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Abstract

In the context-dependent Text-to-SQL task,
the generated SQL statements are refined it-
eratively based on the user input utterance
from each interaction. The input text from
each interaction can be viewed as component
modifications to the previous SQL statements,
which could be further extracted as the mod-
ification patterns. Since these modification
patterns could also be combined with other
SQL statements, the models are supposed to
have the compositional generalization to these
novel combinations. This work is the first ex-
ploration of compositional generalization in
context-dependent Text-to-SQL scenarios. To
facilitate related studies, we constructed two
challenging benchmarks named COSQL-CG
and SPARC-CG by recombining the modifi-
cation patterns and existing SQL statements.
The following experiments show that all current
models struggle on our proposed benchmarks.
Furthermore, we found that better aligning the
previous SQL statements with the input utter-
ance could give models better compositional
generalization ability. Based on these obser-
vations, we propose a method named p-align
to improve the compositional generalization of
Text-to-SQL models. Further experiments val-
idate the effectiveness of our method. Source
code and data are available 1

1 Introduction

Recently, the poor generalization of semantic pars-
ing models to out-of-distribution samples is un-
der increasing attention (Keysers et al., 2020; ?).
These examples are usually obtained by recombin-
ing existing structures. For example, in the SCAN
dataset (Lake and Baroni, 2018a), models may fail
to parse "jump twice and walk" even though "jump
twice" and "walk" could be parsed successfully.
The ability to generalize to novel combinations is

1https://github.com/THU-BPM/CD-Text2SQL-CG
∗Equally Contributed.
† Corresponding author.

Training example1

Question1: List the distinct names of all nurses

Query1:  SELECT DISTINCT name FROM nurse 

Question2:Order them in the alpabetical order

Query2: SELECT DISTINCT name FROM nurse
ORDER BY name 

Training example2

Question1: Tell me the names of editor 
of age either 24 or 25

Query1: SELECT Name FROM editor 
WHERE Age  =  24 OR Age  =  25

Question2: What about their id?

Query2: SELECT id FROM editor 
WHERE Age  =  24 OR Age  =  25

Inference example1 Inference example2

Question1: Show the names of singers whose 
birth year is 1984 or 1949

Query1: SELECT DISTINCT name FROM singer 
WHERE  birth =1948 or birth=1949

Question2: Order them in the alpabetical order

Query2:

Question1:

Query1:

What are all the distinct 
airport names?

SELECT DISTINCT AirportName 
FROM AIRPORTS

Question2: What about their id?

Query2:
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Abstract

Context-dependent text-to-SQL is the task of
translating multi-turn questions into database-
related SQL queries. Existing methods typi-
cally focus on making full use of history con-
text or previously predicted SQL for currently
SQL parsing, while neglecting to explicitly
comprehend the schema and conversational de-
pendency, such as co-reference, ellipsis and
user focus change. In this paper, we propose
CQR-SQL, which uses auxiliary Conversational
Question Reformulation (CQR) learning to ex-
plicitly exploit schema and decouple contex-
tual dependency for SQL parsing. Specifically,
we first present a schema enhanced recursive
CQR method to produce domain-relevant self-
contained questions. Secondly, we train CQR-
SQL models to map the semantics of multi-turn
questions and auxiliary self-contained ques-
tions into the same latent space through schema
grounding consistency task and tree-structured
SQL parsing consistency task, which enhances
the abilities of SQL parsing by adequately con-
textual understanding. At the time of writ-
ing, our CQR-SQL achieves new state-of-the-art
results on two context-dependent text-to-SQL
benchmarks SPARC and COSQL.

1 Introduction

The text-to-SQL task is one of the widely followed
branches of Semantic Parsing (SP), which aims
to parse natural language questions with a given
database into SQL queries. Previous works (Zhong
et al., 2017; Yu et al., 2018; Wang et al., 2020) fo-
cus on context-independent text-to-SQL task. How-
ever, in reality, as users tend to prefer multiple turns
interactive queries (Iyyer et al., 2017), the text-to-
SQL task based on conversational context is attract-
ing more and more scholarly attention. The general-
ization challenge of the context-dependent text-to-
SQL task lies in jointly representing the multi-turn
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internship at Tencent Cloud Xiaowei.

Figure 1: An example of context-dependent Text-to-
SQL task demonstrates the phenomenon of co-reference,
ellipsis, and user focus changes. Self-contained ques-
tions can be understood without the context.

questions and database schema while considering
the contextual dependency and schema structure.
As shown in Figure 1, to resolve the contextual
dependency, the model should not only understand
the co-reference and ellipsis, but also prevent from
irrelevant information integration when user focus
changes. Recent studies on two large-scale context-
dependent datasets, SPARC (Yu et al., 2019b) and
COSQL (Yu et al., 2019a), also show the difficulty
of this problem. To our knowledge, there is a lack
of explicit guidance for mainstream text-to-SQL
researches dealing with contextual dependency.

For context-dependent text-to-SQL, it is com-
mon to train a model in an end-to-end manner. Suhr
et al. (2018) and Zhang et al. (2019) leverage the
interaction history to improve the generation qual-
ity by copying or editing previously predicted SQL
queries. Alternatively, Hui et al. (2021) propose dy-
namic memory decay mechanisms to incorporate
inductive bias to generate enriched contextual rela-
tion representation. All of the above works simply
encode the concatenation of the multi-turn ques-
tions, as shown in Figure 2(a), which seem to be
competitive in their evaluation of existing context
modeling methods. However, we argue that these
end-to-end approaches are inadequate guidance for
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questions and database schema while considering
the contextual dependency and schema structure.
As shown in Figure 1, to resolve the contextual
dependency, the model should not only understand
the co-reference and ellipsis, but also prevent from
irrelevant information integration when user focus
changes. Recent studies on two large-scale context-
dependent datasets, SPARC (Yu et al., 2019b) and
COSQL (Yu et al., 2019a), also show the difficulty
of this problem. To our knowledge, there is a lack
of explicit guidance for mainstream text-to-SQL
researches dealing with contextual dependency.

For context-dependent text-to-SQL, it is com-
mon to train a model in an end-to-end manner. Suhr
et al. (2018) and Zhang et al. (2019) leverage the
interaction history to improve the generation qual-
ity by copying or editing previously predicted SQL
queries. Alternatively, Hui et al. (2021) propose dy-
namic memory decay mechanisms to incorporate
inductive bias to generate enriched contextual rela-
tion representation. All of the above works simply
encode the concatenation of the multi-turn ques-
tions, as shown in Figure 2(a), which seem to be
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modeling methods. However, we argue that these
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Figure 1: During the inference phase, the base queries
and their modifications could be re-combined. Models
with compositional generalization ability should suc-
cessfully parse these novel combinations.

also known as compositional generalization. Text-
to-SQL (Yu et al., 2018) allows non-expert users to
access the information from the database by con-
verting the user input text into SQL statements exe-
cuted in the database. As a typical semantic parsing
task, the study of its compositional generalization
is of great importance.

