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Abstract

Previous work has shown that the representa-
tions output by contextual language models are
more anisotropic than static type embeddings,
and typically display outlier dimensions. This
seems to be true for both monolingual and mul-
tilingual models, although much less work has
been done on the multilingual context. Why
these outliers occur and how they affect the rep-
resentations is still an active area of research.
We investigate outlier dimensions and their re-
lationship to anisotropy in multiple pre-trained
multilingual language models. We focus on
cross-lingual semantic similarity tasks, as these
are natural tasks for evaluating multilingual rep-
resentations. Specifically, we examine sentence
representations. Sentence transformers which
are fine-tuned on parallel resources (that are
not always available) perform better on this
task, and we show that their representations
are more isotropic. However, we aim to im-
prove multilingual representations in general.
We investigate how much of the performance
difference can be made up by only transforming
the embedding space without fine-tuning, and
visualise the resulting spaces. We test different
operations: Removing individual outlier dimen-
sions, cluster-based isotropy enhancement, and
ZCA whitening. We publish our code for repro-
ducibility.!

1 Introduction

Since BERT-like (Devlin et al., 2019) language
models rose to popularity, much has been made of
the study of their hidden states and parameters (cf.
Rogers et al., 2020). Thanks to their ability to in-
corporate context, they have been a major improve-
ment for most tasks over static input embeddings.
However, a certain issue has been shown in a num-
ber of works to affect contextual language mod-
els to a greater degree: outlier dimensions in the
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Figure 1: Effect of removing dimension 588 from layer
8 on Tatoeba cosine similarities. The x-axis is the rank-
ing position of candidate sentences; the y-axis is their
cosine distance from the query sentence, which should
be relatively large for all but the correct translation. Af-
ter removing 588 from the sentence representations, the
highest ranking candidate sentence is much more clearly
differentiated from the lower-ranking candidates.

weights and hidden states (Kovaleva et al., 2021)
and correspondingly, high anisotropy (Gao et al.,
2019; Ethayarajh, 2019, inter alia). At the same
time, the raw pre-trained embeddings work surpris-
ingly badly for semantic similarity tasks, prompt-
ing efforts to train better sentence embeddings such
as done by Reimers and Gurevych (2019).

In this paper, we are interested in multilingual
sentence embedding quality. We discuss both out-
liers and anisotropy as two related aspects of em-
bedding quality. Outlier dimensions are typically
defined as dimensions that consistently produce
values of a magnitude more than three or five times
the standard deviation of all dimensions (Kovaleva
et al., 2021). If a model has outlier dimensions
in its hidden states, it will necessarily have higher
anisotropy, since these dimensions create a con-
sistent shift towards a certain direction in the em-
bedding space. On the other hand, high anisotropy
can also occur without individual dimensions meet-
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ing the outlier definition, namely if some principal
components composed of multiple dimensions are
much larger than others. Therefore, as we under-
stand it, anisotropy is the wider phenomenon of
which outliers are a subset.

From a theoretical perspective, high anisotropy
is considered a problem because it means that the
model is not using the full representation space
available, and because it translates to high average
cosine similarity even between unrelated words or
sentences. Figure 1 illustrates this problem clearly.
This can increase the odds of picking a wrong can-
didate on word and sentence similarity tests, and
makes representations produced by the model less
expressive and less interpretable.

Outlier dimensions, since they contribute to
anisotropy, entail similar challenges. On the other
hand, they are easy to spot, easy to manipulate,
and a straightforward entry point to the anisotropy
issue. Previous work has sometimes found that
models rely strongly on outlier weights for certain
tasks, and are overly vulnerable to pruning a select
few weights, e.g. (Kovaleva et al., 2021). Further,
outliers have been found to present a challenge in
model quantisation (Bondarenko et al., 2021).

Because they are aspects of the output represen-
tations, studies of anisotropy and outliers often use
semantic similarity tests that rely directly on these
representations, without fine-tuning the model. We
follow this approach as well. In this work, we
specifically consider sentence representations.

