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Abstract

Existing metrics for evaluating the quality of au-
tomatically generated questions such as BLEU,
ROUGE, BERTScore, and BLEURT compare
the reference and predicted questions, provid-
ing a high score when there is a considerable
lexical overlap or semantic similarity between
the candidate and the reference questions. This
approach has two major shortcomings. First,
we need expensive human-provided reference
questions. Second, it penalises valid questions
that may not have high lexical or semantic sim-
ilarity to the reference questions. In this pa-
per, we propose a new metric, RQUGE, based
on the answerability of the candidate question
given the context. The metric consists of a
question-answering and a span scorer modules,
using pre-trained models from existing litera-
ture, thus it can be used without any further
training. We demonstrate that RQUGE has a
higher correlation with human judgment with-
out relying on the reference question. Addition-
ally, RQUGE is shown to be more robust to sev-
eral adversarial corruptions. Furthermore, we
illustrate that we can significantly improve the
performance of QA models on out-of-domain
datasets by fine-tuning on synthetic data gen-
erated by a question generation model and re-
ranked by RQUGE.1

1 Introduction

Given the context (e.g. paragraph), the goal of ques-
tion generation (QG) is to generate questions with
or without providing the answer spans. Automatic
question generation can be used in several appli-
cations: improving the question answering (QA)
task (Duan et al., 2017; Du and Cardie, 2018; Puri
et al., 2020; Cheng et al., 2021), automatic assess-

∗Work done during an internship at Meta AI.
† This work is done when the author was on leave from

BYJU’s LAB.
1The implementation and annotated data are provided at

https://github.com/alirezamshi/RQUGE

Context: Today, Warsaw has some of the best medical 

facilities in Poland and East-Central Europe. The city is 

home to the Children's Memorial Health Institute 

(CMHI), …

Reference Question: Where are some of the best medical 

facilities in East-Central Europe located?

Question ① Where is the Children's Memorial Health Institute 

located?

Question ② In which city of Poland, can the best medical 

equipments be found?

  BLEU:0.07      BERTScore:0.44      RQUGE: 1.0

  BLEU:0.12      BERTScore:0.52      RQUGE: 1.0

Question ③ Where are some of the best medical facilities in 

West-Central Europe located?

  BLEU:0.80      BERTScore:0.96      RQUGE: 0.0

Figure 1: Normalised scores for different candidate
questions. Metrics based on similarity to a reference
question can penalise valid candidate questions, and
compute a high score for unacceptable questions that
are lexically similar to the reference. This can lead to
the failure of reference-based metrics for valid ques-
tions, such as Q1. Additionally, even paraphrases of
the reference, like Q2, may receive low scores. Fur-
thermore, reference-based metrics may not detect small
corruptions or variations in the reference, such as Q3.

ments (Rebuffel et al., 2021; Lee et al., 2021), es-
pecially for the educational domain (Chen et al.,
2018), and the evaluation of factual consistency
in the text generation tasks (Scialom et al., 2019a,
2021; Fabbri et al., 2022).

Previous work (Hosking and Riedel, 2019;
Scialom et al., 2019b; Zhang and Bansal, 2019; La-
ban et al., 2022) has shown that QG models can gen-
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erate questions inconsistent with the corresponding
context and the answer span. So, measuring the
acceptability of candidate questions is a critical
challenge. Human judgment is the most accurate
method in natural language generation, but it is ex-
pensive, time-consuming, and not scalable. Conse-
quently, several metrics e.g. BLEU (Papineni et al.,
2002), ROUGE (Lin, 2004), BERTScore (Zhang
et al., 2020) are proposed to automatically measure
the quality of the generated text.

Specifically for the question generation task, pre-
vious work has utilised reference-based metrics e.g.
BLEU, ROUGE, BERTScore, and BLEURT (Sel-
lam et al., 2020; Ushio et al., 2023a,b, 2022) to eval-
uate the quality of the candidate question given the
reference question. However, these methods highly
depend on the diversity of the reference questions
for a given answer span. Due to the huge cost of hu-
man annotations, existing QA/QG datasets mostly
provide one reference question for the given con-
text and answer, which results in wrongly penal-
ising some valid questions. In Figure 1, the first
candidate question (Q1) is generated by paying at-
tention to different evidence in the context, and Q2

is a paraphrase of the reference, but both BLEU
and BERTScore fail to assign high scores to them.
Furthermore, reference-based metrics are not sen-
sitive to very small corruptions of the reference
questions, which makes the candidate question un-
acceptable (Q3).

In this paper, we propose RQUGE , a Reference-
free QUestion Generation Evaluation metric that
can compute the quality of the candidate question
without requiring a reference question. Given the
corresponding context and answer span, our met-
ric calculates the acceptability score by applying a
general question-answering module, followed by
a span scorer. The former module generates the
answer span for the given candidate question, and
the latter computes the semantic similarity of the
predicted and gold answer spans. Our metric is
extremely valuable in cases where the reference
question is not well-formed 2 or there is one (or no)
reference for a given context and answer span.
We evaluate our metric on several datasets, includ-
ing SQuAD (v1) (Rajpurkar et al., 2016), Natural
Questions (NQ) (Kwiatkowski et al., 2019), and
MS-MARCO (Bonifacio et al., 2021), and show