Existing works explore the compositional gen-
eralization of Text-to-SQL only in the scenario
that precisely maps stand-alone utterances to SQL
queries. Shaw et al. (2021) define the atom and
compound for SQL statements and propose the
TMCD split to repartition the dataset. Gan et al.
(2022) annotate the alignment of sub-sentence and
sub-SQL in the spider dataset (Yu et al., 2018) and
then recombine these sub-SQLs and sub-sentences.
In these settings, the SQL statements and user ques-
tions in the constructed test split tend to be much
more complex. However, it is difficult for users to
express complex queries in a stand-alone sentence.
In real scenarios, users often start with a simple
query and continuously combine additional query
conditions with subsequent questions.

In this work, we focus on the study of compo-
sitional generalization in context-dependent Text-
to-SQL tasks, which is more natural and applica-
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ble. In the context-dependent Text-to-SQL task (Yu
et al., 2019b), the generated SQL statements are
refined based on the user input text during each
interaction. The input text from each interaction
can be viewed as component modifications to the
previous SQL statement, which could be further
extracted as the modification patterns. Since these
modification patterns could also be combined with
other SQL statements, the models are supposed
to have the compositional generalization to these
novel combinations. For example, in Figure 1, the
modifications and the queries of the first turn in the
training phrase could be re-combined in the infer-
ence phrase. Applicable models are supposed to
successfully parse these novel combinations.

To better investigate compositional generaliza-
tion in the context-dependent Text-to-SQL, we first
construct compositional generalization benchmarks
based on the existing datasets. First, we extract the
modification patterns from the training dataset and
then recombine them with the existing SQL state-
ments in the development set. Note that in the
compositional generalization setting, only the re-
combination results not existing in the training set
are kept. To generate the corresponding utterances,
we use a semi-automatic approach. The utterances
are initially generated by a pre-trained model fine-
tuned on the training data, and then reviewed and
verified by human experts. As a result, we cre-
ate two benchmarks, COSQL-CG and SPARC-
CG, specifically for the datasets COSQL(Yu et al.,
2019a) and SPARC(Yu et al., 2019b). Our exper-
iments reveal that current state-of-the-art models
perform poorly on these benchmarks, emphasiz-
ing the significance of enhancing compositional
generalization capabilities.

We further explore how to improve the composi-
tional generalization in context-dependent Text-to-
SQL tasks. Inspired by the previous works to im-
prove compositional generalization by fine-grained
alignment of inputs and outputs (Zheng and Lapata,
2022; Akyürek and Andreas, 2021), we propose
a method to better align the current text with the
previous SQL statements. We follow the common
practice of most competitive Text-to-SQL models
which take the concatenation of all utterances as
input. Specifically, our proposed p-align method
extracts the embedding of the text from each in-
teraction after the encoding process and then de-
codes them into the corresponding SQL statements
separately. Further experiment results show that

our p-align method could effectively improve the
compositional generalization of current models,
which also demonstrates that better alignment of
text and SQL statements and the introduction of
previous SQL statements are of great importance.

To summarize, the main contributions of our
paper are as follows:

• To the best of our knowledge, we are the
first to explore compositional generalization
in context-dependent Text-to-SQL.

• We construct two benchmarks named
COSQL-CG and SPARC-CG to better
facilitate the relevant research.

• We propose a simple and effective method
named p-align to improve the compositional
generalization ability of models.

2 Related Work

2.1 Context dependent Text-to-SQL

Most current research on Text-to-SQL is con-
ducted under the context-independent setting, with
many recent methods achieving excellent results
on the Spider dataset (Yu et al., 2018), including
graph-based methods such as LGESQL(Cao et al.,
2021a), RAT-SQL (Wang et al., 2020) and ISESL-
SQL (Liu et al., 2022a), as well as sequence-to-
sequence-based methods like PICARD (Scholak
et al., 2021). Recently, with the presentation
of two datasets COSQL(Yu et al., 2019a) and
SPARC(Yu et al., 2019b), the Text-to-SQL pars-
ing under the context-dependent setting has at-
tracted much attention, which is more realistic
and applicable. Subsequently, various methods
have been proposed. Among them, SCORE(Yu
et al., 2021) and STAR(Cai et al., 2022) aim to
train better pre-trained models to improve the pars-
ing ability of models. Also, many sequence-to-
sequence methods based on T5 pre-trained model
like PICARD (Scholak et al., 2021) and RASAT
(Qi et al., 2022) have achieved great success. Mean-
while, more methods pay more attention to con-
textual information or conversation history during
encoding, including IGSQL(Cai and Wan, 2020),
HIE-SQL(Zheng et al., 2022), and IST-SQL(Wang
et al., 2021). Meanwhile, other rewriting-based
methods like DELTA(Chen et al., 2021) and CQR-
SQL(Xiao et al., 2022) reformulate the current and
the historical texts into an individual sentence. Dif-
ferent from the previous works, we mainly focus
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on exploring compositional generalization under
context-dependent text-to-SQL settings.

2.2 Compositional Generalization

Compositional Generalization is an important met-
ric for evaluating the robustness of the model (Liu
et al., 2022b) in the field of natural language pro-
cessing. For semantic parsing tasks, the ability to
generalize to structures generated by systematically
combining known atomic components is of vital
importance. Lake and Baroni (2018b) propose the
SCAN dataset, which maps word sequences into
navigation command sequences (e.g., jump twice
→ JUMP JUMP). Their training/evaluation split
are constructed in a compositional generalization
way. Keysers et al. (2020), introduce CFQ dataset
and propose distribution-based compositionality as-
sessment to measure compositional generalization.
Hupkes et al. (2020) summerize five different com-
positionally generalization splits and combine them
to generate PCFG SET. Many works focus on im-
proving the compositional generalization of models.
This is usually achieved by introducing more de-
tailed lexicon or lexicon-style alignments (Zheng
and Lapata, 2022; Akyürek and Andreas, 2021)
or adopting a grammar-based decoder (Herzig and
Berant, 2021; Qiu et al., 2022b; Guo et al., 2020).
Another line of work attempts to synthesize ex-
amples utilizing grammar and generative models
for data augmentation (Qiu et al., 2022a; Andreas,
2020; Jia and Liang, 2016).

Recently, the compositional generalization of
Text-to-SQL parsing has gained more and more in-
terest. Shaw et al. (2021) define the atom and com-
pound for SQL statements and propose the TMCD
split to repartition the dataset. Gan et al. (2022)
annotate the alignment of sub-sentence and sub-
SQL in the spider dataset (Yu et al., 2018) and then
recombine these sub-SQLs and sub-sentences. The
above works only focus on the Text-to-SQL parsing
in the context-independent setting, which precisely
maps stand-alone utterances to SQL queries. How-
ever, it is difficult for users to express complex
queries in a stand-alone sentence. In this work, we
first explore the compositional generalization for
context-dependent Text-to-SQL Parsing.