Only a small amount of work has been done on
outliers and isotropy in multilingual models, which
we focus on. Rajaee and Pilehvar (2022) found that
mBERT does not contain outlier dimensions, while
XLM-R does. However, both models nevertheless
exhibit high anisotropy.

Another important aspect to consider in the mul-
tilingual case is that even if representations are
more or less isotropically distributed, the subspaces
for different languages can still be misaligned,
which further affects cross-lingual performance.
Training with parallel data, as done in Reimers and
Gurevych (2020), is one way to radically improve
cross-lingual alignment. However, we are inter-
ested in pushing models to perform well without
parallel data. The present work therefore attempts
to separate the effect of anisotropy from other fac-
tors that could account for the performance gap,
such as the use of parallel data objectives and inter-
nal misalignment of languages.

Our contributions. This work provides an
in-depth exploration of outlier dimensions and
anisotropy in XLM-R and other pre-trained mul-
tilingual language models, using the Tatoeba
(Artetxe and Schwenk, 2019), multilingual STS
(Cer et al., 2017), and BUCC 2018 (Zweigenbaum
et al., 2018) semantic similarity tasks and looking
directly at the relevant hidden state representations.

We confirm that certain outlier dimensions have
a negative effect on similarity search in the cross-
lingual setting (§ 5). We find that outlier dimen-
sions can differ between languages, although the
largest outliers occur in all or most tested languages
(§ 5). Anisotropy also varies across languages, and
we observe a possible relationship to pre-training
data size (§ 4). In our experiments, mBERT does
exhibit outlier dimensions (§ 4).

Looking at semantic similarity task perfor-
mance, we show that zeroing outliers and isotropy-
enhancing transformations are quick ways to im-
prove model performance on such tasks (§ 5, 6).
However, a multilingual sentence-transformer per-
forms much better out-of-the-box, and benefits lit-
tle to not at all from further increasing isotropy. As
we show in § 4, this model is already much more
isotropic than XLLM-R, its pre-trained equivalent.

Finally, we give a clearer intuition of the phe-
nomena in question by using tSNE (van der Maaten
and Hinton, 2008) to visualise embedding spaces
(§ 7). This allows us to grasp more intuitively how
anisotropy is one aspect of misalignment between
languages in multilingual models.

2 Related Work

BERT-like models have dominated NLP research
in recent years. Multilingual BERT (Devlin et al.,
2019) and XLM-R (Conneau et al., 2020) are two
popular models whose variants are used for many
different ends. Accordingly, some amount of re-
search has focused on analysing properties of the
models, sometimes called “BERTology” (Rogers
et al., 2020). The phenomena we discuss in this
paper—outlier dimensions and anisotropy—are
just two aspects of model analysis.

2.1 Describing the phenomena

First, we discuss outlier dimensions specifically.
Kovaleva et al. (2021) focus specifically on outlier
dimensions in the LayerNorm weights of English
BERT. Around the same time that the LayerNorm
outliers arise, training loss and evaluation perplex-
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ity start to fall off sharply. The exact cause is un-
known but this suggests the outliers help the model,
which they corroborate by showing that task per-
formance decreases significantly when zeroing out
outlier weights after fine-tuning. If zeroing the
weights is done before fine-tuning, the model re-
covers most of the performance, but a slight disad-
vantage is still observed.

Timkey and van Schijndel (2021) take a different
view of outliers in that they analyse hidden repre-
sentations instead of weights. They also focus on
similarity measures and find that in this context, the
outlier dimensions “obscure representational qual-
ity”. Rajaee and Pilehvar (2022) are one of few to
focus on outliers in multilingual models: They find
no outliers in mBERT, but do find them in XLM-R.
The paper also looks at the embeddings of different
languages separately, an approach we follow for
the majority of our experiments.

As we mention above, outliers are one way to
look at anisotropy in hidden representations. Etha-
yarajh (2019) is one of the first to present evidence
for unusually high anisotropy in contextual embed-
ding models, including BERT and GPT-2. Gao et al.
(2019) describe the representation degeneration
problem and suggest using cosine regularisation to
mitigate it. We discuss mitigation approaches in
more detail below (§ 2.3).