2For instance, many questions in the Natural Question
dataset (Kwiatkowski et al., 2019) are not well-formed. Ex-
ample: “in a deep mine temperatures increase with depth at
the rate of”

that it consistently has a better correlation with hu-
man judgment compared to previous QG metrics.
We also integrate RQUGE into the decoding step by
re-ranking candidate questions of each instance by
our metric, leading to a better correlation with the
human evaluation. Additionally, we demonstrate
that RQUGE is more robust to adversaries than pre-
vious metrics with +13.1% relative improvement.
Finally, we improve the performance of question
answering models on an out-of-domain dataset by
fine-tuning them on synthetic data generated by
a question generation model, then re-ranked with
RQUGE to choose the best candidate question for
the given answer span, resulting in an +18.3% F1
and +22.2% EM relative improvement.
To sum up, our contributions are as follows:

• We propose RQUGE, an evaluation metric
for measuring the quality of the automatically
generated questions, without requiring access
to any reference questions.

• We show that our metric has a significantly
higher correlation with human judgment in
terms of the acceptability of the candidate
questions on SQuAD (v1), NQ, and MS-
MARCO datasets. Also, re-ranking candidate
questions with RQUGE leads to a better cor-
relation with human judgment.

• We demonstrate that RQUGE metric is more
robust compared to previous work on several
adversarial strategies such as negation, entity
swapping, gender reversing, or paraphrasing
the reference questions.

• Finally, we illustrate that the performance of
QA models significantly improves on the out-
of-domain datasets by fine-tuning them on the
synthetic data, created by applying a ques-
tion generator model, then re-ranking with
RQUGE metric.

2 Related Work

Previous work on automatic evaluation of Natu-
ral Language Generation (NLG) tasks have been
categorized as follows:

Unsupervised Metrics. It contains the most com-
monly used metrics e.g. BLEU (Papineni et al.,
2002), ROUGE (Lin, 2004), chrF (Popović, 2015),
and METEOR (Denkowski and Lavie, 2010).
These metrics calculate the correlation of reference
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Figure 2: The architecture of RQUGE metric (upper-side) for the question generation task, which consists of a
question answering and a span scorer modules to compute the acceptability of the candidate question. Reference-
based metrics are also shown at bottom of the figure, where the score is calculated by comparing the gold and
predicted questions.

and predicted sequences in a discrete space by util-
ising token-level matching functions. Then, recent
work e.g. BERTScore (Zhang et al., 2020) and
MoverScore (Zhao et al., 2019) use BERT (De-
vlin et al., 2019) embeddings to provide a soft
token-level matching instead of the hard n-gram
overlap. These metrics have been applied to vari-
ous NLG tasks (Du et al., 2017; Zhou et al., 2017;
Xiong et al., 2019; Pan et al., 2020; Lewis et al.,
2020; Cheng et al., 2021; Mohammadshahi et al.,
2022a,b). Specifically for QG evaluation, Nema
and Khapra (2018) propose a scoring function, fo-
cusing on the answerability of the candidate ques-
tion, which improves the human correlation when
integrated with existing unsupervised metrics.

Regression-based Metrics. These metrics e.g.
COMET (Rei et al., 2020), BLEURT (Sellam et al.,
2020), S3 (Peyrard et al., 2017), and VRM (Hirao
et al., 2007) train a regression layer in a supervised
manner to mimic the human judgment.

Ranking-based Metrics. The aim of these met-
rics is to assign a higher score to a better candidate
compared to worse predictions. The most popular
ones include BEER (Stanojević and Sima’an, 2014)
and COMET (Rei et al., 2020).

Generation-based Metrics. The idea is to for-
mulate the evaluation of NLG, as a text genera-
tion problem from pre-trained language models.
Given the source sequence, the better candidate
should be generated with a higher score (probabil-

ity) compared to the worse ones. The most pop-
ular ones are BARTScore (Yuan et al., 2021) and
PRISM (Thompson and Post, 2020).

Additionally, we include CTC (Deng et al., 2021)
and QRelScore (Wang et al., 2022) as reference-
free metrics for better comparison. CTC (Deng
et al., 2021) proposes an evaluation framework
for NLG tasks by providing several reference-free
metrics, which are computed by aggregating the
alignment scores between the input, context and
the predicted sequence. To measure the align-
ment, CTC (Deng et al., 2021) uses BERT (De-
vlin et al., 2019) embedding matching, discrimi-
native, and regression models. 3 QRelScore com-
putes the answerability of the candidate question
by applying word-level hierarchical matching and
sentence-level prompt-based generation. Different
from previous work, RQUGE combines question
answering and span scoring modules to compute
the acceptability of the candidate, which leads to a
significantly better correlation with human judge-
ment in multiple datasets with different domains
and answer lengths.

3 RQUGE Architecture

RQUGE architecture is illustrated in Figure 2. It
consists of two components: question answering
and span scorer modules. Given the context, gold
answer span, and the candidate question, generated
by a question generation model (QG), RQUGE

3CTC can be considered as an unsupervised metric when
BERT embeddings are used to compute the alignment.
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computes the acceptance score (κ) of the candidate
question as follows:

{
ac = QA(qc, D)

κ = S(qc, ac, ar, D)
(1)

where the qc = QG(ar, D) is the generated can-
didate question for the gold answer span ar and
context D. To calculate the score, the question
answering model QA(. ) predicts the answer span
ac, given the candidate question qc and the con-
text D. Finally, the span scorer S(. ) computes
the acceptance score κ, conditioned on the candi-
date question, predicted answer, gold answer, and
context. In the following, we will describe each
module in detail.