3 Compositional Generalization in
Context-dependent Text-to-SQL

To facilitate the understanding of the following
sections, we provide a more detailed explanation of

compositional generalization in context-dependent
Text-to-SQL parsing in this section.

The template split is a typical compositional gen-
eralization setting, where the structure templates in
the training and test set are completely separated.
Our compositional generalization scenario can be
viewed as an extension of the template split, where
the combination of basic SQL templates and mod-
ification templates in the training and test set are
separated. Note that basic SQL and modification
templates in the test set all appear in the training
set individually. For instance, in figure 1, in the in-
ference phrase, although all the templates are seen
during training, their combinations are novel.

From another point of view, our compositional
generalization scenario could also be viewed as a
special case of TMCD split (Shaw et al., 2021),
where the SQL templates and modification tem-
plates could be seen as atoms and their combination
results are the compounds. Note the utterance to
the SQL templates (first atom) are provided during
training, which could be further utilized to improve
the compositional generalization (Section 5).

4 Benchmark construction

Since there are few data satisfying the composi-
tional generalization setting in the origin SPARC
and COSQL development set. We first construct
new benchmarks to facilitate the related research.

As illustrated in Figure 2, the benchmark con-
struction process can be divided into four steps.
The first step is to filter out context-independent
examples; next, modification patterns are extracted
from the remaining examples; after that, these mod-
ification patterns are combined with other SQL
statements, and finally, corresponding utterances
are generated.

4.1 Filter out context-independent examples

It is observed that a significant number of exam-
ples in the SPARC or COSQL datasets are context-
independent, meaning that no context information
is needed to generate the current queries. In this
work, we propose a schema-linking-based method
to filter out these context-independent examples.

Schema linking is a common technique in Text-
to-SQL which links the exact or partial occur-
rences of the column/table names in the question
such as the ARILINES and Abbreviation in Figure
2(a). Our main motivation is that if current data
is context-dependent, there are some column/table
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What is the abbreviation for AIRLINE 
Jetblue Airways?

SELECT Abbreviation FROM AIRLINES 
where Airline = JetBlue Airways

What are all the airline names?

Of these, which is Jetblue Airways.

What are all the abbreviations

SELECT name FROM AIRLINES 
where Airline = JetBlue Airways

SELECT Abbreviation FROM AIRLINES

SQL

Select

Col

Name

SQL

Select Where

Col

Name

Col Val

Airline JetBlue
Airways

Op

=

Modification: where Airline=JetBlue Airways

Modification pattern: where col = val

Other  SQL:  SELECT name FROM country

Database Schema:
name

Modification Pattern: where col = val

New Modification: where continent =Asia

Combined SQL:  SELECT name FROM country 
where continent=Asia

where continent =Asia

What about these
 city in Asia

What about these 
country in Asia

Fine tuned T5

Expert revise

Filter out context-independent data Generate modification patterns Re-combine SQL statements Generate utterances

continent region capital
id district code …

country
city
… … … … …

sample value

(a) (b) (c) (d)

Q1:
S1: SELECT name FROM AIRLINES

Q1:

Q2:
S2:

S1:

Q1:

Q2:

S2:

Schema linking to contextSchema linking to question

Figure 2: The benchmark construction process can be divided into four steps. The first step is to filter the context-
independent data; then the next step is to generate modification patterns from the remained examples; after that, the
modification patterns are recombined with other queries and the last step is to generate the corresponding utterances.

names not linked to the current question but linked
to history questions (context), such as the first ex-
ample in Figure 2(a). Specifically, the schemas in
the target query are represented as S. We use the
n-gram matching method to find occurrences S in
the current question, where the matched schemas
could be represented as Sc. Similarly, the matched
schemas in the history questions are represented
as Sp. The current example is context-dependent
only if Sp − Sc ̸= ∅. Finally, we keep 4270 and
2347 context-dependent examples in SPARC and
COSQL training set respectively.

4.2 Generate Modification Pattern

After filtering out context-independent data, the
next step is to generate modification patterns from
the remaining context-dependent examples.

As shown in Figure 2(b), we first parse current
and previous SQL statements into abstract syntax
trees and then compare the tree structures to get
the modified components. Specifically, a top-down
traversal algorithm is adopted to find the different
nodes. The nodes along with their children consti-
tute the modified component. Then the generated
modification component is anonymized to gener-
ate the modification template. Finally, we generate
409 and 191 modification templates for SPARC and
COSQL respectively.

4.3 Re-combine SQL statements

With the generated modification patterns, the next
step is to re-combine these patterns with other SQL
statements to generate new SQL statements.

First, modification patterns are filled with new
table/column names sampled from target database
schemas to generate new modifications. Then the
modifications are directly combined with the other

SQL statements. Note that in the previous modifi-
cation pattern generation process, the relationship
of the schema is kept (e.g. primary key and for-
eign key relationships) and the table/column name
sampling results must conform to the above rela-
tionship constraints. As mentioned in Section 3,
the combination process requires that the base SQL
templates and modification templates are all shown
in the training set but their combinations are novel.
Finally, we generate 5958 and 2594 combination
results in SparC and CoSQL respectively.

4.4 Utterance generation

The final step of our benchmark construction is to
generate the context-dependent utterance for the
generated SQL statements. Since pre-trained lan-
guage models have shown great ability in text gen-
eration, we first utilize a fine-tuned T5 model (Raf-
fel et al., 2020) to generate the context-dependent
utterance. More specifically, the input to the T5
model is the concatenation of the modification, pre-
vious SQL statement, and previous utterance.

For the utterance generated by the T5 model
may be noisy, we further invite human experts
to filter and revise the generated data. The first
task of human experts is to remove SQL state-
ments that don’t fit realistic scenarios. For exam-
ple, the statement SELECT Count(loser_entry)
FROM matches ORDER BY matches.winner_age
is invalid because the function Count() and the
clause ORDER BY usually do not appear together.
The second task of the human experts is to revise
the utterances generated by the T5 model as shown
in Figure 2(d). To ensure annotation consistency,
we introduce two experts to double-check the anno-
tated results. Finally, after the filtering and revising
process, we get 372 and 267 questions for SPARC
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Question1

show all visitors
Question2
order them by 

their memership

Question3
Just show their 

names

SELECT * FROM visitor SELECT * FROM visitor order by memership

SELECT name FROM visitor order by memership

Encoder

Decoder

Decoder Decoder

Figure 3: The whole process of our p-align method.
The input to the encoding process is the concatenation
of the utterance from all interactions. In the decoding
process, the utterance embeddings of each interaction
are extracted to decode the corresponding SQL.

and COSQL datasets respectively, which further
construct our SPARC-CG and COSQL-CG bench-
marks. More detailed statistics of the benchmarks
will be described in the experiment section.

