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Abstract

The integration of language models for neu-
ral machine translation has been extensively
studied in the past. It has been shown that
an external language model, trained on addi-
tional target-side monolingual data, can help
improve translation quality. However, there has
always been the assumption that the transla-
tion model also learns an implicit target-side
language model during training, which inter-
feres with the external language model at de-
coding time. Recently, some works on auto-
matic speech recognition have demonstrated
that, if the implicit language model is neutral-
ized in decoding, further improvements can be
gained when integrating an external language
model. In this work, we transfer this concept
to the task of machine translation and com-
pare with the most prominent way of includ-
ing additional monolingual data - namely back-
translation. We find that accounting for the
implicit language model significantly boosts
the performance of language model fusion, al-
though this approach is still outperformed by
back-translation.

1 Introduction

Machine translation (MT) is the task of automati-
cally translating text from one language to another.
Nowadays, the dominant approach is neural ma-
chine translation (NMT), where a neural network
is used to predict the probability of a sentence in
the target language, given a sentence in the source
language (Bahdanau et al., 2014; Vaswani et al.,
2017). For this approach to be effective, a large
number of bilingual training samples - consisting
of sentences and their corresponding translations -
is needed. This poses a challenge, especially when
we want to build a system for a specific domain,
where zero or only limited amounts of in-domain
bilingual data are available.

In these situations, people turn towards monolin-
gual text data, which is simply text in the source or

target language and of which plenty exists for most
languages and domains. Before NMT became fea-
sible, the preferred way of incorporating additional
monolingual data in the MT system was the usage
of an external target-side language model (LM),
which is trained on monolingual data to predict
the probability of a sentence (Brown et al., 1990;
Della Pietra, 1994; Zens et al., 2002).

However, with the rise of NMT, it was found that
a technique called back-translation outperforms
the LM incorporation by a large margin (Sennrich
et al., 2016a). Back-translation is a two step pro-
cess, where we first create synthetic parallel data by
automatically translating target side monolingual
data into the source language. Then, the final NMT
system is trained on the combination of the real and
synthetic parallel data. It was argued that the back-
translation approach better suits the NMT frame-
work because the NMT system implicitly learns
an internal language model (ILM) as part of the
training, which might interfere with an additional
external LM (Sennrich et al., 2016a).

More recently, for automatic speech recognition
(ASR), there have been works focusing on neutral-
izing this ILM before combination with an external
LM and significant improvements were reported
(McDermott et al., 2019; Variani et al., 2020; Meng
et al., 2021; Zeyer et al., 2021; Zeineldeen et al.,
2021). In this work, we adapt the methods for ILM
compensation, developed for ASR, and test them
for NMT. We compare against back-translation in
different settings and find that ILM compensation
significantly boosts the performance of LM fusion,
although back-translation is still outperforming this
approach for NMT. Also, applying ILM compen-
sation on top of back-translation does not result in
significant performance improvements.

2 Related Work

Several approaches to combine an LM and NMT
model have been proposed in the past. Shallow
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fusion (SF) is the most straight forward way, using
a weighted log-linear combination of the model
output probabilities (Gulcehre et al., 2015, 2017).
Deep fusion denotes the concatenation of the hid-
den states of NMT model and LM and requires
joint fine-tuning of both models (Gulcehre et al.,
2015, 2017). Simple fusion is similar to shallow
fusion, but the NMT model is trained using infor-
mation from a pre-trained LM (Stahlberg et al.,
2018).

For the task of ASR, people recently have started
to remove the ILM that is implicitly learned. The
biggest question there is, how to best approximate
the ILM. Approaches include: (1) training an ad-
ditional LM on the target side of the parallel data
(McDermott et al., 2019), (2) removing/averaging
encoder information (Variani et al., 2020; Meng
et al., 2021; Zeyer et al., 2021) and (3) training a
small sub-network while freezing all other parame-
ters (Zeineldeen et al., 2021).

As an alternative to LM fusion, back-translation
(Schwenk, 2008; Bertoldi and Federico, 2009; Sen-
nrich et al., 2016a) has become the standard method
for incorporating additional monolingual data for
NMT. Some work has been done to improve this
approach, including sampling (Edunov et al., 2018;
Graca et al., 2019), tagging (Caswell et al., 2019)
and block-BT (Popel et al., 2020). For sake of sim-
plicity, we focus on the standard back-translation
approach using beam search in this work.