3.1 Question Answering Module
Given the context and the candidate question, the
question answering model predicts the answer span.
To make our metric general to several domains, we
use UnifiedQAv2 (Khashabi et al., 2022) model to
generate the answer span. UnifiedQAv2 is a T5-
based encoder-decoder model, which is trained on
20 QA datasets, and achieves competitive perfor-
mance with the state-of-the-art models in several
in-domain and out-of-domain datasets.4 The input
to the model is the concatenation of the candidate
question and corresponding context.

3.2 Span Scorer Module
Given the predicted answer span ac of the candidate
question qc, the span scorer calculates the score
(ranging from 1 to 5) of the candidate question.
Inspired by Chen et al. (2020) and Fabbri et al.
(2022), we use an encoder-only BERT-based model
to calculate the acceptance score. Specifically, we
first encode the input sequence, then pass the vector
representation of [CLS] to the regression layer to
compute the acceptance score κ. The input to the
module is:

[CLS] cand. question [q] gold answer [r] pred answer [c] context

We employ pre-trained RoBERTa model, pro-
vided by Fabbri et al. (2022). The model is first pre-
trained with a QA-infused pre-training objective,5

4We refer to Khashabi et al. (2022) for further details.
A list of evaluated datasets is provided in Appendix A. We
use unifiedqa-v2-t5-large checkpoint, provided in https:
//github.com/allenai/unifiedqa.

5It includes pre-training contextual embeddings with a
bi-encoder extractive QA loss, which results in encoding

then fine-tuned on MOCHA human ratings QA
dataset (Chen et al., 2020). MOCHA is a dataset
of human judgment scores for training and testing
reading comprehension metrics, where annotators
are asked to score candidate spans, given the con-
text, gold answer, and the corresponding question.

4 Experimental Setup

Datasets. We evaluate metrics on three widely-
used QA datasets, including SQuAD(v1) (Ra-
jpurkar et al., 2016), NQ (Kwiatkowski et al.,
2019), and MS-MARCO (Bonifacio et al., 2021).
NQ is used to demonstrate the benefit of our metric
in cases where reference questions are not well-
formed and are derived from the Google engine. 6

For MS-MARCO, we use DESCRIPTION type of
the dataset to show the effectiveness of our metric
on candidate questions with long answer spans (13
tokens on average). Unlike SQuAD and NQ, MS-
MARCO is not included in the training data of
the question answering module of RQUGE (i.e.
UnifiedQAv2 (Khashabi et al., 2022)). We use
MS-MARCO to demonstrate that RQUGE can be
generalised to out-of-domain datasets. 7

Question Generators. We fine-tune two com-
monly used QG models, including GPT2 (Radford
et al., 2019), trained with causal language mod-
elling objective, and MixQG (Murakhovs’ka et al.,
2022), which is the state-of-the-art question genera-
tor and is a T5-based (Raffel et al., 2020) sequence-
to-sequence model. We choose GPT2 and MixQG
as our question generators as there is a significant
gap in their performance, making them suitable for
evaluating the metrics. 8

Baselines. We include BLEU-4 (Papineni et al.,
2002), ROUGE-1, ROUGE-L (Lin, 2004), ME-
TEOR (Denkowski and Lavie, 2010), Mover-
Score (Zhao et al., 2019), and BERTScore (Zhang
et al., 2020)9 as unsupervised metrics, that are
commonly used for the question generation task.
We additionally use QBLEU, which is specific for

information about questions that can be answered by each
text span. The pre-trained model is available at https:
//github.com/salesforce/QAFactEval.

6We use the subset of NQ with short-form answer spans,
similarly to the previous work (Murakhovs’ka et al., 2022).

7Further details of evaluated datasets are provided in Ap-
pendix B.1.

8Hyper-parameters for fine-tuning QG models are pro-
vided in Appendix B.2.

9We use the better-performing BERTScore, initialised with
DeBERTa-xlarge model (He et al., 2021).
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Metric Grammaticality Answerability Relevance
r ρ τ r ρ τ r ρ τ

Unsupervised
BLEU-4 0.133 0.096 0.077 0.273 0.335 0.258 0.213 0.235 0.191
ROUGE-1 0.156 0.096 0.077 0.312 0.274 0.217 0.330 0.322 0.264
ROUGE-L 0.210 0.148 0.120 0.321 0.294 0.233 0.322 0.316 0.259
METEOR 0.143 0.086 0.069 0.334 0.321 0.251 0.317 0.315 0.255
QBLEU 0.160 0.134 0.106 0.227 0.235 0.183 0.240 0.248 0.200
MOVERScore 0.161 0.103 0.082 0.294 0.318 0.248 0.280 0.313 0.254
BERTScore 0.262 0.203 0.160 0.336 0.333 0.260 0.309 0.311 0.253

Regression-based
BLEURT-20 0.203 0.144 0.113 0.359 0.341 0.268 0.363 0.363 0.295

Ranking-based
COMET 0.309 0.274 0.215 0.319 0.312 0.243 0.300 0.307 0.248

Generation-based
BARTScore 0.212 0.145 0.115 0.349 0.345 0.269 0.332 0.323 0.262

Ref-Free
CTC 0.120 0.131 0.110 0.291 0.243 0.185 0.195 0.179 0.145
QRelScore 0.202 0.102 0.102 0.366 0.285 0.22 0.294 0.212 0.188

RQUGE 0.380 0.278 0.220 0.604 0.436 0.344 0.551 0.403 0.325

Table 1: Correlation of human judgment and automatic evaluation metrics based on Pearson r, Spearman ρ, and
Kendall τ correlation coefficients, averaged over subsets of SQuAD, MS-MARCO, and NQ datasets. The best and
second best scores are specified with bold and underline markers.

