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Abstract

We present a novel end-to-end generative task
and system for predicting event factuality hold-
ers, targets, and their associated factuality val-
ues. We perform the first experiments us-
ing all sources and targets of factuality state-
ments from the FactBank corpus. We perform
multi-task learning with other tasks and event-
factuality corpora to improve on the FactBank
source and target task. We argue that careful
domain specific target text output formatting
in generative systems is important and verify
this with multiple experiments on target text
output structure. We redo previous state-of-
the-art author-only event factuality experiments
and also offer insights towards a generative
paradigm for the author-only event factuality
prediction task.

1 Introduction

The term factuality refers to the author’s or
speaker’s presentation of an event as factual, i.e.
as an event that has happened, is happening, or
will happen. Often times, an author does not only
talk about what they believe is factual, but also
about what others believe is factual. Thus, when a
speaker presents an event, they communicate their
view of the factuality of the event, and they can
also at the same time attribute a factuality judg-
ment about the same event to another source. Over
the past 15 years, the task of event factuality pre-
diction has received a lot of attention, but only in
predicting the factuality of an event according to
the author’s presentation. Multiple corpora have
been created alongside multiple machine learning
architectures which solely focus on predicting the
author’s presentation of factuality.

An exception is the FactBank corpus (Saurí and
Pustejovsky, 2009), which not only annotates the
author’s presentation of factuality, but also anno-
tates the nested sources assigning factuality values
to events in text. In this paper, our goal is to predict

the presentation of factuality of the nested sources
mentioned in a text alongside their target events.
We choose the FactBank corpus (Saurí and Puste-
jovsky, 2009) as it is the only corpus annotating
nested source factuality and it is carefully anno-
tated and constructed. We attempt combinations
with other corpora, namely author-only event factu-
ality corpora and source and target cognitive state
corpora, to improve on predicting nested source
and target factuality. We perform all of these exper-
iments with a novel generative approach and create
a new version of the event factuality prediction
task.

There are four main contributions of this work:

(i) We are the first to present a subset of the Fact-
Bank dataset containing nested source and target
factuality. This allows us to define two related tasks
with associated datasets, source-and-target factual-
ity and author-only factuality. We create a database
of the complex FactBank corpus for public release.

(ii) We are the first to present a generative machine
learning architecture for the factuality prediction
task. We perform multiple experiments with factu-
ality structure and target generated text structure,
and offer insights into how to frame the event fac-
tuality prediction task as a text generation task.

(iii) We perform multi-task learning to improve on
both factuality tasks. We offer a detailed evaluation
of what combinations work and why.

(iv) We achieve state-of-the-art results in an end-to-
end setting for the FactBank source-and-target and
author-only factuality tasks.

We first present the problem we are solving (Sec-
tion 2). We then present a survey of previous work
(Section 3). In Section 4, we present the FactBank
database architecture. Section 5 details our genera-
tive experimental details and modeling framework.
Finally, in Sections 6 and 7 we report experiments
on the FactBank source-and-target and author-only
tasks, respectively.
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2 Background and Motivation

To understand the notion of factuality, consider the
following sentence from the FactBank corpus (we
have replaced a pronoun for clarity in this expo-
sition). This sentence reports on three events: a
selling event, a saying event, and a doubling event.
Note that, in this paper, we are not interested in
temporal relations, and the notion of factuality ap-
plies independently of whether an event is in the
past, happening at utterance time, or in the future.

(1) Michael Wu sold the property to five buyers
and said he’d double his money.

We can identify four different factuality claims
in this sentence:

1. The author is presenting the selling event as
factual, i.e., they are committed to the selling
event having happened.

2. The author is presenting the saying event as
factual, i.e., they are committed to the saying
event having happened.

3. The author is presenting the doubling event as
having an unknown factuality.

4. The author is presenting Michael Wu as pre-
senting the doubling event as factual, i.e., ac-
cording to the author, Michael Wu is commit-
ted to the doubling event happening.

The first three are claims from the author’s per-
spective, while the last one is from Wu’s perspec-
tive. We refer to the bearer of the perspective as
the source, and the event (or state) that the factu-
ality judgment is about as the target. FactBank,
following MPQA (Wiebe et al., 2005a; Deng and
Wiebe, 2015), represents the source of a factuality
judgment as an ordered list of sources, since the
sentence does not directly tell us about Michael
Wu’s factuality judgment, but rather the author’s
claim about Michael Wu’s factuality judgment. In
this paper, we do not address the explicit recon-
struction of such attribution chains.