Apart from using an external LM and back-
translation, additional monolingual data can also
be utilized by pre-training (Ramachandran et al.,
2017; Zhu et al., 2019), multi-task-learning (Zhang
and Zong, 2016; Domhan and Hieber, 2017) or
post-editing (Junczys-Dowmunt and Grundkiewicz,
2016; Freitag et al., 2019). In principle, all these
approaches can also be combined with LM fusion,
potentially further improving the performance of
the resulting system.

3 Internal LM Estimation

During decoding, given a source sentence f; and
amodel P(e!|f{), we want to find the translation
é! that maximizes

¢l = argmax {P(eﬂfi])} :

I
L,e;

In our framework, P is the combination of three
models:

A —A
P(ei|fi') o« Pur(edl f{)) - Pi(et) - Prap (ef)

where Pyvt, Fim and Py are the probabilities
of the NMT model, external LM (trained on ad-
ditional monolingual data) and ILM respectively,
and A1, s > 0. Note that the ILM gets a negative
weight, because we want to neutralize its impact in
this model combination. If Ay = 0, we fall back to
standard shallow fusion.

In principle, the ILM can be exactly calculated
from the NMT model by marginalizing over all
source sentences fi. However, this summation
would be intractable. Instead, different ILM ap-
proximations have been proposed in the recent past
for ASR, which we will briefly recall here. For a
more in-depth discussion of the different approxi-
mation methods we refer the reader to Zeineldeen
et al. (2021).

separate LM : The ILM is approximated by train-
ing a separate LM on the target side of the
parallel training data.

h = 0 : The ILM is approximated by taking the
fully trained NMT model Py (el |f{) and set-
ting the encoder outputs h{ to 0.

h = haye : Instead of setting all encoder outputs
h{ to 0, we replace the vector h; for each
position j with the average havgj, extracted
over the whole parallel training data.

C = Cayg : Instead of h, we replace all context
vectors c (the output of the encoder-decoder
attention module) with the position-wise aver-
age over the whole parallel training data.

mini-self-attn : We replace the encoder-decoder
attention of the fully trained NMT model
with an additional self-attention module (with
causal masking), which is then trained on the
target side of the parallel training data while
the rest of the NMT network is frozen. This
is different from the separate LM approach
because most of the parameters are still shared
between NMT model and ILM, which might
result in a better overall ILM approximation.'

4 Experiments

We perform experiments on four machine transla-
tion tasks, representing different data conditions.

'In their work, Zeineldeen et al. (2021) used a mini-
LSTM network with the same dependencies as our mini-self-
attention.
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Figure 1: BLEU scores (percentage) on the validation
set for the IWSLT En—De task for different weights of
LM and ILM (mini-self-attention). \1 on the x-axis is
the weight of the external LM while A\ on the y-axis is
the (negative) weight of the ILM.

The exact data conditions and statistics are pro-
vided in the Appendix A. For all tasks, the addi-
tional monolingual data, as well as the test sets, are
in the news domain. The monolingual data comes
from Newscrawl> where we sample ca. 10M sen-
tences for LM training and back-translation. For
IWSLT En—De and IWSLT En—1It, the paral-
lel training data consists of around 200k sentence
pairs and is in the scientific-talks-domain, com-
ing from the IWSLT17 Multilingual Task (Cettolo
etal., 2017). For this setting, we expect the biggest
improvements from the additional monolingual
data, since the parallel data is out-of-domain. For
NEWS En—De, the parallel training data (around
300k sentence pairs) is in the news domain, coming
from the NewsCommentaryV 14 corpus®. Finally,
WMT14 En—De is a standard NMT benchmark
used by Vaswani et al. (2017) where the paral-
lel training data consists of around 3.9M sentence
pairs and is of mixed domain.

We tokenize the data using byte-pair-encoding
(Sennrich et al., 2016b; Kudo, 2018) with 15k joint
merge operations (40k for WMT14). The models
are implemented using the fairseq toolkit (Ott et al.,
2019) following the transformer base architecture
(Vaswani et al., 2017). The details of the training
setups can be found in Appendix A. All systems
are trained until the validation perplexity no longer
improves and the best checkpoint is selected using
validation perplexity as well. We use beam-search
with beam-size 12 and utilize SacreBLEU (Post,
2018) to calculate BLEU (Papineni et al., 2002)

2https ://data.statmt.org/news-crawl/
3https ://data.statmt.org/news-commentary/vi4/

Method valid-PPL
separate LM 109.9
h=0 251.3
h = hayg 240.9
C = Cayg 2442
mini-self-attention 108.4

Table 1: Perplexities of the validation set for the IWSLT
En-De task using different ILM model approximations.