QG evaluation. Furthermore, we utilise BLEURT-
20 (Sellam et al., 2020), and COMET (Rei et al.,
2020) as regression-based and ranking-based met-
rics. Finally, we include BARTScore (Yuan et al.,
2021), fine-tuned on ParaBank2 (Hu et al., 2019).
In all aforementioned metrics, scores are calculated
between the candidate and reference questions. As
reference-free baselines, we use QRelScore (Wang
et al., 2022), and also adopt the factual consistency
scorer of CTC (Deng et al., 2021) to calculate the
consistency score as:

κctc = mean(align([ar, D] → qc))

where ar, D, and qc are answer span, context,
and candidate question, respectively. The func-
tion align(.) estimates the alignment for tokens of
the candidate question with the given context and
answer. we use albert-xlarge-vitaminc-mnli,
which uses a discriminative model to compute the
alignment.10

Human Annotation. We use 3 volunteer anno-
tators to rate the candidate questions of QG mod-
els.11 All annotators are fluent English speakers.

10We also used faithfulness aspect of BARTScore (Yuan
et al., 2021) as a reference-free metric for measuring the qual-
ity of the candidate questions, but preliminary experiments
result in a poor correlation with human judgment.

11Human evaluation of the quality of the generated ques-
tions is not available in previous work.

Inspired by previous work (Rus et al., 2010; Nema
and Khapra, 2018), we ask annotators to score each
candidate question based on three criteria: gram-
maticality, answerability, and relevance. Grammat-
icality measures the syntactic structure of the ques-
tion. Answerability checks whether the question
contains all the important entities, and relevance
checks the relatedness of the generated questions
with the given answer span. Grammaticality and
answerability scores are on a 3-point scale (3 as ac-
ceptable, and 1 as rejection), and relevance is on a
2-point scale. We sample 600 questions generated
from fine-tuned QG models on SQuAD(v1) (Ra-
jpurkar et al., 2016), NQ (Kwiatkowski et al.,
2019), and MS-MARCO (Bonifacio et al., 2021)
datasets. We then randomly shuffle and anonymise
them for annotators. Further details of the hu-
man annotation procedure are provided in Ap-
pendix C.12

5 Results and Discussion

We evaluate our RQUGE and previous metrics on
various datasets and tasks. First, we evaluate the
correlation of metrics with human judgment in Sec-
tions 5.1 and 5.2. We then demonstrate their ro-
bustness on the adversarial subset in Section 5.3.

12The human-evaluated data is available at https://
github.com/alirezamshi/RQUGE.
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Figure 3: The relative score of automatic metrics com-
pared to K = 1 for different values of K, after re-
ranking the output of the question generation model
with RQUGE metric. RQUGE increases as it is the ob-
jective of the re-ranking mechanism.

Finally, Section 5.4 illustrates that fine-tuning QA
models on the synthetic data, created by our met-
ric, improves their performance on out-of-domain
datasets.

5.1 Correlation with Human Judgment

Annotator Agreement. The pairwise inter-
annotator agreements, calculated using Cohen’s
Kappa are 88.91%, 85.32%, and 83.54%. 13 We
use the average score of three annotators for the
remaining experiments.

Metric-to-Human Correlation. Table 1 illus-
trates the correlations of automatic metrics with
the human judgment, averaged over all datasets.14

RQUGE metric has a considerably higher corre-
lation with human judgment on all criteria. For
instance, it outperforms the best previous work
with +7.1%, +23.8%, +18.8% absolute improve-
ment (based on Pearson (r) score) for grammati-
cality, answerability, and relevance, respectively.
Appendix D illustrates the result of correlation with
the human judgment for each dataset, separately.
In in-domain evaluation sets, RQUGE results in

13Calculated on the summation of grammaticality, answer-
ability, and relevance.

14For a fair comparison on grammaticality, we just evalu-
ate on SQuAD evaluation set, where reference questions are
mostly well-formed.

+7.49
+6.39

+25.92

+32.52

-2.82

-9.72

-1.34

-3.03
-1.71

-4.77
-3.51

-7.17

-4.05

-8.73

-11.13

-18.98

Figure 4: Relative score of automatic metrics compared
to K = 1 for 250 samples from the evaluation set of
SQuAD. For the human score, we use the average score
of corresponding samples. It shows that re-ranking with
RQUGE gives better output (as both K = 5, 50 have
better correlation with human), while all QG metrics
except RQUGE are diverging after the re-ranking.

+29.7% and +24.8% absolute point improvement
for SQuAD and NQ datasets, respectively, based
on answerability measurement. For MS-MARCO
as the out-of-domain dataset, RQUGE reaches
+12.2% absolute improvement for the relevancy
criterion, while having competitive results with
CTC on answerability measurement. These results
show the effectiveness of our metric in different do-
mains, and question structures (well-formedness)
and confirm the generalisation of our metric to out-
of-domain settings.