There are multiple ways to measure (an)isotropy,
including but not limited to:

* average cosine similarity (cf. Ethayarajh,
2019; Timkey and van Schijndel, 2021)

* based on principal components (Mu and
Viswanath, 2018)

¢ IsoScore (Rudman et al., 2022)

These are continuous measures, with value
ranges depending on the method. While lower
anisotropy is theoretically desirable, it can be
hard to decide at what point a space is “isotropic
enough”. In the present work, we stick to the first
measure, that is, average cosine similarity between
random pairs (see § 4).

2.2 Searching for causes

It has been shown that word frequency plays a sig-
nificant role in how representations are distributed
in contextual models: For instance, rare words tend
to be pushed further from the origin during pre-
training, leading to a separation of tokens by fre-

quency. Yu et al. (2022) show that rare token em-
beddings are the first to become anisotropic during
pre-training, and seem to “take down with them”
the rest of the space. Puccetti et al. (2022) similarly
find that outliers are “driven by token frequency”.

On the other hand, Luo et al. (2021) argue
that outliers are caused by positional embeddings
which display outliers, and this propagates forward
through the model. They demonstrate this by train-
ing RoOBERTa models with and without positional
embeddings. The model without positional embed-
dings has much worse perplexity, but no outliers.
This idea has not been confirmed by other works,
and Rajaee and Pilehvar (2022) find that multi-
lingual BERT, despite having positional embed-
dings, does not display outliers. We use a different
mBERT checkpoint in our experiments which does
exhibit outliers, but we draw no conclusions about
positional embeddings.

2.3 Attempts at mitigation

Various methods have been suggested to increase
isotropy in the contextual embedding space.

During training. Gao et al. (2019), who de-
scribed anisotropy early on, proposed a cosine regu-
larisation term to mitigate it. This term simply max-
imises the angle between any non-identical words.
Building on this, Zhang et al. (2020) propose Lapla-
cian regularisation as a way to specifically reduce
similarity of word pairs that do not occur in similar
contexts. Ferner and Wegenkittl (2022) apply a
token-level variational loss to an encoder-decoder
Transformer, similar to what is done in Variational
Auto-Encoders. All three works add the regularisa-
tion terms to a model they train from scratch.

On the other hand, Ding et al. (2022) test several
BERT-like models on GLUE tasks before and after
“isotropy calibration” (fine-tuning with regularisa-
tion terms), and find that task scores do not con-
sistently improve. They reason that this is because
the models already benefit from local isotropy, thus
further isotropy calibration does not help. We also
note that these experiments are all done on tasks
that use fine-tuning.

Post-hoc. Rather than training a model from
scratch, Li et al. (2020) train normalising flows
on STS and similar datasets that they want to test
on, starting with a pre-trained BERT model— they
call this approach BERT-flow. Both Su et al. (2021)
and Huang et al. (2021) apply whitening to sen-
tence representations. This operation transforms
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the mean of the sentence vectors to zero, and the
covariance matrix to the identity matrix, as we dis-
cuss in more detail in § 6. Su et al. (2021) combine
this with a dimensionality reduction strategy.
Timkey and van Schijndel (2021) also test sev-
eral ways of postprocessing representations, such
as standardisation and removing the top few prin-
cipal components. Liang et al. (2021) and Rajaee
and Pilehvar (2021a) remove dominant directions
from the embedding space. The former learns a
set of parameters for weighted removal (scaling) of
principal components, while the latter clusters the
data before removing the top principal components
from each cluster. Rajaee and Pilehvar (2021b)
find that removing the dominant directions after S-
BERT training decreases STS performance, while
removing them from the vanilla model improves
performance. We corroborate these findings for the
multilingual case. Jung et al. (2023) apply isotropy-
improving methods, namely normalising flows and
Whitening, in the context of dense retrieval models,
and find score improvements on the target task.

Contrastive fine-tuning. Contrastive learning
has become a popular technique in NLP in recent
years (Zhang et al., 2022). Among other things, it
has been shown to improve sentence embeddings
and ensure they are more uniformly distributed. Ex-
amples include Gao et al. (2021); Kim et al. (2021);
Zhang et al. (2021); Yan et al. (2021), and Reimers
and Gurevych (2019). The latter, which we use as
a reference in this work, uses in-batch contrastive
optimisation in later implementations.

