terms of performance, perhaps. But
promisingly, in terms of structure, the model is
more general across various modalities and also
has more potential to integrate with the methods in
NLP area (might be the topic of future research).
Also, the models are still far from real industrial ap-
plications. For example, the data used for training
is much smaller than the scale in reality, while the

real speech is noisier and more complex than the
open-source dataset, which may require front-end
processing. Moreover, the success of our method is
partly attributable to the HuBERT representation,
which contains certain textual information for the
speech, and via experiments, we also find that the
quality of discrete units influences the translation
performance. Nevertheless, learning meaningful
discrete units is not the primary goal of HUBERT
pre-training, and how to learn discrete units or rep-
resentations for speech with more contextual se-
mantic information can be explored in the future.
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A Data Statistics

En— ‘ Hours Samples

De 408 234K
Fr 492 280K
Es 504 270K

Table 8: Statistics of MuST-C dataset

Languages Code | Hours Samples
English En - -
French Fr 264 207374
German De 184 127834
Spanish Es 113 79015
Catalan Ca 136 95854
Italian It 44 31698
Russian Ru 18 12112
Chinese Zh 10 7085
Arabic Ar 2 2283
Swedish Sv 2 2160
Latvian Lv 2 2337
Slovenian SI 2 1843
Tamil Ta 2 1358
Japanese Ja 1 1119
Indonesian Id 1 1243
Welsh Cy 2 1241

Table 9: Statistics of CoVoST-2 X-En involved in this
paper.

Lang. | TED WMT’ CCMatrix* | Sum
De |02M 4.5M 43M 48M
Fr | 02M 39M 50M 79M
Es - 13M 61M 64M

Table 10: Statistics of monolingual data for MuST-C ex-
periments. . De from WMT16 (Bojar et al., 2016), Fr
from WMT 14, Es from WMT13, * : randomly sample
from CCMatrix (Schwenk et al., 2019).

B Experimental Details

Vocabulary We apply the SentencePiece!? (Kudo
and Richardson, 2018) to tokenize the text and dis-
crete units into subwords. We add all the discrete
units as special symbols to the joint vocabulary.

Yhttps://github.com/google/
sentencepiece

The joint subword tokenizer is learned on all the
translation sentences and discrete unit sequences in
the ST training set. The vocabulary size is 8000 for
both MuST-C and CoVoST-2 experiments. Specifi-
cally, for MuST-C experiments, since the number
of K-means clusters is 500, the vocabulary is com-
posed of 500 special unit symbols and 7500 text
subwords. For CoVoST2 X-En experiments, the
vocabulary consists of 1000 special unit symbols
representing 1000 clusters of mHuBERT, and 7000
text subwords.

Training details We use Adam optimizer with
B1 = 0.9, 8o = 0.98, and 4k warm-up updates to
optimize the parameters in our model. We train the
model with a batch size of 5k tokens. The learning
rate is 7e-4 and we apply an inverse square root
schedule. The value of label smoothing is set to 0.1.
The up-sampling rate r in DUB is set to 32, given
the huge volume differences between the BT data
and the original data. For MuST-C experiments, we
train U2TT and T2UT models of each translation
direction under bilingual settings. For CoVoST-2
X-En experiments, we train a multi-lingual X-En
model covering 21 translation directions, distin-
guished by the language tags of the units in differ-
ent languages. We implement our models based on
Fairseq'! (Ott et al., 2019) codebase. All models
are trained on 8 Nvidia Tesla-V100 GPUs and take
about 400k steps to converge. During inference,
We save the checkpoint with the best BLEU on the
validation set and average the last 10 checkpoints.
We use beam search with a beam size of 5 for each
translation direction.

Training details for Bi-modal BART The train-
ing of bi-modal BART follows the recipe of
mBART (Liu et al., 2020). We implemented a
mask rate of 0.3, with the replacement of the
masked tokens by random tokens at a probability of
0.1. Additionally, the mask length was determined
through sampling from a Poisson distribution, with
a lambda parameter of 3.5.

C Baseline Models

Existing ST Systems We list the ST systems we

compared with on different datasets:

* MuST-C In Table 1, we compare our method
with the following: Fairseq ST (Wang et al.,
2020), NeurST (Zhao et al., 2021), Espnet ST (In-
aguma et al., 2020), E2E-ST-JT (Du et al,

"https://github.com/facebookresearch/
fairseq
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2022), Speechformer (Papi et al., 2021), Cas-
caded ST (Inaguma et al., 2020), MTL (Tang
et al., 2021), Self-training (Pino et al., 2020),
SpeechT5 (Ao et al., 2022), SpeechUT (Zhang
et al.,, 2022c) and Revisit ST (Zhang et al.,
2022a).

* CoVoST X-En high resource In Table 2, we
compare our method with several baselines from
(Wang et al., 2021b), including Transformer-ST,
Transformer-ST + ASR pre-train and Cascaded
ST, and Revisit ST (Zhang et al., 2022a).