In the above example, we have seen two factu-
ality values: certain factual, and unknown. We
can identify additional values by allowing for non-
certain factuality (something may have happened),1

1FactBank divided this category into the probable and the
possible, but this leads to data fragmentation, and it can also
be hard for humans to distinguish these two cases.

CT- PR- UU PR+ CT+
false possibly

false
unknown possibly

true
true

Table 1: Factuality value mappings for the FactBank
corpus

and by incorporating polarity (something has hap-
pened or has not happened). This gives us a set
of five possible values for factuality, as shown in
Table 1. Thus, we can represent each factuality
judgment as a triple consisting of source, target,
and factuality value. We represent the source and
target by the head words of the corresponding syn-
tactic spans. If the source is the author, we use a
special token AUTHOR. Our example in (1) can
then be represented as follows:

(2)
source target facuality value

AUTHOR sold CT+
AUTHOR said CT+
AUTHOR double UU

Wu double UU

In NLP, there is a distinct task of determining
whether a statement is true or not (fact checking).
Unfortunately, this other task is sometimes also
called “factuality prediction” (see, for example,
(Baly et al., 2018)). The difference is that we are
interested in how the author presents the event, not
ground truth. So despite the same or similar name,
there are two different tasks and we only deal with
the presentation task, not the ground truth task.

3 Related Work

Author-Only Factuality Corpora All event-
factuality corpora focus on the presentation of fac-
tuality according to the author of the text, with
the exception of FactBank, which also annotates
the factuality of the mentioned sources besides the
author. These corpora include LU (Diab et al.,
2009), UW (Lee et al., 2015), LDCCB (LDC)
(Prabhakaran et al., 2015), MEANTIME (MT) (Mi-
nard et al., 2016), MegaVeridicality (MV) (White
et al., 2018), UDS-IH2 (UD2) (Rudinger et al.,
2018), CommitmentBank (CB) (De Marneffe et al.,
2019), and RP (Ross and Pavlick, 2019). These
corpora mainly differ as to what is defined as an
annotatable event, the genre of the text, the type of
annotators, and the annotation scale. These corpora
were unified under a continuous annotation scale in
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the range [-3, 3] by Stanovsky et al. (2017) (though
the author-only factuality value in FactBank was
misinterpreted, see (Murzaku et al., 2022) for de-
tails).

FactBank The main focus of this paper is the
FactBank corpus, which annotates all events intro-
duced in a corpus of exclusively newswire text. The
FactBank corpus not only annotates the factuality
presented by the author of a text towards an event,
but also the factuality of events according to their
presentation by sources mentioned inside of the
text. Saurí and Pustejovsky (2012) were the first to
investigate and perform experiments on the source
and target annotations in FactBank. However, we
cannot perform an apples-to-apples comparison, as
their system neither recognizes events nor identi-
fies sources mentioned in the text. Rather, in their
evaluation, this information was created from man-
ual annotation, fed to the system, and then tested
on the whole FactBank corpus.

We choose to focus on FactBank because of its
expert-level annotations and its detailed source and
target annotations. Because of the complexity of
the FactBank corpus, we build a robust and effi-
cient database representation of FactBank, which
includes all sources including the author, the targets
of the factuality attributions, and their respective
relations.

Machine Learning Architectures All previous
approaches on the event-factuality prediction task
use author-only corpora and predict factuality ac-
cording to the author of the text. Early approaches
to the event factuality prediction task used rule-
based systems or lexical and dependency tree based
features (Nairn et al., 2006; Lotan et al., 2013).
Expanding on these rule-based approaches, other
work on the event factuality prediction task used
SVMs alongside these dependency tree and lexi-
cal based features (Diab et al., 2009; Prabhakaran
et al., 2010; Lee et al., 2015; Stanovsky et al., 2017).
Early neural work includes LSTMs with multi-task
or single-task approaches (Rudinger et al., 2018)
or using BERT representations alongside a graph
convolutional neural network (Pouran Ben Veyseh
et al., 2019). Jiang and de Marneffe (2021) expand
on these previous works by using other event factu-
ality corpora in multiple training paradigms while
also introducing a simpler architecture. These pre-
vious neural approaches evaluate on Pearson corre-
lation and mean absolute error (MAE). In previous

work, we provide the first end-to-end evaluation
using F-measure of the author-only event factuality
prediction task (Murzaku et al., 2022).

Our work differs from the previous work in two
major ways: first, we are the first to provide a novel
and end-to-end generative approach for the event
factuality prediction tasks (both author-only and
source-and-target). Furthermore, besides our own
previous work (Murzaku et al., 2022), all previ-
ous works assumed gold event heads. Our system
is by default end-to-end, making it usable in real
world applications. Second, we perform exper-
iments on the nested sources and target event‘s
factuality, while other works only focused on the
presentation of factuality according to the author.