5.2 Re-Ranking with RQUGE

To further demonstrate the effectiveness of
RQUGE, we use it to re-rank the output predictions
of the question generation model to choose the best
generated question. Given the context and answer
span, QG model 15 generates a bag of candidate
questions (here, we apply Nucleus sampling (Holtz-
man et al., 2020) to increase the diversity)16, that
are sorted based on the perplexity (PPL) of the
question generator. At each step, we choose K-

15We use MixQG (Murakhovs’ka et al., 2022) model as
the question generation model, as it is the state-of-the-art QG
model for the evaluated dataset.

16We use temperature sampling of 1, and top summation
probability (topp) of 0.94.
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Corruption Context Reference Candidate

Paraphrasing Orange County is a rapidly de-
veloping business center that in-
cludes Downtown Santa Ana, the
South Coast Metro and Newport
Center districts; ...

Which county is developing its
business center?

Which county is expanding its
business center?

Negation Ondemar Dias is accredited
with first discovering the geo-
glyphs in 1977 and Alceu Ranzi
with furthering their discovery af-
ter flying over Acre. ...

Who is given credit for discover-
ing geoglyphs along the Amazon
River?

Who is not given credit for dis-
covering geoglyphs along the
Amazon River?

Entity Swap ..., a plague claimed some 1.7
million victims in Italy, ... killed
about 100,000 in Sweden, and
300,000 in Prussia. The plague
killed ...

How many were killed by plague
in Italy in the 17th century?

How many were killed by plague
in Prussia in the 17th century?

Reverse Gender ... For example, Joseph Haas
was arrested for allegedly send-
ing an email to the Lebanon,
New Hampshire city councilors
stating, "Wise up or die."

What did Joseph Haas say in his
email?

What did Joseph Haas say in
hers email?

Table 2: Samples of the adversarial subset for evaluating the robustness of QG metrics.

first candidates of each sample and re-rank them
with RQUGE. Then, other automatic metrics are
computed for the best one chosen by RQUGE.
Figure 3 demonstrates the relative score gains of
QG metrics compared to K = 1 (best candidate by
PPL) for different values of K. 17 Interestingly, it
illustrates that other metrics drop as the number of
candidate outputs of each sample (K) is increas-
ing, meaning that the best candidates chosen by
our metric are not correlated with other metrics.
To confirm these results, annotators are asked to
score 250 samples 18 from the evaluation dataset.
For each sample, the best candidate questions of
K = 1 (best predictions of PPL), K = 5 (where
the RQUGE is starting to become plateau), and
K = 50 (best predictions of RQUGE) are cho-
sen, and annotators are asked to score these three
generated questions based on criteria defined in
Section 4.19

Figure 4 depicts the relative difference of NLG
metrics compared to the score of K = 1, alongside
human scores. We can see from the figure that an-
notators significantly prefer highest ranking ques-
tions of K = 5 and K = 50 chosen by RQUGE
compared to the best candidate questions picked
based on PPL, while the average scores of other
automatic metrics drop as the number of candidate
questions (K) increases. For K = 5, the average
human score of highest ranking questions is rela-

17The relative performances of the remaining metrics for
different K are provided in Appendix E.

18We filter redundant instances (samples that all of its best
candidates are the same) during the sampling process.

19Summation of scores for grammaticality, answerability,
and relevance is defined as the overall score.

Context: In 1066, Duke William II of Normandy conquered England killing 

King Harold II at the Battle of Hastings. The invading Normans and their 

descendants replaced the Anglo-Saxons as …

Question (K=1) When was King Harold II killed?

BLEU-4:14.5   BERTScore:0.7   RQUGE:1.98   Human: 1

Question (K=50) Where did Duke William II of Normandy kill King Harold II?

BLEU-4:10.1   BERTScore:0.5   RQUGE:5.00   Human: 2

Reference Where did Harold II die?

Figure 5: A sample of re-ranking experiment, that the
annotator prefers the best candidate, chosen based on
RQUGE (K = 50) compared to the question selected
based on the perplexity of QG model (K = 1).

tively +7.49% better than best candidate questions,
chosen by PPL of question generator (K = 1). It
confirms the effectiveness of RQUGE , when inte-
grated into the decoding step. Additionally, there is
not a significant difference (-1.1%) between the av-
erage human scores of candidate questions chosen
based on RQUGE for K = 5 and K = 50. This is
correlated with Figure 3, as RQUGE also becomes
plateau from K = 5. Figure 5 illustrates an exam-
ple in which annotators prefer the second candidate
question, while BLEU-4 and BERTScore compute
higher scores for the first candidate question. 20

5.3 Robustness Analysis
To further assess the robustness of the QG met-
rics on adversarial corruptions of reference ques-
tions, we evaluate metrics on a subset of positive
and negative samples, created from SQuAD (Ra-

20For transparency, we will provide the human evaluation
of the re-ranking experiment.
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Metric Total Neg. Rev. Gen Swap Ents

Unsupervised
BLEU4 0.239 0.241 0.219 0.241
ROUGE-1 0.148 0.126 0.209 0.272
ROUGE-L 0.13 0.11 0.209 0.272
METEOR 0.13 0.09 0.198 0.250
QBLEU 0.220 0.172 0.117 0.558
MOVERScore 0.180 0.169 0.161 0.236
BERTScore 0.408 0.44 0.148 0.285