5 Methods

After constructing the SPARC-CG and COSQL-
CG, we further explore how to improve the compo-
sitional generalization in context-dependent Text-
to-SQL parsing. According to the previous works
(Zheng and Lapata, 2022; Akyürek and Andreas,
2021), the key to improving the compositional gen-
eralization is to construct better component align-
ment between inputs and outputs. In the context-
dependent Text-to-SQL settings, the utterance-
query pair of previous interactions could be uti-
lized to align input utterances and output queries.
Based on this motivation, we propose p-align to
improve the compositional generalization of exist-
ing Text-to-SQL models. Note that our method
follows the common practice of most competitive
Text-to-SQL models which take the concatenation
of all utterances as input.

Specifically, given the input utterances X =
[X1, X2, ..., Xn] at the n-th interaction, where
Xn = [x1, ....xj ] is an utterance with j words,
the encoder aims to generate embeddings for each
word such that X = H(X). In the origin decoding
process, the result query y could be represented as
an action sequence [a1, ...at] and the whole decod-
ing process could be represented as the product of

# Questions # Non-CG Questions # CG Questions

SPARC 1625 491 31
SPARC-CG 921 491 372
COSQL 1300 207 14
COSQL-CG 471 207 167

Table 1: The detailed statistics of SPARC-CG and
COSQL-CG benchmark.

表格 1

where 149 0.400537634408602

groupby 66 0.17741935483871

Ieu 1 0.00268817204301075

Groupby-orderby 27 0.0725806451612903

Orderby 86 0.231182795698925

Where-groupby 19 0.0510752688172043

Where orderby 24 0.0645161290322581
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In this way, our p-align method aligns some part354

of the input utterance to the previous queries and355

SPARC SPARC-CG COSQL COSQL-CG

# Dialogs 422 372 293 167
# Questions 1625 922 1300 471
# Non-CG Questions 491 491 207 207
# CG Questions 31 431 14 264
Avg # Q./Dialog 3.85 2.47 4.44 2.82

Table 1: The detailed statistics of SPARC-CG and
COSQL-CG benchmark.
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Figure 4: The results of STAR and baselines on SPARC and COSQL dev sets (a-b) by varying the difficulty levels
of the data and (c-d) by varying the conversation turns.

Model
COSQL SPARC

QM IM QM IM

STAR 59.7 30.0 66.9 46.9
STAR w/o structural 59.1 29.0 66.5 46.7
STAR w/o semantic 59.5 29.6 66.8 46.5
STAR w/o UDT 58.0 28.6 66.4 46.1

Table 3: Results of STAR on the dev sets of SPARC
and COSQL by using different metrics for calculating
SQL similarity.

et al., 2021a) and SCORE (Yu et al., 2021b). In
particular, GRAPPA and SCORE are the represen-
tative TaLMs for context-independent and context-
dependent text-to-SQL parsing, respectively.

5.2 Model Comparison on Downstream
Tasks

In the experiments, we choose LGESQL (Cao et al.,
2021) as our base model given its superior perfor-
mance. Since LGESQL is originally developed for
single-turn setting, we extend LGESQL to context-
dependent setting by taking as input the concatena-
tion of historical and current utterances. For a fair
comparison, the four compared PLMs also leverage
LGESQL as the base model.

The experimental results on SPARC and COSQL
are summarized in Table 1. STAR outperforms all
the compared methods on the two datasets by a no-
ticeable margin. First, STAR achieves substantially
better results than the four strong PLMs. In partic-
ular, STAR surpasses the well-known SCORE by
7.4% QM score and 7.5% IM score on the COSQL
dev set. Second, LGESQL+STAR achieves bet-
ter results than the compared downstream methods
which use BERT, ROBERTA, SCORE, GRAPPA as
the PLMs, such as the best performing baseline
HIE-SQL+GRAPPA.

5.3 Ablation Study

Effectiveness of Pre-training Objectives We
conduct ablation test to investigate the effective-
ness of each pre-training objective in STAR. We re-
port the results of removing the MLM loss (called
w/o MLM), the SST loss (called w/o SST), the

UDT loss (called w/o UDT), and both SST and
UDT (called w/o SST+UDT) respectively. Table 2
shows the ablation test results on both SPARC and
COSQL. We can observe that removing the SST
or UDT objective bring the most significant perfor-
mance drop. Not surprisingly, combining all the
three objectives achieves the best results on both
datasets.

Effectiveness of SQL Similarity Metrics To an-
alyze the impact of metrics for calculating the SQL
similarity in STAR, we also conduct an ablation
test by removing the structural similarity metric
(called w/o structural), the semantic similarity met-
ric (called w/o semantic), and both (called w/o
UDT), respectively. Table 3 shows the ablation test
results on the dev sets of SPARC and COSQL. As
expected, both similarity metrics contribute great
improvements to STAR.

Effectiveness of Synthesized Pre-training Data
We also analyze the quality of our constructed pre-
training data. We compare our pre-training data
with the data created by SCORE (Yu et al., 2021b)
which to our knowledge is the only existing work
on pre-training for context-dependent text-to-SQL
parsing. Since the pre-training data created by
SCORE is inapplicable to the LUDT objective, we
merely employ LMLM (denoted as STAR w/ MLM)
and LMLM + LSST (denoted as STAR w/ MLM +
SST) as the pre-training objectives in the experi-
ments. As shown in Table 4, our pre-training data
is more effective than the pre-training data created
by SCORE.

5.4 Discussion

Model Comparison on Samples with Different
Levels of Difficulty The SQL queries in both
SPARC and COSQL can be further divided into
four levels based on the difficulty of the SQL
queries: easy, medium, hard, extra hard, which
can be used to better evaluate the model perfor-
mance on different queries. As shown in Figure
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Figure 4: The results of STAR and baselines on SPARC and COSQL dev sets (a-b) by varying the difficulty levels
of the data and (c-d) by varying the conversation turns.
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STAR 59.7 30.0 66.9 46.9
STAR w/o structural 59.1 29.0 66.5 46.7
STAR w/o semantic 59.5 29.6 66.8 46.5
STAR w/o UDT 58.0 28.6 66.4 46.1

Table 3: Results of STAR on the dev sets of SPARC
and COSQL by using different metrics for calculating
SQL similarity.

et al., 2021a) and SCORE (Yu et al., 2021b). In
particular, GRAPPA and SCORE are the represen-
tative TaLMs for context-independent and context-
dependent text-to-SQL parsing, respectively.