ABSA and ORL Two tasks close in formulation
to our task and from which we adopt ideas and
insights are the aspect-based sentiment analysis
(ABSA) task and the opinion role labelling task
(ORL). Peng et al. (2020) create the aspect senti-
ment triplet extraction task to predict triplets con-
sisting of aspects, opinions, and sentiment polarity.
Zhang et al. (2021) are the first to use a generative
approach for ABSA fine-tuning on T5. Expanding
on this, Gao et al. (2022) achieve state-of-the-art re-
sults on all ABSA corpora using a multi-task learn-
ing approach through task-specific prompts. The
ORL task aims to discover opinions, the sources
of opinions, and the associated targets of opinions
using the MPQA 2.0 corpus (Wiebe et al., 2005b).
Xia et al. (2021) build an end-to-end system cre-
ating span representations and using a multi-task
learning framework. They achieve state-of-the-art
results in the end-to-end setting on the exact match
F1 metric.

4 FactBank Database

We present a generalized database structure for cap-
turing cognitive states expressed in language. The
goal is to unify multiple annotated corpora in one
format, and to make it simple for users to extract
the information they need in various formats. In
this paper, we describe only how we use it to hold
the annotations of event factuality corpora, and
of FactBankin particular, whether in the author-
only perspective or source-and-target perspective.
However, given the diversity of corpora, with each
corpus having its own focus, annotation rules, and
annotation styles, our database structure is suffi-
ciently broad and abstract to accommodate various
corpora equally well and yet to preserve the rich-
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ness of information that each corpus offers, so as to
facilitate combining corpora in future experiments
with as little data loss as possible. Our goal of
preserving the distinct details of individual corpora
serves as a step in the direction of bringing hu-
man knowledge to bear upon otherwise black-box
machine learning techniques.

As an example, consider the FactBank and LU
(Diab et al., 2009) corpora. The LU data was pub-
lished as GATE-formatted XML files with anno-
tation targets and annotations given in XML ele-
ments, whereas FactBank was published as a set
of text files, each of which represents a relation
in what amounts to a relational database. From
both of these data sources, we may want to con-
struct, for each training and testing example, a set
of triples (sentence, target-marked-elements, la-
bel), where target-marked-elements are the tokens
of the sentence that describe the target of the factu-
ality judgment by the author, and to which the label
refers. If we used the original FactBank release and
created a database from it, eliciting triples satisfac-
tory for machine learning wouldl require a complex
query with many joins and filters. This is because
the structure of the FactBank (implicit) database
is oriented toward event-time relations rather than
factuality labeling. Accordingly, we designed a
new database structure more amenable to queries
to support machine learning and developed code
to translate corpora including FactBank into this
database model.

Database Structure To build the unified
database, we needed a stable, fast, and lightweight
tool. Python’s extensive library support for SQLite
database interactions fit those requirements. The
unified database’s schema is composed of four ta-
bles: sentences, mentions, sources, and attitudes.
We provide a graphic of the database schema in
Appendix C.

The sentences table stores each sentence and any
relevant identifying metadata. Thus far, we have
not encountered any corpora with suprasentential
information encoded as labels. In principle, how-
ever, this table can be refactored to accommodate
possible future suprasentential information.

Elements within each sentence marked for label-
ing are stored in the mentions table, with an entry
being composed of the surface text of the element,
which may be one or more tokens, and its charac-
ter offset within the sentence. Each sentence may
contain more than one marked element.

The sources table represents not only sources
but their possible nested relations within sentences.
These “according-to” relations form a list, as in
Mary said that John said that Jane was coming
to dinner. Here, the embedded source for the com-
ing event is (Author → Mary → John). These
“according-to” relations may form a tree, as in
Mary said that John said that Jane was coming
to dinner, but Bob said that she was not. Here,
the embedded source for the coming event is (Au-
thor → Mary → John). The author may have more
than one child source, as in Mary said that John
was coming to dinner, but Bob said that John was
staying home. Here, we have (Author → Mary) as
source for the coming event, and (Author → Bob)
as source for the staying event.

Each sentence may have more than one source,
but each source has at most one mention. The im-
plied author has no mention, and a named source
mentioned repeatedly is listed once for each men-
tion, since we do not apply anaphora resolution.

Finally, the attitudes table aggregates a sentence,
its marked elements, and the factuality or sentiment
label; the table accommodates both labels but could
be refactored to support further label types. Each
source may have a distinct attitude toward each of
several targets, and each target may have more than
one source with its own attitude toward that target.
Thus, each source-target pair drawn from mentions
has a single listing in attitudes.