ILM A Ao | BLEU | TER
- 0 0 289 | 52.8
- 0.15 | 0.0 30.0 | 52.3
separate LM | 0.5 | 0.3 31.2 | 50.9
h=20 0.5 |03 30.8 | 51.3
h = hayg 0.5 |03 31.1 | 51.1
C = Cayg 0.5 |03 30.6 | 51.5
mini-self-attn | 0.5 | 0.4 31.7 | 50.0

Table 2: Translation performance of the different ILM
variants on the test set of the IWSLT En-De task. BLEU
and TER are reported in percentage.

and TER (Snover et al., 2006). We report BLEU
and TER since we are most familiar with these
metrics and to be comparable with previous works.
However, we acknowledge that these metrics might
have some biases and in future work it might be
worth utilizing additional metrics like COMET (Rei
et al., 2020) and BLEURT (Sellam et al., 2020).
Additionally, in future work we should separate
our test sets for original source and target text to
better understand the effect of translationese in both
training and test data, as this might very much
influence the improvements we see, especially in
the case of back-translation (Freitag et al., 2020).

4.1 Comparison of ILM Approximations

We start by analyzing the ILM neutralization ap-
proaches on the IWSLT En—De task and then ver-
ify the results on the other tasks.

We implement and re-train (if applicable) all the
different ILM approximation methods discussed in
Section 3. The resulting perplexities on the valida-
tion set are listed in Table 1. The variants separate
LM and mini-self-attention have been trained di-
rectly using the language model objective, so it is
no surprise that they exhibit a much lower perplex-
ity than the other approaches. However, it can be
argued that a lower perplexity of the ILM does not
necessarily correspond to a better approximation
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Method IWSLT En-De | IWSLT En-It | NEWS En-De | WMT14 En-De
BLEU TER BLEU | TER | BLEU TER BLEU TER

baseline external - - - - 1323 - 273 -
baseline ours 289 | 528 | 241589 | 328 490 277 56.5
+SF 300 | 523 | 248|588 | 332| 498 | 28.1 56.6
+ILM (separate LM) 312 | 509 | 260|578 | 347 | 476 | 288 55.3
+ILM (mini-self-attn) 317 | 50.0| 26.1|57.0| 35.1| 475| 29.1 54.8
back-translation 341 | 474 | 272|569 | 357 | 458 | 295 54.7
+SF +ILM (mini-self-attn) | 34.1 | 47.6 | 273|567 | 357 | 460 | 29.8 54.3

Table 3: Comparison of LM fusion and back-translation on the four MT tasks. BLEU and TER are reported in
percentage. External baselines are from T Kim et al. (2019) and ¥ Vaswani et al. (2017).

of the implicit language model.

In order to effectively use the external LM and
the ILM during decoding, we need to optimize the
weights \; and \s (see Section 3). We do this via
a grid search over the validation set by optimizing
for the highest BLEU score. The resulting grid for
the mini-self-attention ILM variant on the IWSLT
En—De task is shown in Figure 1.

The NMT system by itself has a BLEU" score
of 21.2. By log-linear combination with just the
external LM (Ao = 0, vanilla shallow fusion) we
can gain around 1% absolute improvement on the
validation set with the best choice of \; = 0.15.
By including the ILM with a negative weight, we
can get further improvements, up to a final score
of 23.8 BLEU . 4 Interestingly, the best perfor-
mance is reached when A1 =~ )y and with the ILM
neutralization, the external LM can be assigned a
much bigger weight compared to the case Ay = 0.
We find that for all ILM approximation variants,
the optimal weights are similar, and that the TER
scores on the validation set follow an almost identi-
cal pattern. The final performance of each variant
on the test set is shown in Table 2.

We want to point out, that the improvements we
see on the validation set transfer nicely to the test
set with the same tuned weights A; and Ao. This
is because, in our experiments, the validation and
test sets are of the exact same domain. In some
additional experiments we found that the optimal
values for these weights are indeed domain specific
and have to be re-tuned if the system were to be
optimized for a different domain. All ILM approxi-
mation variants lead to a significant performance
improvement over simple shallow fusion. Out of

“For the mini-self-attention ILM variant, we also per-
formed a more fine-grained search for 0.3 < A;, A2 < 0.6
which did not result in further improvements.

all ILM approximations, the mini-self-attention ap-
proach performs best, which is the same observa-
tion that Zeineldeen et al. (2021) made for ASR.