3 Datasets

Because we will show results of each of our experi-
ments as we go along, we start here by introducing
the datasets used.

3.1 Tatoeba

This is a cross-lingual sentence retrieval task com-
piled by Artetxe and Schwenk (2019) and pruned
to 36 languages by Hu et al. (2020). We follow the
implementation used by the latter. Each language
is matched with English, and the objective is to find
the correct translation for each query. The subtasks
per language contain 1k examples each. The most
similar translations are retrieved using the cosine
similarity of the mean-pooled hidden representa-
tions from layer eight. The metric is accuracy.

3.2 BUCC

This is another similarity search task introduced
by Zweigenbaum et al. (2018). However, since
it focuses on parallel corpus building, not every
query sentence has a match in the target language.
Therefore, both precision and recall are impor-
tant to performance. BUCC has four subtasks:
German-English, French-English, Russian-English,
and Chinese-English. We again follow the imple-
mentation by Hu et al. (2020). The test data con-
tains several hundred thousand examples in each
corpus, with between 1900 (Chinese) and 14400
(Russian) matched pairs. The task metric is F1.

3.3 Multilingual STS

Another cross-lingual semantic similarity task is
Multilingual STS (Cer et al., 2017) from SemEval
2017. The task here is to score sentence pairs on a
scale from O to 5 representing their relative similar-
ity. There are four cross-lingual subtasks, namely
Arabic-English, two Spanish-English tasks of vary-
ing difficulty, and Turkish-English. Each subtask
contains 250 examples. The task metric is Pearson
correlation with the gold labels.

3.4 Wikipedia

Following Rajaee and Pilehvar (2022), we further
use a sample of Wikipedia data in six languages
(Arabic, English, Spanish, Sundanese, Swahili, and
Turkish) for our analysis. We use these for compa-
rability, as we investigate some of the same multi-
lingual models. The datasets contain between 347
(Sundanese) and 4952 (English) sentences.

4 Outlier and anisotropy analysis

Starting with data from Tatoeba, we derive sentence
embeddings for all statements in each dataset. By
deriving sentence embeddings, we mean encoding
each sentence using the model’s standard tokeniser,
running it through the model in inference mode,
then mean-pooling the result while ignoring special
tokens. We proceed to calculate anisotropy scores
for each language and dataset, as well as the outlier
dimensions. We use the 30 definition of outliers
here. Note, however, that by considering sentence
embeddings, which are already mean-pooled in one
direction, we essentially have a smaller standard
deviation and thus a more sensitive measure. For
this reason, we also show which outliers are smaller
than 50 by italicising them in our tables.
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Model | Anisotropy | Outliers | Means | Mean Cosine Contribution

588 -15.18 0.77
306 3.08 0.03
XLM-R 092 239 -2.06 0.02
180 1.86 0.01
227 -11.64 0.39
mBERT 0.73 195 -8.01 0.16
731 2.70 0.02
588 -6.78 0.22
. 145 -1.54 0.02

gfl‘;lgﬁT 0.35 306 1.46 0.003
459 -1.43 0.01
741 1.21 0.01

Table 1: Outliers and anisotropy scores in layer 8 of each model. The numbers in this table are based on Tatoeba
data. Outliers are sorted by magnitude. We show all outliers according to the 3o definition of outlier dimensions.
We italicise dimensions that do not qualify as outliers under the 5o definition.

For the anisotropy score, we adapt Timkey and
van Schijndel’s (2021) definition to the sentence
level. Let S be a sample of n random sentence
pairs from a corpus D. The approximate anisotropy
A(f7) of layer [ in model f is then:

A= 3 cos(file) fly) (D

{z,y}es

where cos(u, v) is the cosine similarity.