Using event factuality corpora annotated on
source-and-target factuality is inherently com-
plex and requires structure induction, source link-
ing, and complex database-like operations. Our
database structure is an initial step to address the
complexity of corpora while also making easy-
to-use software for corpus projection and conver-
sion. Our database for FactBank is available at
https://github.com/t-oz/FactBankUniDB.

5 Task Definitions and Machine Learning
Approach

5.1 Task Definitions and Data

Source and Target Factuality (STF) We define
the source-and-target factuality task conceptually
as the task to generate all (source, target, factuality
label) triplets for a given input sentence such that
the source is not the author, the factuality label
belongs to a categorial scale, and the source views
the target with the given factuality label.
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Triplet P Triplet R Triplet F1 Source Target S+T
FBST NoN 0.499±0.020 0.448±0.023 0.472±0.019 0.826±0.008 0.701±0.002 0.567±0.001

FBST-AV NoN 0.516±0.033 0.517±0.019 0.517±0.023 0.879±0.004 0.704±0.021 0.610±0.020

FBST N 0.542±0.013 0.486±0.027 0.512±0.019 0.865±0.001 0.715±0.009 0.596±0.008

FBST-AV N 0.535±0.031 0.535±0.016 0.535±0.021 0.894±0.004 0.724±0.018 0.620±0.018

Table 2: Results on triplet generation evaluated on triplet precision, recall, exact match F1, source F1, target F1,
and source and target F1 for the FactBank source and target projection (FBST). NoN denotes no normalization,
N denotes normalization, and AV denotes attribute-value structure. A shaded cell indicates the best performing
combination; light means only a slight improvement.

Projection Name Train Dev Test
Source-&-Target FBST 2.5K 767 392

Author-only FBAO 6.8K 1.9K 1K

Table 3: Information on data set sizes

Author-Only Factuality (AOF) We define the
author-only factuality task conceptually as the task
to generate all (event, factuality label) pairs for a
given input sentence such that the factuality label
belongs to a categorial scale, and the author views
the target with the given factuality label.

For each task, we have created a separate dis-
joint projection from the full FactBank database.
We provide information about these projections in
Table 3.

5.2 Representation of Factuality

Previous work represented factuality on a continu-
ous [-3, 3] scale or directly used the categorial fac-
tuality labels used in FactBank. We convert the cat-
egorial and numerical representation of FactBank
to words. We use the word values shown in Table 1
for all experiments containing factuality values, as
using the words leads to better task-specific embed-
dings therefore leading to better performance (on
average 5% for our baseline FactBank source and
target experiments).

5.3 Input/Output Formats

We define our input x as the raw text and prepend a
task prefix p depending on the task of choice. We
use a distinct task prefix for each task so that the
backbone language model can distinguish between
different tasks. For each sub-task that we perform,
we define separate target output formats.

Tuple Representation We represent the target as
tuples. We use example (1) above to show how this
data is represented. For the STF task, the output is

a list of triplets:
Input: source target factuality: Michael Wu sold
the property to five buyers and said he’d double his
money.
Output: (Wu, double, true)

For the AOF task, the output is a list of pairs:
Input: author only factuality: Michael Wu sold
the property to five buyers and said he’d double his
money.
Output: (sold, true); (said, true); (double, un-
known)

Attribute-Value Representation (AV) As an al-
ternative, we structure our target text in an attribute-
value pair format. For the STF task, we get:
Input: source target factuality: Michael Wu sold
the property to five buyers and said he’d double his
money.
Output: (source = Wu, target = double, true)

For the AOF task, we get:
Input: author only factuality: Michael Wu sold
the property to five buyers and said he’d double his
money.
Output: (target = sold, true); (target = said, true);
(target = double, unknown)

Inline Representation (Anno) We also represent
the AOF task as in-line annotations in the target
text representation, since we can anchor the factu-
ality on the target head word. We follow the same
annotation format style as Zhang et al. (2021), as
the authors found that this text generation target
performs well for tuple data representations. We
repeat the example from above in this format:
Input: author only factuality: He sold the prop-
erty to five buyers and said he’d double his money.
Output: Michael Wu [sold | true] the property to
five buyers and [said | true] he’d [double | unknown]
his money.

Note that this in-line annotation format does not
work for the STF task, because it relates two dis-
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tinct sentence elements to a factuality value.

5.4 Model
5.4.1 Flan-T5
For all experiments, we use the encoder-decoder
pre-trained Flan-T5 model (Chung et al., 2022).
The Flan-T5 model yields significant improve-
ments on many tasks over the T5 model (Raffel
et al., 2020) by adopting an instruction fine-tuning
methodology. By formulating the STF and AOF
tasks as a text generation task, we can create end-
to-end models without a task-specific architecture
design.