5.2 Model Comparison on Downstream
Tasks

In the experiments, we choose LGESQL (Cao et al.,
2021) as our base model given its superior perfor-
mance. Since LGESQL is originally developed for
single-turn setting, we extend LGESQL to context-
dependent setting by taking as input the concatena-
tion of historical and current utterances. For a fair
comparison, the four compared PLMs also leverage
LGESQL as the base model.

The experimental results on SPARC and COSQL
are summarized in Table 1. STAR outperforms all
the compared methods on the two datasets by a no-
ticeable margin. First, STAR achieves substantially
better results than the four strong PLMs. In partic-
ular, STAR surpasses the well-known SCORE by
7.4% QM score and 7.5% IM score on the COSQL
dev set. Second, LGESQL+STAR achieves bet-
ter results than the compared downstream methods
which use BERT, ROBERTA, SCORE, GRAPPA as
the PLMs, such as the best performing baseline
HIE-SQL+GRAPPA.

5.3 Ablation Study

Effectiveness of Pre-training Objectives We
conduct ablation test to investigate the effective-
ness of each pre-training objective in STAR. We re-
port the results of removing the MLM loss (called
w/o MLM), the SST loss (called w/o SST), the

UDT loss (called w/o UDT), and both SST and
UDT (called w/o SST+UDT) respectively. Table 2
shows the ablation test results on both SPARC and
COSQL. We can observe that removing the SST
or UDT objective bring the most significant perfor-
mance drop. Not surprisingly, combining all the
three objectives achieves the best results on both
datasets.

Effectiveness of SQL Similarity Metrics To an-
alyze the impact of metrics for calculating the SQL
similarity in STAR, we also conduct an ablation
test by removing the structural similarity metric
(called w/o structural), the semantic similarity met-
ric (called w/o semantic), and both (called w/o
UDT), respectively. Table 3 shows the ablation test
results on the dev sets of SPARC and COSQL. As
expected, both similarity metrics contribute great
improvements to STAR.

Effectiveness of Synthesized Pre-training Data
We also analyze the quality of our constructed pre-
training data. We compare our pre-training data
with the data created by SCORE (Yu et al., 2021b)
which to our knowledge is the only existing work
on pre-training for context-dependent text-to-SQL
parsing. Since the pre-training data created by
SCORE is inapplicable to the LUDT objective, we
merely employ LMLM (denoted as STAR w/ MLM)
and LMLM + LSST (denoted as STAR w/ MLM +
SST) as the pre-training objectives in the experi-
ments. As shown in Table 4, our pre-training data
is more effective than the pre-training data created
by SCORE.

5.4 Discussion

Model Comparison on Samples with Different
Levels of Difficulty The SQL queries in both
SPARC and COSQL can be further divided into
four levels based on the difficulty of the SQL
queries: easy, medium, hard, extra hard, which
can be used to better evaluate the model perfor-
mance on different queries. As shown in Figure
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Figure 3: The whole process of our p-align method.
The input to the encoding process is the concatenation
of the utterance from all interactions. In the decoding
process, the utterance embeddings of each interaction
are extracted to decode the corresponding SQL.

to better align input utterances and output queries.331

Based on this motivation, we propose p-align to332

improve the compositional generalization of exist-333

ing Text-to-SQL models. Note that our method334

follows the common practice of most competitive335

Text-to-SQL models which take the concatenation336

of all utterances as input.337

Specifically, given the input utterance X =338

[X1, X2, ..., Xn] at n-th interaction, where Xn =339

[x1, ....xj ] is an utterance with j words, the encoder340

aims to generate embeddings for each word such341

that X = H(X). In the origin decoding process,342

the result query y could be represented as action343

sequences [a1, ...at] and the whole process could344

be represented as the product of probabilities for345

each generation step as follows:346

TY

t=1

p (at | {a1, . . . , at�1} ,X) . (1)347

In our p-align method, the utterance embeddings348

of each interaction are extracted to decode the cor-349

responding SQL statements. As shown in Figure350

3, the decoder process of our p-align could be351

represented as:352
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In this way, our p-align method aligns some part354

of the input utterance to the previous queries and355

SPARC SPARC-CG COSQL COSQL-CG

# Dialogs 422 372 293 167
# Questions 1625 922 1300 471
# Non-CG Questions 491 491 207 207
# CG Questions 31 431 14 264
Avg # Q./Dialog 3.85 2.47 4.44 2.82

Table 1: The detailed statistics of SPARC-CG and
COSQL-CG benchmark.
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Figure 4: The results of STAR and baselines on SPARC and COSQL dev sets (a-b) by varying the difficulty levels
of the data and (c-d) by varying the conversation turns.

Model
COSQL SPARC

QM IM QM IM

STAR 59.7 30.0 66.9 46.9
STAR w/o structural 59.1 29.0 66.5 46.7
STAR w/o semantic 59.5 29.6 66.8 46.5
STAR w/o UDT 58.0 28.6 66.4 46.1

Table 3: Results of STAR on the dev sets of SPARC
and COSQL by using different metrics for calculating
SQL similarity.

et al., 2021a) and SCORE (Yu et al., 2021b). In
particular, GRAPPA and SCORE are the represen-
tative TaLMs for context-independent and context-
dependent text-to-SQL parsing, respectively.

5.2 Model Comparison on Downstream
Tasks

In the experiments, we choose LGESQL (Cao et al.,
2021) as our base model given its superior perfor-
mance. Since LGESQL is originally developed for
single-turn setting, we extend LGESQL to context-
dependent setting by taking as input the concatena-
tion of historical and current utterances. For a fair
comparison, the four compared PLMs also leverage
LGESQL as the base model.

The experimental results on SPARC and COSQL
are summarized in Table 1. STAR outperforms all
the compared methods on the two datasets by a no-
ticeable margin. First, STAR achieves substantially
better results than the four strong PLMs. In partic-
ular, STAR surpasses the well-known SCORE by
7.4% QM score and 7.5% IM score on the COSQL
dev set. Second, LGESQL+STAR achieves bet-
ter results than the compared downstream methods
which use BERT, ROBERTA, SCORE, GRAPPA as
the PLMs, such as the best performing baseline
HIE-SQL+GRAPPA.

5.3 Ablation Study

Effectiveness of Pre-training Objectives We
conduct ablation test to investigate the effective-
ness of each pre-training objective in STAR. We re-
port the results of removing the MLM loss (called
w/o MLM), the SST loss (called w/o SST), the

UDT loss (called w/o UDT), and both SST and
UDT (called w/o SST+UDT) respectively. Table 2
shows the ablation test results on both SPARC and
COSQL. We can observe that removing the SST
or UDT objective bring the most significant perfor-
mance drop. Not surprisingly, combining all the
three objectives achieves the best results on both
datasets.