Regression-based
BLEURT-20 0.632 0.69 0.24 0.489

Ranking-based
COMET 0.456 0.523 0.137 0.216

Generation-based
BARTScore 0.581 0.647 0.205 0.336

Ref-Free
CTC 0.539 0.576 0.372 0.376
QRelScore 0.546 0.566 0.420 0.535

RQUGE 0.715 0.759 0.371 0.57

Table 3: Area under the ROC curve (AUC) of bi-
nary classification on the adversarial subset of SQuAD
dataset. First column represents the overall performance.
Other columns demonstrate AUC metric for different
negative sampling methods e.g. negation, reversing the
gender, and swapping entities.

jpurkar et al., 2016) evaluation set, as shown in
Table 2.21 The remaining subset contains 2,500
samples equally selected from positive and neg-
ative questions. Inspired by Chen et al. (2021)
and Honovich et al. (2022), positive questions are
paraphrases of references, created by two methods,
either translating to a high-resource language, then
back-translating to English, or applying a T5 (Raf-
fel et al., 2020) model fine-tuned on Quora para-
phrasing task.22 For negative samples, we use
three strategies: negation, reversing the gender,
and swapping the entities of the reference question
with relevant entities in the corresponding context.
Further details of the adversarial evaluation set are
provided in Appendix F.

Results and Discussion. We use RQUGE and
previous metrics on the adversarial subset to clas-
sify the corrupted candidate questions based on
their acceptability score. Table 3 illustrates the area
of the ROC curve of QG metrics on the adversarial
subset. 23 Overall, RQUGE metric significantly

21For a fair comparison, we omit NQ, and MS-MARCO
evaluation sets as their reference questions are not always
well-formed.

22https://www.kaggle.com/competitions/
quora-question-pairs/data.

23Number of instances for negation, gender reversing, and
entity swapping are 1000, 150, and 100, respectively.

outperforms BLEURT-20 (the best previous work)
by +13.1% relative improvement. Previous unsu-
pervised metrics drop significantly for all types of
negative samples, while BLEURT-20, BARTScore,
and reference-free metrics perform better compara-
tively, especially for negation. Our RQUGE met-
ric decreases the error relatively by +22.2% and
+7.5% for negation, and entity swapping compared
to previous work and has the second-best results on
reversing the gender. This confirms the robustness
of our metric for different adversarial corruption.

5.4 Domain Adaptation of QA Task

Generated questions using a QG model can be used
to improve the performance of a question answer-
ing model on out-of-domain datasets. In this sec-
tion, we show that fine-tuning on the generated
synthetic data, re-ranked with RQUGE improves
the performance of the question answering model.

Implementation Details. For the out-of-domain
dataset, we choose MS-MARCO (Bonifacio et al.,
2021) dataset, since the UnifiedQAv2 (Khashabi
et al., 2022) (utilised in the calculation of RQUGE)
has not used it for training. 24 Given the context,
we apply Stanza (Qi et al., 2020a) Named-Entity
Recognition (NER) model to extract candidate an-
swer spans. A QG model is then applied to a ran-
domly chosen candidate span, creating a bag of
output predictions, using Nucleus sampling (Holtz-
man et al., 2020). Then, we apply the same re-
ranking mechanism, described in Section 5.2 using
RQUGE , CTC, QRelScore, and the PPL of the
QG. We also use a beam search of size 5 with
no re-ranking as a baseline. We use MixQG (Mu-
rakhovs’ka et al., 2022) to generate questions. For
QA, we first fine-tune T5-small (Raffel et al., 2020)
on SQuAD (Rajpurkar et al., 2016) (zero-shot for
our setting), then fine-tune it on the generated syn-
thetic data. Further implementation details and
hyper-parameters are provided in Appendix G.

Results and Discussion. Figure 6 demonstrates
the performance of the QA model on the out-of-
domain dataset, fine-tuned for different amounts
of synthetic data. Generally, fine-tuned QA model
reaches significantly better performance compared
to the zero-shot setting. This is important for do-
mains in which we do not have annotated QA data.
Furthermore, fine-tuning on the re-ranked data with

24For compatibility with the NER model, we use instances
with short-form answer span (less than 4 tokens).
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Zero-Shot

+18.0%

+19.0%

+18.5%
+17.6%

(a) F1 score

Zero-Shot

+22.4%

+22.8%

+21.9%
+21.6%

(b) EM Score

Figure 6: Performance of QA model (based on F1 and Exact Match (EM)) on out-of-domain dataset for different
amount of synthetic data. Numbers in the box illustrates the relative improvement of RQUGE compared to the best
baseline. 235.6K refers to the setting in which we did not see further improvement using additional synthetic data.

RQUGE consistently improves the performance of
the QA model for a different amount of synthetic
data, compared to other baselines. Specifically, it
significantly outperforms baselines by +18.3% F1,
and +22.2% EM, on average. It again shows the
effectiveness of our RQUGE by employing it in
the domain adaptation of QA models for the out-
of-domain dataset.