5.4.2 Multi-task Learning
Models like T5 and Flan-T5 are multi-task in nature
by the pre-training objectives. In the pre-training
of T5 (Raffel et al., 2020), T5 was trained with
a mixture of tasks separated by task specific pre-
fixes. We perform multi-task learning experiments
by prepending task specific prefixes for each task
as mentioned in Section 5.1. Furthermore, we also
perform proportional mixing to sample in propor-
tion to the dataset size.

6 Experiments: Source and Target

In this section, we perform experiments on the
STF task. We evaluate exclusively on FBST. Our
goal is to achieve the best results on this projection
of the corpus.

6.1 Experimental Setup
Datasets and Target Structure We first offer
baselines on the FactBank source and target pro-
jection (FBST henceforth). We then perform ex-
periments on the target output structure to deter-
mine how much influence this has on results. Fi-
nally, we perform multi-task learning experiments
with the author-only projection of FactBank, CB
(De Marneffe et al., 2019), MPQA (Wiebe et al.,
2005b), and UW (Lee et al., 2015). All experiments
are performed using the STF paradigm defined in
Section 5.1, where our task is to generate lists of
triplets of format (source, target, factuality label).

Evaluation Our main method of evaluation is the
exact match F1 metric. With this metric, a predic-
tion is only correct if all three elements of the triplet
match. This metric is directly equivalent to micro-
f1 but we refer to it as the exact match F1 in this
paper. Furthermore, to assess how much each cor-
pus combination is contributing to the source and

target matching of the triplet, we offer F1 scores
for the source, target, and the source and target
combination.

Experiment Details We use a standard fine-
tuning approach on Flan-T5. We fine-tune our mod-
els for at most 10 epochs with a learning rate of
3e-4, with early stopping being used if the triplet-
F1 did not increase on the dev set. All experiments
are averaged over three runs using fixed seeds (7,
21, and 42). We also report the standard devia-
tion over three runs. We leave more experimental
details to Appendix B.

Text Normalization Following insights and
methodology from Zhang et al. (2021), we ap-
ply their text normalization strategy on our exper-
iments (denoted NoN for no normalization, N for
normalized). Zhang et al. (2021) found that text
normalization helps for detecting aspect and opin-
ion phrases in (aspect, opinion, sentiment) triplets
mainly through producing the correct morphology
of a word and through addressing orthographic
alternatives to words. Their method finds the re-
placement word from a corresponding vocabulary
set using the Levenshtein distance. We note that
in our experiments, most of the improvements that
normalization yielded were due to correcting mor-
phological errors (e.g. gold is houses, model pre-
dicts house) or capitalization errors (gold is Mary,
model predicts mary).

6.2 Results: Baseline and Target Output
Restructuring

Baselines Table 2 shows our baseline results for
the FactBank source and target projection. We no-
tice some particular trends in this task and offer
insights. First, we see that normalization helps. For
our baseline FBST NoN experiment, we report a
triplet F1 of 0.472, whereas after normalization,
the triplet F1 increases to 0.512. Intuitively, nor-
malization most helps for sources. One of the main
benefits of normalization is producing the correct
morphology and orthography. We find that Fact-
Bank sources are often nouns or proper nouns and
normalization ensures the correct orthography. Fur-
thermore, we see that source outperforms target
in all cases and that labelling the correct source
and target pairs is not a trivial task. These results
are similar to Xia et al. (2021) who worked on the
MPQA corpus, which annotates opinions (i.e., text
passages indicating opinions), sources of opinions,
and the targets of these events. The authors found
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Combo Triplet P Triplet R Triplet F1 Source Target S+T
Baseline: FBST 0.535±0.031 0.535±0.016 0.535±0.021 0.894±0.004 0.724±0.018 0.620±0.018

FBST, CB 0.562±0.017 0.536±0.017 0.549±0.024 0.907±0.013 0.729±0.002 0.633±0.008

FBST, MPQA 0.497±0.009 0.485±0.009 0.491±0.030 0.903±0.020 0.715±0.007 0.615±0.023

FBST, UW 0.585±0.013 0.526±0.013 0.553±0.010 0.882±0.010 0.725±0.013 0.631±0.002

FBST, FBAO 0.683±0.025 0.655±0.025 0.669±0.032 0.890±0.029 0.854±0.009 0.746±0.014

FBST, FBAO* 0.710±0.030 0.661±0.030 0.684±0.030 0.893±0.005 0.837±0.012 0.753±0.010

Table 4: Results on triplet precision, recall, exact match F1, source F1, target F1, and the source and target F1 for
the MTL experiments on generating factuality triplets for the FactBank source and target projection (FBST). A
shaded cell indicates state-of-the-art; light means only a slight improvement.