Further, we calculate the contributions to
anisotropy of the largest dimensions. Analogously
to the overall anisotropy, if CC;(u,v) = W
is the contribution of dimension i to the total co-
sine similarity of u and v, then the contribution of

dimension ¢ to the overall anisotropy is:

COUff) =+ Y COUA@). ). @

{z,y}eS

We use hidden representations from layer 8
when applying these techniques on Tatoeba data,
since this task is usually done using layer 8. We
test XLM-R, mBERT, and a multilingual S-BERT
(Reimers and Gurevych, 2020) model which we
have found to create good sentence embeddings
across many languages.’

Results of the analysis are shown in Table 1.
XLM-R has an extremely high anisotropy score:
Any given random sentence pair is already con-
sidered very similar to each other. One of its out-
lier dimensions (588) contributes far and away the

>The specific model we used is

sentence-transformers/x1lm-r-100langs-bert-base-
nli-stsb-mean-tokens and can be found on Huggingface.

largest part to the expected cosine similarity. This
dimension is still present as an outlier, though with
a smaller magnitude and cosine contribution, in
the multilingual S-BERT which was derived from
XLM-R. The S-BERT model also has much lower
anisotropy overall.

mBERT shows lower anisotropy than XLM-R
but much higher values than the S-BERT. Its two
largest dimensions both contribute significantly to
anisotropy. Unlike Rajaee and Pilehvar (2022), we
do find outlier dimensions in multilingual BERT. It
is worth noting that we use a different checkpoint
than they do (they use the uncased model, we use
the cased version), and we focus on sentence repre-
sentations rather than individual word embeddings.
To verify our findings, we repeat our experiments
on the same Wikipedia data they used—this now
concerns the final layer of the model. We calculate
sentence embeddings in this case as well. These
results are listed in Table 2. Note that outlier di-
mensions can and do differ from layer to layer,
which we observe in all three of these models. The
multilingual S-BERT has no outliers larger than
50 in the output layer, but does have larger outlier
dimensions in the middle layer 8. It may be that the
sentence-transformer tuning affects the later layers
first and therefore more thoroughly.

In Table 3, we report anisotropy scores per lan-
guage for our models. We also use Wikipedia data
here, since this includes fewer languages but is
of a more natural domain than Tatoeba. XLM-R
exhibits such high anisotropy in these sentence em-
beddings that there is no meaningful difference
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Model | Anisotropy | Outliers | Means | Mean Cosine Contribution
588 17.86 0.89
XLM-R 099 741 -5.62 0.09
423 -1.97 0.03
731 -1.54 0.02
373 -1.22 0.01
ESSSE)T 0.61 89 -1.04 0.01
511 -0.99 0.01
761 -0.92 0.01
493 -0.86 0.01
308 -0.80 0.01
Multil. 027 281 0.67 0.003
S-BERT ' 176 0.57 0.002
152 -0.57 0.002

Table 2: Outliers and anisotropy scores in the output layer of each model. The numbers in this table are based on
the Wikipedia data. Outliers are sorted by magnitude. We use the 3o definition of outlier dimensions. We italicise
dimensions that do not qualify as outliers under the 5o definition.

Model | ar en es su SW tr

XLM-R 0.996 0997 0.996 0.996 0.995 0.996
mBERT (cased) | 0.65 0.49 0.56 0.64 0.69 0.6
Multil. S-BERT | 0.21 0.17 0.19 0.28 0.59 0.17

Table 3: Anisotropy scores, final layer, per language, on the Wikipedia data.

between the scores across languages. However, the
other two models both show an interesting pattern:
English and Spanish have the most isotropic spaces,
with anisotropy increasing roughly as training data
size decreases. This observation fits with the idea
that anisotropy is frequency-driven (Yu et al., 2022;
Puccetti et al., 2022), i.e., that less frequent tokens
tend to be pushed further from the origin. Ara-
bic is more anisotropic than Turkish despite hav-
ing the same (S-BERT) or double (mBERT) the
pre-training data size. Presumably this is due to
Arabic using a non-Latin script, since the model
has seen more Latin-script data. Sundanese and
Swahili are the two languages with the smallest
pre-training data of this set. Swabhili has the highest
anisotropy in both models, and by a large margin
in the S-BERT model. This is somewhat surprising,
since Sundanese has even smaller pre-training data,
but may be down to data quality or tokenisation
issues. It may even be that the S-BERT tuning
included bad Swahili data—however, this is specu-
lation, since the relevant documentation is lacking.