Effectiveness of SQL Similarity Metrics To an-
alyze the impact of metrics for calculating the SQL
similarity in STAR, we also conduct an ablation
test by removing the structural similarity metric
(called w/o structural), the semantic similarity met-
ric (called w/o semantic), and both (called w/o
UDT), respectively. Table 3 shows the ablation test
results on the dev sets of SPARC and COSQL. As
expected, both similarity metrics contribute great
improvements to STAR.

Effectiveness of Synthesized Pre-training Data
We also analyze the quality of our constructed pre-
training data. We compare our pre-training data
with the data created by SCORE (Yu et al., 2021b)
which to our knowledge is the only existing work
on pre-training for context-dependent text-to-SQL
parsing. Since the pre-training data created by
SCORE is inapplicable to the LUDT objective, we
merely employ LMLM (denoted as STAR w/ MLM)
and LMLM + LSST (denoted as STAR w/ MLM +
SST) as the pre-training objectives in the experi-
ments. As shown in Table 4, our pre-training data
is more effective than the pre-training data created
by SCORE.

5.4 Discussion

Model Comparison on Samples with Different
Levels of Difficulty The SQL queries in both
SPARC and COSQL can be further divided into
four levels based on the difficulty of the SQL
queries: easy, medium, hard, extra hard, which
can be used to better evaluate the model perfor-
mance on different queries. As shown in Figure
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Figure 4: The results of STAR and baselines on SPARC and COSQL dev sets (a-b) by varying the difficulty levels
of the data and (c-d) by varying the conversation turns.

Model
COSQL SPARC
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STAR 59.7 30.0 66.9 46.9
STAR w/o structural 59.1 29.0 66.5 46.7
STAR w/o semantic 59.5 29.6 66.8 46.5
STAR w/o UDT 58.0 28.6 66.4 46.1

Table 3: Results of STAR on the dev sets of SPARC
and COSQL by using different metrics for calculating
SQL similarity.

et al., 2021a) and SCORE (Yu et al., 2021b). In
particular, GRAPPA and SCORE are the represen-
tative TaLMs for context-independent and context-
dependent text-to-SQL parsing, respectively.

5.2 Model Comparison on Downstream
Tasks

In the experiments, we choose LGESQL (Cao et al.,
2021) as our base model given its superior perfor-
mance. Since LGESQL is originally developed for
single-turn setting, we extend LGESQL to context-
dependent setting by taking as input the concatena-
tion of historical and current utterances. For a fair
comparison, the four compared PLMs also leverage
LGESQL as the base model.

The experimental results on SPARC and COSQL
are summarized in Table 1. STAR outperforms all
the compared methods on the two datasets by a no-
ticeable margin. First, STAR achieves substantially
better results than the four strong PLMs. In partic-
ular, STAR surpasses the well-known SCORE by
7.4% QM score and 7.5% IM score on the COSQL
dev set. Second, LGESQL+STAR achieves bet-
ter results than the compared downstream methods
which use BERT, ROBERTA, SCORE, GRAPPA as
the PLMs, such as the best performing baseline
HIE-SQL+GRAPPA.

5.3 Ablation Study

Effectiveness of Pre-training Objectives We
conduct ablation test to investigate the effective-
ness of each pre-training objective in STAR. We re-
port the results of removing the MLM loss (called
w/o MLM), the SST loss (called w/o SST), the

UDT loss (called w/o UDT), and both SST and
UDT (called w/o SST+UDT) respectively. Table 2
shows the ablation test results on both SPARC and
COSQL. We can observe that removing the SST
or UDT objective bring the most significant perfor-
mance drop. Not surprisingly, combining all the
three objectives achieves the best results on both
datasets.

Effectiveness of SQL Similarity Metrics To an-
alyze the impact of metrics for calculating the SQL
similarity in STAR, we also conduct an ablation
test by removing the structural similarity metric
(called w/o structural), the semantic similarity met-
ric (called w/o semantic), and both (called w/o
UDT), respectively. Table 3 shows the ablation test
results on the dev sets of SPARC and COSQL. As
expected, both similarity metrics contribute great
improvements to STAR.

Effectiveness of Synthesized Pre-training Data
We also analyze the quality of our constructed pre-
training data. We compare our pre-training data
with the data created by SCORE (Yu et al., 2021b)
which to our knowledge is the only existing work
on pre-training for context-dependent text-to-SQL
parsing. Since the pre-training data created by
SCORE is inapplicable to the LUDT objective, we
merely employ LMLM (denoted as STAR w/ MLM)
and LMLM + LSST (denoted as STAR w/ MLM +
SST) as the pre-training objectives in the experi-
ments. As shown in Table 4, our pre-training data
is more effective than the pre-training data created
by SCORE.

5.4 Discussion

Model Comparison on Samples with Different
Levels of Difficulty The SQL queries in both
SPARC and COSQL can be further divided into
four levels based on the difficulty of the SQL
queries: easy, medium, hard, extra hard, which
can be used to better evaluate the model perfor-
mance on different queries. As shown in Figure
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1

Figure 4: Distributions of different modification patterns
in SPARC-CG and COSQL-CG benchmark.

probabilities for each generation step as follows:

T∏

t=1

p (at | {a1, . . . , at−1} ,X) . (1)

In our p-align method, the utterance embeddings
of each interaction are extracted to decode the cor-
responding SQL statements. As shown in Figure
3, the decoder process of our p-align could be
represented as:

n∑

i=1

Ti∏

t=1

p
(
ait |

{
ai1, . . . , a

i
t−1

}
,X≤i

)
. (2)

In this way, our p-align method aligns correspond-
ing parts of the input utterance to the previous
queries and thus improves the compositional gener-
alization ability of models.

6 Experiment

In this section, we first perform more detailed statis-
tics on our constructed SPARC-CG and COSQL-
CG. Then we further analyze our benchmarks with
current competitive Text-to-SQL models. Finally,
several experiments are conducted to verify the
effectiveness of our p-align method.

6.1 Benchmark statistics

The detailed statistics of SPARC-CG and COSQL-
CG are shown in Table 1. We mainly count three
metrics here: # Question, # Non-CG Questions,
and # CG Questions, where # Question is the total

692



Methods / Datasets
SPARC COSQL

Dev Non-CG CG Dev Non-CG CG

SPIC (CONCAT) + BERT-Large (Liu et al., 2020) 55.3 63.4 18.9(36.4↓) 45.2 52.3 13.3(31.9↓)
SPIC (TURN) + BERT-Large (Liu et al., 2020) 54.6 62.1 18.2(36.4↓) 44.8 51.3 12.2(32.6↓)
SPIC (GATE) + BERT-Large (Liu et al., 2020) 54.3 62.4 17.3(37.0↓) 44.2 51.8 12.4(31.8↓)
RAT-SQL + SCORE (Yu et al., 2021) 60.4 69.6 22.4(38.0↓) 52.1 55.6 20.4(31.7↓)
LGESQL + ELECTRA-Large (Cao et al., 2021b) 65.0 73.4 25.3(39.7↓) 54.4 62.4 21.0(33.4↓)
LGESQL + STAR (Cai et al., 2022) 66.9 75.4 25.8(41.1↓) 59.7 68.4 26.3(33.4↓)
PICARD + T5-3B (Scholak et al., 2021) - - - 56.9 58.1 21.5(35.4↓)
RASAT + T5-3B (Qi et al., 2022) 66.7 75.8 22.0(44.7↓) 58.8 67.9 20.4(38.4↓)