Macro-F1 CT+ PR+ UU PR- CT-
Murzaku et al. (2022) 0.680 0.767 0.714 0.735 0.667 0.519
FBAO 0.604±0.094 0.891±0.016 0.317±0.152 0.754±0.016 0.389±0.347 0.667±0.039

FBAO-Anno 0.632±0.065 0.791±0.010 0.436±0.139 0.774±0.005 0.389±0.347 0.769±0.059

FBAO-Pol 0.667±0.023 0.907±0.030 0.334±0.059 0.792±0.020 0.667±0.000 0.695±0.065

FBAO-Anno-Pol 0.690±0.008 0.792±0.003 0.246±0.060 0.751±0.013 1.000±0.000 0.685±0.041

FBAO*, FBST 0.694±0.029 0.939±0.015 0.312±0.036 0.809±0.008 0.778±0.192 0.675±0.061

Table 5: Results on FactBank author-only (FBAO) compared to the end-to-end SOTA held by Murzaku et al. (2022).
We show results for the in-line annotation style (FBAO-Anno) and the result modelling our task alongside polarity
(FBAO-Pol). A shaded cell indicates a new SOTA; light means only a slight improvement.

that matching MPQA sources to opinions is far
easier than matching MPQA targets to opinions.

Attribute-Value (AV) Addition In Table 2, we
also report results on experiments where we use the
attribute-value (AV) format for the output. This for-
matting especially helps with disambiguation of the
source, targets, and factuality, providing our gener-
ative framework deeper contextual understanding
and cues for triplet generation. We find that this
output format produces large increases in all mea-
sures, namely the triplet F1, source F1, and source
and target F1. Once again, we see that normaliza-
tion helps, achieving our highest baseline triplet
F1 of 0.535. Because of the success of this target
format restructuring (AV) and normalization (N),
we perform the remaining experiments in this paper
using the AV output format and the normalization
step.

6.3 Results: Multi-task learning experiments
We perform multi-task learning (MTL) experi-
ments using author-only factuality corpora, opinion
role labelling corpora, and the combinations of all
of them. Following our approach described in Sec-
tion 5.4.1, we prepend task specific prefixes for
our tasks, such as author only factuality: or
opinion role label: . We mirror the format of our

FactBank source and target examples for our MTL
experiments. For example, when we add in the
author-only factuality data, we structure our tar-
gets as (target = event, factuality label), mirroring
the format of our source and target data. Simi-
larly, for other corpora such as MPQA which only
contain source and target information without any
factuality labels, we structure our data as (source
= opinion source, target = opinion target). We
aim to tackle the following with our MTL exper-
iments: first, we aim to improve target identifica-
tion. Our FBST-only system performs worse on
identifying targets than sources. To address this,
we combine with author-only event factuality cor-
pora, namely FactBank (denoted FBAO), and CB
and UW, which both annotate events in a similar
structure and genre as FactBank. Second, we aim
to improve source and target linking, as the FBST-
only system cannot perform well on this task. We
attempt to address this using the Xia et al. (2021)
projection of the MPQA corpus which annotates
opinion sources and opinion targets. We also at-
tempt an experiment with a direct mirroring of the
source and target representation when using the
FactBank author-only data (we denote this repre-
sentation as FBAO*). Here, we explicitly state the
author of the text as a source, structuring our target
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text to be generated as (source = AUTHOR, target
= event, factuality label).

Results for our MTL experiments are shown in
Table 4. We see that all corpus combinations be-
sides MPQA help for the triplet F1 metric. Most
notably, we find that adding the FactBank author-
only data (FBAO) and in particular, the triplet Fact-
Bank author-only projection (FBAO*) helps the
most, especially for the target and source+target
F1. We note though that the triplet F1 results for
FBST with FBAO and FBAO* both have rather
large standard deviations, so the difference may
not be significant. Adding other author-only fac-
tuality corpora such as UW and CB help, but not
as much as FactBank. We see that CB does not
boost performance much on FactBank, and UW
actually helps more for the triplet F1 metric. This
may be because we are performing a separate task
and using a different machine learning paradigm.
MPQA does not help for any metric besides the
source metric. Opinion role labelling is a separate
task and appears to be incompatible with the source
and target factuality task. However, we note that
MPQA also annotates targets differently from Fact-
Bank, which explains why the MTL approach did
not help in this case.