For XLLM-R, we further graph the average hidden
representations per layer using Tatoeba data. Layer
8 is shown in Figure 2; all layers in Figure 4 in the
Appendix.

Layer 8
20 y

—10

-20

0 100 200 300 400 500 600 700 800

Figure 2: XLM-R mean embedding over all Tatoeba
data; layer 8. The grey area denotes 30 around the
mean. The outlier dimensions are clearly visible.

S Zeroing out dimensions

Based on the outlier analysis, we experiment with
zeroing out dimensions from the sentence represen-
tations before feeding them to the similarity search
functions. The biggest outlier, 588, clearly dam-
ages performance by greatly raising the similarity
of all sentences. The correct candidate may thus
be eclipsed by a false one more easily. Figure 1
illustrates how this occurs. On the x-axis are the
ranking positions of candidate sentences, on the
y-axis their average cosine distances (inverse to
cosine similarity). In the unmodified model, all
candidates are highly similar to the query sentence.
After removing 588, candidates with lower ranking
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Model Tatoeba BUCC
XLM-R 50.35 59.1
XLM-R -588 52.99 59.6
XLM-R -306 50.59 58.0
XLM-R -239 51.11 59.2
XLM-R, 18 dims rem. 60.09 64.4
~ Multil. S-BERT | 85.17 857

Table 4: Average Tatoeba (accuracy) and BUCC (F1)
scores for XLM-R and modified versions with large
dimensions set to zero. The multilingual S-BERT is
included as a reference.

become much more dissimilar, and the difference
between the top candidate and the other sentences
increases, which is a desirable property (note that
the graphic does not show whether and which can-
didate sentences changed their ranking as a result).

In addition to zeroing the largest outliers, we
identified other dimensions of interest by their mag-
nitude. We included the ten largest dimensions in
each language of Tatoeba, finding a total of 18 di-
mensions that are in the top ten for any of the 36
languages.®> These dimensions include the outliers
previously identified, as well as additional large di-
mensions. We explored removing these dimensions
individually and generally found smaller effects,
though still a marked effect for some of them. The
results are listed in Table 4.

We removed the same dimensions from sentence
embeddings of BUCC (Zweigenbaum et al., 2018)
data. Interestingly, this sometimes improved preci-
sion while also worsening recall. Thus, the overall
improvements on this task were small (e.g., 588)
or even negated (306). Removing all 18 large di-
mensions from Tatoeba and BUCC yields +9.7 ac-
curacy and +5.3 F1 over the vanilla XLM-R model,
respectively. That said, even with this performance
gain, the gap to the sentence-transformer is still
very large. In addition, manually zeroing a large
number of dimensions depending on the task data
cannot be done in a real-world system.

6 Isotropy-enhancing operations

Aside from directly zeroing out individual dimen-
sions, we can apply transformations over the set of
embeddings that largely eliminate anisotropy and
mean-center the representations. In this work, we
test two such transformations:

312, 63, 145, 151, 152, 266, 267, 459, 723, 728, 588, 306,
239, 184, 180]

1. ZCA Whitening (cf. Huang et al., 2021)

2. Cluster-based isotropy enhancement (Rajaee
and Pilehvar, 2021a)

6.1 ZCA Whitening

Whitening is an operation originally used in data
pre-processing, in order to remove correlations be-
tween the input data features to a machine learning
system. It is also called a “sphering transforma-
tion”, since the resulting data space is a hyperdi-
mensional sphere. However, whitening has recently
been used to transform output embeddings of mod-
els such as BERT (cf. Huang et al., 2021), before
using them for downstream applications.