Table 2: Question match accuracy of current competitive models on three different benchmarks: Dev, Non-CG, and
CG. For all the models, we adopt the given parameters.

number of questions, # CG Questions is the number
of questions that meet the definition of composi-
tional generalization in Section 3 and # Non-CG
Questions is the number of in-domain questions
(the templates and combination of templates are
both seen in training). The Non-CG questions
in SPARC-CG and COSQL-CG are obtained di-
rectly from the SPARC and COSQL datasets. The
number of CG questions in our benchmarks is far
more than in that SPARC and COSQL. Note that a
large portion of the data in the SPARC and COSQL
datasets is context-independent or has no context,
which makes the sum of # Non-CG Questions and
# CG Questions relatively small.

We present the components distributions of mod-
ification patterns of SPARC-CG and COSQL-CG
in Figure 4. The most common component in mod-
ification patterns is where. Orderby and groupby
also take a large proportion. There are also many
modification patterns that include multiple compo-
nents, such as where-groupby and where-orderby.
Finally, the distributions of modification patterns in
SPARC-CG and COSQL-CG are similar, which il-
lustrates our benchmark construction’s consistency.
Note that the select components are not counted,
as they are included in almost all modifications.

6.2 Experiment Setup

Models. We adopt many current competitive Text-
to-SQL models to explore the impact of compo-
sitional generalization. SPIC (Liu et al., 2020)
is a simple model which explores different meth-
ods to incorporate context questions, where SPIC
(CONCAT) concatenates context questions with cur-
rent questions, SPIC (TURN) employs a turn-level
encoder to capture the inter-dependencies among
questions in different turns and SPIC (GATE) uses
a gate mechanism to compute the importance of

each question. SCORE and STAR (Cai et al., 2022)
are two specialized pre-trained models for RAT-
SQL and LGESQL(Cao et al., 2021b) respectively.
PICARD (Scholak et al., 2021) and RASAT (Qi
et al., 2022) are two seq2seq based models based
on pre-trained T5 model (Raffel et al., 2020).
Evaluation Metric. We mainly use the question
match (QM) (Yu et al., 2019b) as our evaluation
metric, which is the exact set matching score (Yu
et al., 2018) over all questions. The exact set
matching score decomposes predicted queries into
SQL components such as SELECT and WHERE
and then computes scores for each component.
For each model, we report the QM on the origin
SPARC/COSQL development set as well as the
Non-CG and CG benchmarks. Note that the in-
teraction match (Yu et al., 2019b) is not reported
in our paper because we are only interested in the
scores of the model on questions satisfying the
compositional generalization condition.

6.3 Evaluation on SPARC-CG/COSQL-CG

We report the question match accuracy on SPARC
and COSQL datasets under three benchmarks: Dev,
Non-CG, and CG in Table 2.

Based on the above results, we summarize the
following observations. (1) The accuracy of all
models significantly decreases under the composi-
tional generalization setting. Specifically, the QM
on SPARC-CG and COSQL-CG decreases 39.3
and 33.6 on average compared to the origin devel-
opment set, which indicates current models lack
the compositional generalization ability. (2) The
models perform better on the Non-CG benchmarks
than the origin development set (8.4 and 6.5 on av-
erage for SPARC and COSQL respectively), which
demonstrates that in-domain data are easily general-
ized. (3) CONCAT could better incorporate context
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SQL Components DEV Non-CG CG

SELECT 84.6 88.2 60.2
SELECT (no AGG) 86.3 89.3 62.9
WHERE 80.6 91.8 62.5
WHERE(no OP) 85.1 95.3 69.2
GROUP BY (no HAVING) 81.1 85.7 66.4
GROUP BY 76.9 81.6 54.5
ORDER BY 78.2 82.0 58.3
AND/OR 99.0 99.3 91.2
KEYWORDS 86.3 92.8 67.1

Table 3: Accuracy on the different SQL components.
The reported results are the average results over STAR
and RASAT on three benchmarks of SPARC.

questions than TURN and GATE. Therefore, our
p-align is only designed for the CONCAT method.
(4) The grammar tree-based decoder (LGESQL)
and the larger language model (T5-3B) could help
improve the compositional generalization ability.

6.4 Detailed Evaluation

Evaluation ay Different Levels of Difficulty. The
SQL queries could be divided into four difficulty
levels based on the complexity of SQL statements:
easy, medium, hard and extra hard. To better
demonstrate the performance in the compositional
generalization setting, we conduct further evalua-
tions on different levels of difficulties. As shown
in Figure 5a-b, the STAR model performs worse
on the CG benchmark than on the original develop-
ment set at all difficulties, which further indicates
the model’s compositional generalization ability re-
quires further improvement. Meanwhile, there is an
obvious improvement in the Non-CG benchmark
compared to the original development set.
Evaluation at Different Turns. We further illus-
trate the question match accuracy on three bench-
marks with the increase of conversation turns in
Figure 5c-d. The accuracy decreases sharply on
the CG benchmark and the origin development set
while staying stable on the non-CG benchmark.
This suggests that the compositional generalization
ability of models decreases with the increase of
conversation turns.
Evaluation on different components. To better
investigate the poor performance of the current
competitive models under the compositional gen-
eralization setting, we further report the question
match accuracy on different detailed SQL com-
ponents in Table 3. The reported results are the
average results over STAR and RASAT on three
benchmarks of SPARC. As demonstrated in the ta-

Methods DEV Non-CG CG

SPARC

SPIC (CONCAT) + BERT-Base 47.6 53.5 8.9
w. p-align 50.6 54.1 16.4(7.5↑)

SPIC (CONCAT) + BERT-Large 55.3 63.4 19.5
w. p-align 56.1 63.8 20.6(1.1↑)

LGESQL + ELECTRA-Large 65.0 73.4 25.3
w. p-align 64.8 73.0 26.2(0.9↑)

COSQL

SPIC (CONCAT) + BERT-Base 39.2 35.0 5.2
w. p-align 40.5 36.2 9.6(4.4↑)

SPIC (CONCAT) + BERT-Large 45.2 52.3 12.2
w. p-align 45.5 52.7 14.4(2.2↑)

LGESQL + ELECTRA-Large 54.4 62.4 21.0
w. p-align 53.8 62.3 21.2(0.2↑)

Table 4: The results of different models w. & w/o
p-align on three benchmarks of SPARC and COSQL.