* CoVoST X-En low resource In Table 3,
we compare our method with several exist-
ing ST methods, including Transformer-ST,
Transformer-ST + ASR pre-train from (Wang
et al., 2021b) and large-scale multilingual speech
or text pre-training methods: XLS-R (Wu
et al., 2022), Wav2seq (Wu et al., 2022), XLS-
R+mBART-50 (Babu et al., 2021), LNA-E,D (Li
et al., 2021). Note that XL.S-R is pre-trained on
436K hours of speech across 128 languages.

Transformer-ST for MuST-C For a fair compari-

son, we keep the parameters roughly the same size

as DUB, setting two covolutional layers, a 12-layer

Transformer encoder and a 6-layer Transformer

decoder, with hidden size d = 768, 16 attention

heads, and 4096 FFN hidden states, which makes
the model size larger than baselines like Fairseq

ST (Wang et al., 2020), NeurST (Zhao et al., 2021),

and Espnet ST (Inaguma et al., 2020).

D Scalability

How does model size affect the results of our
method? How much improvement does the raw
text in the target language bring to our method? To
this end, we take MuST-C English-German trans-
lation as an example. We set the model size to
73M, 176M and 260M parameters respectively (the
specific hyperparameter settings are shown in Ta-
ble 11), and introduce extra 1M, 10M, and 48M
German sentences.

Figure 3 shows the BLEU scores of different
sizes of models, with different amounts of mono-
lingual back-translation data added. In general,
regardless of the model size, introducing more text
brings better performance. When we introduce
a large amount of back-translated data, the larger
model gets significantly better performance. We
find that when no or less back-translated data is
introduced, the performance of the large model is
instead not optimal. This is because the large model

is prone to overfitting when the original training
data is small, but as the monolingual data is gradu-
ally introduced, the advantage of the large model
becomes obvious, without replying to the transcrip-
tion, introducing 48M back-translated pairs, the
model with 260M parameters can boost up to 6.1
BLEU on En-De.

Model Encoder Decoder Hidden

Params | Layers Layers Dim
@D SMALL  73M 6 6 512
(@ BASE 176M 12 6 768
B LARGE  260M 12 6 1024

Table 11: Hyper-parameter settings for the models in
Figure 3.

—-a&- DUB(73M params)
—e - DUB(176M params)
20 —o— DUB(260M params)

234K 1.23M 10.2M 48.2M
Amount of Data

Figure 3: MuST-C En-De t st -COM BLEU scores for
different amounts of target-language text data are intro-
duced, under different model sizes.

E Comparison With Cascaded System

It could be argued that our model employs a cas-
caded architecture, comprising a unit extractor and
a unit-to-text translation model. The traditional cas-
cade ST system (ASR+MT) can also be enhanced
through applying back-translation to improve its
MT model.

In Table 12, we compare the performance of
DUB with the BT-enhanced cascaded ST system
both utilizing 10M unpaired text. By comparison,
we can find that the BLEU score of the U2TT
model is inferior to that of the cascaded system
when utilizing 10 million unpaired text samples.
This discrepancy can likely be attributed to the
higher baseline performance of the cascaded sys-
tem. Additionally, DUB demonstrates a superior
relative improvement in BLEU score compared to
the cascaded system. Moreover, the discrete unit
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Method | Extra Text | BLEU ABLEU

U2TT - 204 -
w/ DUB v 25.0 4.6

Cascaded ST - 23.1 -
w/ MT-BT v 26.0 2.9

Table 12: MuST-C En-De t st -COM BLEU for U2TT
and cascaded system. MT-BT refers to enhancing MT
model of cascaded ST through back-translation. Cas-
caded ST is trained by ourselves on MuST-C En-De
train set. The same extra text corpus with 10 million
German sentences is used for both methods.

extractor is obtained through unsupervised training
on unlabeled speech, which requires no transcrip-
tions compared with the ASR system trained on
speech-transcription pairs.

F Cases of Text-to-Speech Translation

In Table 13, we show two cases of German-English
text-to-speech translation on MuST-C En-DE TST-
COM set. In CASE 1, our text-to-speech trans-
lation system generates speech with the same
content and a similar spectrogram as reference
speech. In CASE 2, the synthetic speech devi-
ated slightly from the reference speech, but the
translation is correct — “release” has the same
meaning as “shoveling out” and “all the time * just
means “all along”. The samples of generated audio
are included in https://anonymous. 4open.
science/r/DUB/ttss_samples.
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German: Einzige Land der Welt.
Ref: the only country in the world.

Ref: the only country in the world.

+0 d8

-10 &8
4096
20 &8

2048 ok

CASE 1 | Hyp: the only country in the world.

Hyp: the only country in the world.

4096

German: Und sicher, hitten wir diese diese Hydranten die ganze Zeit freischaufeln konnen, und viele
Menschen tun das.
Ref: And certainly, we could have been shoveling out these fire hydrants all along, and many people do.

Ref: And certainly, we could have been shoveling out those fire hydrants all along, and many people do.

4096

0 5 10 15 20 25 30 35
Time

CASE 2 | Hyp: And certainly we could have released those hydrants all the time and many people do that.

Hyp: And certainly we could have released those hydrants all the time and many people do that.

4096

Table 13: Cases of De-En text-to-speech translation on MuST-C En-De t st -COM set.
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