6 Conclusion

We propose RQUGE , Reference-free QUestion
Generation Evaluation metric to measure the qual-
ity of the generated questions, by better encoding
the relevant context and answer without requiring
a reference question. It consists of two modules,
a question answering model, and a span scorer,
which are existing pre-trained models without fur-
ther fine-tuning. We compare the performance of
RQUGE with existing QG metrics on SQuAD, MS-
MARCO, and NQ datasets, and show that RQUGE
achieves a significantly better correlation with hu-
man judgment. Additionally, we integrate RQUGE
into the decoding step by using it to re-rank the can-
didate questions, which leads to a better correlation
with human. For robustness, we evaluate QG met-
rics on adversarial data by corrupting the reference
questions and show that RQUGE achieves signif-
icantly better performance compared to previous
work. Finally, we show that fine-tuning QA models

on the synthetic data, generated with a QG model
and re-ranked with RQUGE , improves the perfor-
mance of QA models on out-of-domain datasets.
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Limitations

The main limitation of our work is that we have
applied and verified the effectiveness of our metric
on the English question answering datasets. Since
RQUGE depends on a strong question answering
module, one has to find an alternative model to the
UnifiedQA (Khashabi et al., 2022) we have used
in calculation of RQUGE. Additionally, we did
an error analysis on the subset that RQUGE and
human evaluation have a significant difference in
Appendix H, which shows that mistakes are cate-
gorised into syntactic-based and knowledge-based
errors. It gives us directions for future improve-
ment of RQUGE metric.
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Miloš Stanojević and Khalil Sima’an. 2014. BEER:
BEtter evaluation as ranking. In Proceedings of the
Ninth Workshop on Statistical Machine Translation,
pages 414–419, Baltimore, Maryland, USA. Associa-
tion for Computational Linguistics.

Kai Sun, Dian Yu, Jianshu Chen, Dong Yu, Yejin Choi,
and Claire Cardie. 2019. Dream: A challenge data
set and models for dialogue-based reading compre-
hension. Transactions of the Association for Compu-
tational Linguistics, 7:217–231.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. CommonsenseQA: A ques-
tion answering challenge targeting commonsense
knowledge. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4149–4158, Minneapolis, Minnesota. Association for
Computational Linguistics.

Brian Thompson and Matt Post. 2020. Automatic ma-
chine translation evaluation in many languages via
zero-shot paraphrasing. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 90–121, Online.
Association for Computational Linguistics.

Adam Trischler, Tong Wang, Xingdi Yuan, Justin Harris,
Alessandro Sordoni, Philip Bachman, and Kaheer
Suleman. 2016. Newsqa: A machine comprehension
dataset.

Asahi Ushio, Fernando Alva-Manchego, and Jose
Camacho-Collados. 2022. Generative language mod-
els for paragraph-level question generation.

Asahi Ushio, Fernando Alva-Manchego, and Jose
Camacho-Collados. 2023a. An empirical comparison
of lm-based question and answer generation methods.
In Proceedings of the 61th Annual Meeting of the
Association for Computational Linguistics, Toronto,
Canada. Association for Computational Linguistics.

Asahi Ushio, Fernando Alva-Manchego, and Jose
Camacho-Collados. 2023b. A practical toolkit for
multilingual question and answer generation, acl
2022, system demonstration. In Proceedings of the
61th Annual Meeting of the Association for Computa-
tional Linguistics: System Demonstrations, Toronto,
Canada. Association for Computational Linguistics.

David Vilares and Carlos Gómez-Rodríguez. 2019.
HEAD-QA: A healthcare dataset for complex reason-
ing. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pages
960–966, Florence, Italy. Association for Computa-
tional Linguistics.

Xiaoqiang Wang, Bang Liu, Siliang Tang, and Lingfei
Wu. 2022. Qrelscore: Better evaluating gener-
ated questions with deeper understanding of context-
aware relevance.

Chien-Sheng Wu, Andrea Madotto, Wenhao Liu, Pas-
cale Fung, and Caiming Xiong. 2022. QAConv:
Question answering on informative conversations.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 5389–5411, Dublin, Ireland.
Association for Computational Linguistics.

Wenhan Xiong, Jiawei Wu, Hong Wang, Vivek Kulka-
rni, Mo Yu, Shiyu Chang, Xiaoxiao Guo, and
William Yang Wang. 2019. TWEETQA: A social

6858

https://doi.org/10.1609/aaai.v34i05.6398
https://doi.org/10.1609/aaai.v34i05.6398
https://aclanthology.org/W10-4234
https://aclanthology.org/W10-4234
https://doi.org/10.1145/3474381
https://doi.org/10.1145/3474381
https://doi.org/10.18653/v1/D19-1454
https://doi.org/10.18653/v1/D19-1454
https://doi.org/10.18653/v1/2020.acl-main.704
https://doi.org/10.18653/v1/2020.acl-main.704
https://doi.org/10.3115/v1/W14-3354
https://doi.org/10.3115/v1/W14-3354
https://doi.org/10.1162/tacl_a_00264
https://doi.org/10.1162/tacl_a_00264
https://doi.org/10.1162/tacl_a_00264
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/2020.emnlp-main.8
https://doi.org/10.18653/v1/2020.emnlp-main.8
https://doi.org/10.18653/v1/2020.emnlp-main.8
http://arxiv.org/abs/1611.09830
http://arxiv.org/abs/1611.09830
http://arxiv.org/abs/2210.03992
http://arxiv.org/abs/2210.03992
https://doi.org/10.18653/v1/P19-1092
https://doi.org/10.18653/v1/P19-1092
http://arxiv.org/abs/2204.13921
http://arxiv.org/abs/2204.13921
http://arxiv.org/abs/2204.13921
https://doi.org/10.18653/v1/2022.acl-long.370
https://doi.org/10.18653/v1/2022.acl-long.370
https://doi.org/10.18653/v1/P19-1496


media focused question answering dataset. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 5020–
5031, Florence, Italy. Association for Computational
Linguistics.