Error component STAR RASAT LGESQL

Context Info 24 15 25
Modification Info 149 136 139
Context & Modification Info 112 128 127

Table 5: Statistical analysis of different error types on
SPARC-CG benchmark.

ble, nearly all components’ accuracy significantly
decreases under the compositional generalization
setting, which illustrates the impact of composi-
tional generalization on the models is balanced.

6.5 Evaluation of p-align method

Table 4 shows the results of different models
with & without p-align on three benchmarks of
SPARC and COSQL. We choose SPIC (CONCAT)
+ BERT-Base, SPIC (CONCAT) + BERT-large and
LGESQL+ELECTRA-Large as our base models
because other models are either customized pre-
trained models (STAR and SCORE) or with a too
large model(T5-3B). All the hyperparameters are
the same as the original model.

Overall, our p-align method significantly im-
proves the performance of the model on the CG
benchmarks, with an average improvement of 3.2
and 2.3 on the SParC-CG and CoSQL-CG bench-
marks respectively. While the improvement on
DEV and Non-CG benchmarks is relatively small,
at 0.77 and 0.35 on average respectively, this sug-
gests that our method is particularly effective in
compositional generalization settings. These re-
sults support our hypothesis that improving align-
ment between utterances and queries can enhance
the model’s compositional generalization abilities,
and should be considered as a potential direction
for future research.
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Figure 5: The results on different benchmarks by varying the difficulty levels of the data (a-b) and by varying the
conversation turns(c-d). We use the STAR model here as an example.

Case #1 Error at the modification info

Context : Show all the owner information. | What about the dogs?

Question: How many abandoned are in HUS?

 SELECT Sum(abandoned_yn) FROM Dogs WHERE 
 breed_code = "HUS"
SELECT COUNT(*) FROM Dogs WHERE 
Dogs.breed_code = "1"

Gold:

STaR:

RASAT: SELECT COUNT(*) FROM Dogs WHERE
 breed_code = "HUS"

Case #2Error at the modification info

Context :

Which continents have an average life expectancy less than age 72?

Question:

Which of them have an average surface area smaller than 65209?

Gold:

What are all the nations| Which of those have a government that is a US territory? 

What are the surface areas of those countries with independent year 1975 or 1278? 

SELECT SurfaceArea FROM country WHERE country.GovernmentForm = "US Territory"
 AND IndepYear = 1975 Or IndepYear = 1278

STaR: SELECT country.SurfaceArea FROM country WHERE country.GovernmentForm = "1" 
OR country.IndepYear = 1975 Missing Indepyear=1278 

RASAT: SELECT  SurfaceArea FROM country WHERE country.GovernmentForm = "US Territory"
 OR country.IndepYear = 1975 Missing Indepyear=1278 

Case #3  Ignore the context info

Context :

Question:

STaR:

Question: Which ones have been abandoned, and in a breed code that
contains many dogs. 

Context : How many dogs for each breed code?

RASAT:

 SELECT Continent FROM country GROUP BY  Continent HAVING 
AVG(SurfaceArea) < "1"
SELECT continent FROM country GROUP BY continent HAVING 
AVG(surfacearea) < 65209"

SELECT Continent FROM country GROUP BY Continent HAVING 
Avg(LifeExpectancy) < 72.0 AND Avg(SurfaceArea) < 652090.0Gold: Gold:

Case #4 Ignore the context & Error atmodification info

SELECT breed_code, Count(*) FROM Dogs WHERE  abandoned_yn 
= "1" GROUP BY Dogs.breed_code HAVING Count(*) >= 1

STaR: SELECT Dogs.breed_code FROM Dogs GROUP BY Dogs.breed_code 
HAVING COUNT(*) >= "1"

RASAT: SELECT abandoned_yn FROM dogs GROUP BY Dogs.breed_code 
HVAING count(*) >= 1

Missing Avg(LifeExpectancy)<72 

Missing Avg(LifeExpectancy)<72 

Missing both context and modification 

Missing both context and modification 

Figure 6: Four examples from SPARC-CG benchmark and the corresponding wrong prediction results of STAR
and RASAT. These examples are categorized according to the different errors.

6.6 Error analysis

To evaluate the compositional generalization abil-
ity of current models, we selected four incorrect
prediction results from the SPARC-CG benchmark.
For each example, we provided the context, the cur-
rent question, the correct query, and the prediction
results from STAR and RASAT.

As illustrated in Figure 6, in the first two sce-
narios, the models struggle to accurately interpret
the changes brought about by current questions,
despite maintaining a grasp of the context informa-
tion. Conversely, in the third case, the models are
able to interpret the modifications of the current
question, but fail to take into account the context
information. The fourth case represents the worst-
case scenario, with the models unable to correctly
parse either the modifications or the context infor-
mation. Note that the incorrect results predicted
by both models in the first three cases are similar,
indicating that the failure of the current models to
perform well in a compositional generalization set-
ting is a widespread issue, not an isolated incident.

The presented case study categorizes three sce-
narios where current models make incorrect predic-
tions, which include: failing to consider contextual
information, inability to interpret modifications,
and failing to understand both modifications and
context. We further conduct statistical analysis on
the SParC-CG benchmark in Table 5 and found that
the majority of errors occur when models cannot
interpret modifications. Additionally, when mod-
els neglect context, they also tend to misinterpret
modifications. Interestingly, the proportion of er-
rors for the different models evaluated in the study
is quite similar, indicating that the compositional
generalization challenges faced by these models
are consistent across them.

7 Conclusion

In this study, we conduct the first exploration of
compositional generalization in context-dependent
Text-to-SQL scenarios. To support further research
in this area, we construct two benchmarks named
SPARC-CG and COSQL-CG composed of out-of-
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distribution examples. Additionally, we introduce
the p-align method to enhance the compositional
generalization capabilities of existing models. Fur-
ther experiments show that current models perform
poorly on our constructed benchmarks and demon-
strate the effectiveness of our p-align method.
Also, with the recent advancements in generative
language models, such as GPT3.5 and GPT4 (Ope-
nAI, 2023), explorations into these models (Liu
et al., 2023) should also constitute a significant part
of future work.
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8 Limitations

In this paper, the approach to improve the composi-
tional generalization under the context-dependent
setting is insufficient. We only construct a better
component alignment between inputs and outputs
for models taking the concatenation of all utter-
ances as input. However, it is important to note that
other methods, such as using a turn-level encoder
or implementing a gate mechanism, should also be
considered. Additionally, other types of methods
are also ignored. Future research could explore
data augmentation techniques (Hu et al., 2022) and
enhanced training objectives, such as meta-learning
(Hu et al., 2021) and contrastive learning(Liu et al.,
2022c; Li et al., 2023; Hu et al., 2020), as potential
avenues for improvement.
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