For a given space X with covariance 3 and mean
0, there are many valid whitening transformations.
The resulting matrix Y = WX must have the iden-
tity matrix [ as its covariance, and the whitening
transformation W must satisfy the condition:

wiw =x~h (3)

Given that X can be decomposed into:
> = DAD”, “4)
a valid W can be found as follows:
W = DA :DT. (5)

6.2 Cluster-based isotropy enhancement

We adopt this method from Rajaee and Pilehvar
(2021a). The first step is to separate the provided
data into clusters. In their paper, Rajaee and Pile-
hvar (2021a) use 27 clusters. We make the number
of clusters dependent on the number of examples—
with too few examples in a single cluster, the con-
cept of “isotropy” becomes meaningless, and it can
lead to computation errors. Each cluster is mean-
centered, which is necessary for the subsequent
steps. Then, PCA is applied to every cluster, and
the top k principal components (‘“dominant direc-
tions”) are zeroed out. We follow the original paper
in setting k = 12.

6.3 Discussion

The common thread of these methods is that they
transform the output representations based on some
set of encoded data. This means that either the
transformation must be calculated anew for every
set of data, or retained from a training set in order to
apply it to new data. Though this is not ideal from
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Model Anisotropy | Tatoeba STS
ar-en | es-en a) | es-en b) | tr-en
XLM-R 0.92 50.35 114 .04 -.059 141
XLM-R, 18 dims rem. 0.47 60.09 — — — —
XLM-R + CBIE —-39x107° | 69.01 316 445 121 37
XLM-R + Whitening | 7.6 x 107° 70.03 355 444 153 36
77777 mBERT | 073 | 3753 | 20 | 244 | 146 | 172
mBERT + CBIE 5.7 x107° 45.79 25 403 15 217
mBERT + Whitening | —6.6 x 1076 | 45.14 208 .395 171 154
"~ Multil. S-BERT | 035 | 817 | 772 | 779 | 235 | 762
S-BERT + CBIE 5.8 x 107° 86.36 722 742 233 7124
S-BERT + Whitening 0.0001 87.35 745 172 222 748

Table 5: Anisotropy scores, average Tatoeba (accuracy) scores, and STS cross-lingual subset scores (Pearson
correlation) for XLM-R, mBERT, multilingual S-BERT, and modified versions with post-hoc transformations

applied to the sentence embeddings.

an application perspective, we follow the approach
of calculating the transformation for every new set
of encoded data. The tasks in question do not use
fine-tuning on any kind of training data, so we
transform the embedded test data. An alternative
would be to learn and retain a transformation based
on some external dataset, then apply this to the
task data. Such an approach would be especially
helpful when doing inference on only a few queries
at a time, or when the overhead of computing the
transformation should be avoided at inference time.

6.4 Results

After applying the transformations, we run our
anisotropy analysis again. We also test Tatoeba
and STS performance before and after the trans-
formations. The results are listed in Table 5. For
XLM-R, the transformations lead to a performance
boost of almost 20 points on Tatoeba. Recall that
removing the top dimensions improved accuracy
by only around 10 points. For mBERT, which is
more isotropic to begin with, the difference is only
eight points. Other factors, such as a more com-
plex misalignment of different languages, seem to
be a bigger bottleneck for its performance. The
multilingual S-BERT benefits very little from the
isotropy-enhancing transformations.

For STS, the multilingual S-BERT in fact per-
forms better without the transformations. mBERT
and XLM-R do benefit from the transformations
to some degree: In most cases, there is a large im-
provement, particularly in XLM-R. For mBERT,
the es-en b) subset only shows a small improve-
ment, and the others benefit more from CBIE than
from whitening. Rajaee and Pilehvar (2022) also

test on STS, including the monolingual subsets.
However, since they report Spearman correlations
rather than Pearson, as well as using a different
mBERT checkpoint than we do, the numbers are
not directly comparable, and we do not show them
in our table. The main takeaway here is that using
the whitening transformation yields similar results
overall to CBIE, and that both work to improve
sentence-level representations for semantic similar-
ity. Also, they both have little to no benefit in the
S-BERT model, which was tuned with parallel data
and is already much more isotropic.