7 Experiments: Author Only

In this section, we perform experiments on the
AOF task. We evaluate exclusively on FBAO, per-
forming our experiments with the same model and
training paradigm. We use three styles of target
representation mentioned in Section 5: one style
where we extract event words and their associated
factuality values as tuples, an in-line annotation
style used by Zhang et al. (2021), and finally a
MTL triplet generation task with the source and
target projection of FactBank where we generate
triplets of format (source = AUTHOR, target = tar-
get event, factuality label). Furthermore, we also
factor polarity in our experiments. Murzaku et al.
(2022) found that separately predicting polarity and
factuality for the event factuality task can lead to
error reductions since polarity is often expressed
independently of the degree of factuality. We treat
the addition of polarity as a triplet generation task
generating triplets of format (target = target event,
factuality label, polarity). We reduce the factual-
ity label to the strength of factuality (true, possibly
true, unknown), with the polarity being one of (neg-
ative, unknown, positive).

7.1 End-to-End Author-Only Factuality

We follow the end-to-end evaluation setup on Fact-
Bank as we did in (Murzaku et al., 2022), evalu-
ating on per-label F1 and macro-F1. Because our
system is end-to-end, we cannot evaluate on Pear-
son correlation or MAE like some previous event
factuality papers that assumed gold heads. For an
apples-to-apples comparison, we use the same la-
bel mappings as Murzaku et al. (2022). We average
over three runs and also report standard deviation
which the previous authors did not report.

Table 5 shows results for our experiments on
FactBank author-only (FBAO), FBAO with an in-
line annotation target format (FBAO-Anno), FBAO
as a triplet generation task that includes polarity
(Pol), and FBAO finally a MTL triplet generation
task with the source and target projection of Fact-
Bank, tested on FBAO (FBAO*, FBST). We note
the very high standard deviations in the PR+ and
PR- measurements; these labels are rare even after
collapsing them to the same class, especially in the
test set, which explain the extreme standard devi-
ation fluctuations. Our baseline system (FBAO)
yields a noticeable increase in the CT+, UU, and
CT- labels compared to the baseline, but performs
worse on the PR+ and PR- labels. The in-line an-
notation text generation task performs better on
macro-F1 than the baseline tuple generation task,
with a notable increase in CT-. Factoring polarity
helps as well: for both configurations, factoring
polarity leads to an increase and achieves new a
SOTA for the PR- label in our FBAO-Anno-Pol
setup. Our best performing result is our multi-task
learning on FBAO and FBST, where we modify
FBAO to include the author as a source in its triplet
representation. We achieve new SOTA on macro-
f1, a large increase and SOTA on the CT+ label,
and SOTA on UU.

7.2 FBAO: Exact Match Evaluation

To be able to compare performance on the STF
and AOF tasks, we evaluate using the same metric
as Section 6, specifically using tuple/triplet exact
match precision, recall, F1, and target F1. This
evaluation corresponds to a micro-F1, as it does not
depend on the factuality value. In this evaluation,
we do not consider source F1 or source and target
F1 because the source is the author of the text. We
aim to quantify how well our generative system
performs at generating author-only structures, and
therefore evaluate using an exact match evaluation.
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P R EM F1 Target F1
FBAO 0.858 ±0.004 0.874 ±0.012 0.866 ±0.007 0.865 ±0.004

FBAO-Anno 0.789 ±0.004 0.750 ±0.013 0.769 ±0.009 0.845 ±0.001

FBAO-Pol 0.878 ±0.016 0.892 ±0.021 0.884 ±0.018 0.884 ±0.001

FBAO-Anno Pol 0.786 ±0.006 0.750 ±0.008 0.767 ±0.005 0.849 ±0.002

FBAO*, FBST 0.895 ±0.009 0.898 ±0.009 0.897 ±0.008 0.889 ±0.003

Table 6: Results on FactBank author-only (FBAO) using a precision, recall, tuple exact match F1, triplet exact
match F1 for the FBAO* and FBST combo, and target F1. A shaded cell indicates a new SOTA; light means only a
slight improvement.

We are the first to report results on FactBank using
an exact match evaluation.

Table 6 shows results for our exact match eval-
uation on FBAO. We see two clear trends: first,
the in-line annotation generation task does not per-
form as well in our exact match evaluation com-
pared to our tuple/triplet generation task. This
makes sense given that the Anno option performs
markedly worse on the most common factuality
value, CT+, which in the macro-average is com-
pensated by better performances for other values,
but in the exact-match evaluation lowers its overall
performance. Our best results are produced by our
MTL setup with FBAO and FBST(FBAO*, FBST).
Similar to our source and target results in Table 4,
we see that the AOF task benefits from the FBST
data in a MTL setup performing the best once again.
We also see, as expected, that the AOF task is easier
than the STF task, with a result margin of 13.3%
absolute, since fewer details need to be predicted,
and since more data is available.