4.2 Comparison to Back-Translation

For the back-translation experiments, we train
NMT systems on the same parallel training data in
the reverse direction and then translate a total of
10M sentences from the monolingual target data
(the same data used for training the external LM).
Afterwards, the final systems are trained on the
combination of real and synthetic data. The final
results for all four MT tasks are shown in Table 3.
We observe the same trend for all four MT tasks.
In general, the improvements from the additional
monolingual data are getting smaller, when the
amount of parallel training data increases. In al-
most all cases, shallow fusion gives a small im-
provement over just using the NMT system. ILM
neutralization again improves consistently over
simple shallow fusion, with the mini-self-attn ap-
proximation variant always performing the best.
Back-translation out-performs language model inte-
gration on all four tasks, although the gap is getting
smaller the more parallel training data is available.
We also combine back-translation with the best
ILM approximation approach (mini-self-attn). This
does not further increase translation quality, with
the exception of the WMT14 task, where we see
a small improvement. In general, the ILM ap-
proach performs the closest to back-translation on
the WMT14 task, so it might be worthwhile to
apply this concept to an even bigger MT task.

5 Conclusion

We re-visit the method of language model integra-
tion for neural machine translation. We implement
and experiment with a new approach of neutraliz-
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ing the implicit language model, which has already
shown promising result for the task of automatic
speech recognition. We find that ILM neutraliza-
tion significantly improves the translation quality
compared to standard shallow fusion. However,
back-translation as an alternative way to incorpo-
rate additional monolingual data, still outperforms
the approaches using an external language model.
Therefore, for future work we will focus on sce-
narios where back-translation can not be applied
effectively, e.g. when the quality of the initial NMT
system is too bad to create helpful synthetic data.
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Limitations

The approach of language model integration for
neural machine translation is analyzed and com-
pared to the de-facto standard method of back-
translation. Due to constrained resources, this work
has several limitations. We focus on translation of
text in a single domain, namely news-articles. Dif-
ferent domains might exhibit different behaviour.
For the back-translation experiments, we use beam
search to create the synthetic data, other methods
like sampling were not considered. When com-
bining the synthetic and real parallel data, there
are additional methods like tagging and block-wise
batching, which we did not utilize in this work. Fi-
nally, we compare against the most commonly used
LM fusion approach, i.e. shallow fusion. There ex-
ist other LM fusion techniques which might exhibit
different behaviour when used in combination with
ILM neutralization.
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A Appendix

All validation and test sets are from the
WMT news translation tasks (Farhad et al.,
2021). The validation/test sets are WMT new-
stest2015/newstest2018 for IWSLT En—De and
NEWS En—De, newssyscomb2009/newstest2009
for IWSLT En—It and newstest2013/newstest2014
for WMT14 En—De. Data statistics can be found
in Table 4.

task dataset domain # sent.
IWSLT train | scientific-talks 210k
En—De valid news 2.2k
test news 3k

mono. news | 9.7M

IWSLT train | scientific-talks 232k
En—It valid news 500
test news 2.5k

mono. news | 10.0M

NEWS train news 330k
En—De valid news 2.2k
test news 3k

mono. news | 9.7M

WMT14 train mixed | 3.9M
En—De valid news 3k
test news 3k

mono. news | 10.0M

Table 4: Data statistics for all tasks.

We use dropout 0.3 and label-smoothing 0.2
for IWSLT En—De, IWSLT En—1It and NEWS
En—De and dropout 0.3 and label-smoothing 0.1
for WMT14 En—De. The resulting NMT mod-
els had ca. 51M parameters for IWSLT En—De,
IWSLT En—It and NEWS En—De and ca. 67M
parameters for WMT14 En—De. The NMT train-
ing took around 24h for IWSLT En—De, IWSLT
En—It and NEWS En—De and around 150h for
WMT14 En—De on a single NVIDIA GeForce
RTX 2080 Ti graphics card. The language mod-
els had ca. 26M parameters for IWSLT En—De,
IWSLT En—It and NEWS En—De and ca. 41M
parameters for WMT14 En—De. All language
model trainings took around 150h on a single
NVIDIA GeForce RTX 2080 Ti graphics card. Due
to computational limitations, we report results only
for a single run.
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