After the transformations, anisotropy scores are
very close to zero; that is, the spaces are extremely
isotropic. We can also see this in the t-SNE vi-
sualisations of these spaces, see § 7. However,
applying the outlier definition of three times the
standard deviation, we still find outlier dimensions
in the transformed spaces. These all have very
small magnitude, and are not necessarily related to
the dimensions that were outliers before. Since the
transformations are not deterministic, these outlier
dimensions can also change when recalculating the
transformed spaces. Therefore, we do not consider
these dimensions true outliers. In an (artificially)
highly isotropic space, the traditional outlier defi-
nition of larger than three standard deviations may
simply not apply.

7 Embedding space visualisation

To visualise the representation space, we use t-SNE
(van der Maaten and Hinton, 2008). First, we apply
a PCA dimensionality reduction to 50 dimensions.
Then, we reduce the dimensionality further using
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Arabic-English

Bengali-English

German-English

Unmodified

CBIE-transformed

Figure 3: Left to right: Arabic-English, Bengali-English, and German-English Tatoeba sentence embeddings from
XLM-R. Top to bottom: Unmodified and CBIE-transformed versions of the embeddings. The source languages are

shown in green, the English in blue.

t-SNE and plot the space in two dimensions. In
Figure 3, we show examples from Tatoeba data
in XLM-R: Arabic, Bengali, and German. For
the first two, accuracy increased by more than 20
points after the transformation, while German is
already a high-resource language where accuracy
only increased by around 5 points. Since CBIE and
Whitening produce very similar visualisations, we
only show CBIE.

The unmodified spaces very clearly show the
problem of internal misalignment between differ-
ent languages in the model, which disproportion-
ately affects languages with less pre-training data
and/or non-Latin scripts. With Arabic-English and
Bengali-English, the source and target language
spaces are almost disjunct. This issue can be ad-
dressed using isotropy-increasing transformations,
but they do not solve the problem entirely. For in-
stance, the unmodified sub-spaces of Bengali and
English also have markedly different shapes, de-
spite representing a set of parallel sentence pairs.
Matching the equivalent sentences to each other
starting from such different spaces is more com-
plex than merely applying a linear transformation
to increase isotropy.

8 Conclusions

We have analysed how outlier dimensions and
anisotropy interact with cross-lingual semantic sim-
ilarity tasks in pre-trained multilingual language

models. In particular, we focused on the sentence
representations of multilingual BERT and XLM-R,
comparing them to the sentence representations
of a multilingual S-BERT model—essentially a
modified XLM-R trained with parallel data to op-
timise for sentence representations. We employed
a range of methods on several different tasks to
approach the question from multiple angles. The
simplest method of increasing isotropy is remov-
ing the largest (outlier) dimensions from the sen-
tence embeddings. We compared the results of this
with further-reaching isotropy-increasing transfor-
mations. Additionally, we examined how changing
the representations affected anisotropy measures
and outlier dimensions. Finally, we plotted un-
modified and transformed sentence representation
spaces to illustrate how anisotropy is one aspect
that affects sentence similarity, but reducing it does
not resolve all issues in the space.

Future Work. Potential future research ques-
tions include: Are outliers and anisotropy also rele-
vant when using fine-tuned models for cross-lingual
transfer? Do larger, particularly generative models,
have these issues affecting cross-lingual similarity?
Are the pre-training dynamics of anisotropy in mul-
tilingual models similar to those of monolingual
models? How can we train multilingual models to
avoid a degenerating representation space?
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Limitations

This paper examines the anisotropy and outlier phe-
nomenon only for a few, relatively similar, models.
The isotropy-increasing transformations are non-
deterministic and have to be calculated post-hoc
based on some set of embedded data, which may
not be practical for applications where inference is
done on individual or small batches of examples.
Since we specifically consider sentence repre-
sentations, we first average over word embeddings
before calculating the mean and standard deviation
for outlier analysis. This in effect reduces the sam-
ple size and leads to a smaller standard deviation,
making our analysis more sensitive to even slight
outlier dimensions. Another reason to work with
relatively small datasets is to make computing the
transformations simple and fast, but this may limit
the ability of these transformations to generalise.
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Figure 4: XLM-R mean embeddings on Tatoeba data.
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O DI1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

(] D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?

No response.

[0 D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?

No response.

0 D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

0] DS. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.
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