8 Conclusion

We provide a new generative framework for the
event factuality prediction task using Flan-T5 and
focusing on output format, individual task prefixes,
and multi-task learning. To tackle the complexity
of the FactBank corpus, we create a database repre-
sentation that simplifies extracting sources, targets,
and factuality values for all projections of Fact-
Bank, which we will publicly release. Our source-
and-target experiments show that careful output
formatting can yield improvements (Table 2) and
careful attention to multi-task learning mixtures
can help (Table 4). We evaluate the author-only
event factuality task using both macro-average (Ta-
ble 5) and exact-match evaluation metrics (Table 6),
with as expected different results. We achieve new
state-of-the-art results on both source-and-target
(because no prior results) and author-only (beating

existing results) end-to-end factuality prediction.
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Limitations

While we achieved preliminary results and created
a preliminary projection of the FactBank source
and target corpus, we do not capture the full source
and target nesting in our machine learning exper-
iments. We repeat the example from Section 4:
Mary said that John said that Jane was coming
to dinner, but Bob said that she was not. The em-
bedded sources for the coming event are (Author
→ Mary → John), which translates to "according
to the author according to Mary according to John,
did the coming event happen?" In our experiments
and machine learning architecture, we focus on the
last nested source, or John in this example. In fu-
ture work, we aim to link together all sources and
their embedded nesting structures.

We note that all experiments in this paper were
performed using the Flan-T5-base model. In fu-
ture work on this task, we will explore different
generative models such as GPT-3 or BART, which
may yield stronger performing systems or more
interesting results. We are especially curious about
framing this task using GPT-3, especially perform-
ing tasks on few-shot or in-context learning.

709



Finally, we note that these experiments do not
account for potential biases prevalent in fine-tuning
large language models. We hypothesize that for
some sources in text (i.e. power figures, authorities,
or specific names), there may be biases towards cer-
tain labels. We will investigate these biases in fu-
ture work, as an event factuality prediction system
with inherent bias can have real world implications.

Ethics Statement

As mentioned in the limitations section, we note
that these experiments do not account for poten-
tial biases prevalent in fine-tuning large language
models. In a real world deployment of our model,
we hypothesize that there could be a potential mis-
labelling of factuality values depending on bias
towards sources of utterances. For example, if a
power figure states an event, will the event label
be more biased towards being factual just because
of the source of the statement? We will investigate
these questions and issues in future work.

We also note that our paper is foundational re-
search and we are not tied to any direct applica-
tions.
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A Distribution of Data Set and Database

We intend to distribute the split of the source and
target FactBank dataset. We have included the
dataset in this submissions for reviewers to inspect,
but cannot distribute it due to copyright reasons.
Instead, we will release a Python script alongside
our SQLite database implementation which will
produce the files submitted with this paper with the
original FactBank corpus as an input. The Fact-
Bank corpus can be obtained by researchers from
the Linguistic Data Consortium, catalog number
LDC2009T23.

Our dataset split is detailed in Table 3. We split
our corpus using the methods as Murzaku et al.
(2022), which also includes splitting by article.
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B Details on Experiments

We use a standard fine-tuning approach on the
Flan-T5-base model with 247,000,000 parameters.
For computing, we used our employer’s GPU clus-
ter and performed experiments on a Tesla V100-
SXM2 GPU. Compute jobs typically ranged from
10 minutes for small single corpus combinations,
to 30 minutes for larger multi-task learning corpus
combinations. We did not do any hyperparameter
search or hyperparameter tuning.

We fine-tuned our models for at most 10 epochs
with a learning rate of 3e-4, with early stopping
being used if the triplet-F1 did not increase or if
the factuality macro-F1 did not increase. All met-
rics for experiments were averaged over three runs
using fixed seeds (7, 21, and 42). We report the
average over three runs and the standard deviation
over three runs.

For prediction normalization on our fixed ex-
periments setting, we use the editdistance Python
package. We provide scripts for our prediction nor-
malization and full evaluation and will be made
publicly available.

To fine-tune our models and run experiments,
we used PyTorch lightning Falcon et al. (2019) and
the transformers library provided by HuggingFace
Wolf et al. (2019). All code for fine-tuning, mod-
elling, and preprocessing will be made available.

C Database Structure
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Figure 1: Entity-Relation Diagram of the FactBank Database. Note that the one-to-one notation between mentions
and sources only applies to source mentions, not target mentions, which are one-to-many.
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