Weihao Yu, Zihang Jiang, Yanfei Dong, and Jiashi Feng.
2020. Reclor: A reading comprehension dataset re-
quiring logical reasoning. In International Confer-
ence on Learning Representations.

Weizhe Yuan, Graham Neubig, and Pengfei Liu. 2021.
Bartscore: Evaluating generated text as text genera-
tion. In Advances in Neural Information Processing
Systems, volume 34, pages 27263–27277. Curran As-
sociates, Inc.

Sheng Zhang, Xiaodong Liu, Jingjing Liu, Jianfeng
Gao, Kevin Duh, and Benjamin Van Durme. 2018.
Record: Bridging the gap between human and ma-
chine commonsense reading comprehension.

Shiyue Zhang and Mohit Bansal. 2019. Address-
ing semantic drift in question generation for semi-
supervised question answering. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2495–2509, Hong Kong,
China. Association for Computational Linguistics.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Eval-
uating text generation with bert. In International
Conference on Learning Representations.

Wei Zhao, Maxime Peyrard, Fei Liu, Yang Gao, Chris-
tian M. Meyer, and Steffen Eger. 2019. MoverScore:
Text generation evaluating with contextualized em-
beddings and earth mover distance. In Proceedings
of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 563–578, Hong
Kong, China. Association for Computational Lin-
guistics.

Qingyu Zhou, Nan Yang, Furu Wei, Chuanqi Tan,
Hangbo Bao, and Ming Zhou. 2017. Neural question
generation from text: A preliminary study.

6859

https://doi.org/10.18653/v1/P19-1496
https://openreview.net/forum?id=HJgJtT4tvB
https://openreview.net/forum?id=HJgJtT4tvB
https://proceedings.neurips.cc/paper/2021/file/e4d2b6e6fdeca3e60e0f1a62fee3d9dd-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/e4d2b6e6fdeca3e60e0f1a62fee3d9dd-Paper.pdf
http://arxiv.org/abs/1810.12885
http://arxiv.org/abs/1810.12885
https://doi.org/10.18653/v1/D19-1253
https://doi.org/10.18653/v1/D19-1253
https://doi.org/10.18653/v1/D19-1253
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr
https://doi.org/10.18653/v1/D19-1053
https://doi.org/10.18653/v1/D19-1053
https://doi.org/10.18653/v1/D19-1053
https://doi.org/10.48550/ARXIV.1704.01792
https://doi.org/10.48550/ARXIV.1704.01792


Appendix A Evaluated Datsets of UnifiedQAv2 Model

UnifiedQAv2 is evaluated on SQuAD (v1) (Rajpurkar et al., 2016), SQuAD (v2) (Rajpurkar et al.,
2018), NewsQA (Trischler et al., 2016), Quoref (Dasigi et al., 2019), ROPES (Lin et al., 2019), Nar-
rativeQA (Kočiský et al., 2018), DROP (Dua et al., 2019), NaturalQuestions (Kwiatkowski et al.,
2019), MCTest (Richardson et al., 2013), RACE (Lai et al., 2017), OpenBookQA (Mihaylov et al.,
2018), ARC (Clark et al., 2018), CommonsenseQA (Talmor et al., 2019), QASC (Khot et al., 2020),
PhysicalIQA (Bisk et al., 2019), SocialIQA (Sap et al., 2019), Winogrande (Sakaguchi et al., 2021),
BoolQ (Clark et al., 2019), MultiRC (yes/no) (Khashabi et al., 2018), and BoolQ-NP as in-domain datasets.
Additionally, it is evaluation on AdversarialQA (Bartolo et al., 2020), ReCoRD (Zhang et al., 2018),
RACE-C (Liang et al., 2019), HeadQA (Vilares and Gómez-Rodríguez, 2019), MMMLU (Hendrycks
et al., 2020), ReClor (Yu et al., 2020), Quail (Rogers et al., 2020), OneStopQA (Cui et al., 2021),
MCScript (Ostermann et al., 2018), MCScript 2.0 (Ostermann et al., 2019), CosmosQA (Huang et al.,
2019), DREAM (Sun et al., 2019), ProcessBank (Berant et al., 2014), PROST (Aroca-Ouellette et al.,
2021), StrategyQA (Geva et al., 2021), PubmedQA (Jin et al., 2019), QAConv (Wu et al., 2022), and
TweetQA (Xiong et al., 2019) as out-of-domain evaluation sets.

Appendix B Implementation Details

B.1 Details of Evaluated Datasets
We evaluate QG metrics on three datasets, SQuAD (v1) (Rajpurkar et al., 2016) (under CC BY-SA 4.0
license), Natural Questions (Kwiatkowski et al., 2019) (under Creative Commons Share-Alike 3.0 license),
and MS-MARCO (Bonifacio et al., 2021) (fully open-source, no license) datasets. Table 4 illustrates the
number of samples in training and evaluation sets.

Dataset Training Data Evaluation Data

SQuAD 86,821 5,928
Natural Questions 104,071 12,836
MS-MARCO 502,939 55,578

Table 4: Number of instances for the training and evaluation sets of SQuAD, short-form of NQ, and DESCRIPTION
types of MS-MARCO datasets.

B.2 Hyper-parameters for Fine-tuning QG Models
All models are trained on NVIDIA A100-SXM4-40GB GPUs. T5 (Raffel et al., 2020) is under Apache
License 2.0. GPT2 (Radford et al., 2019) is under modified MIT License. We use AdamW opti-
miser (Loshchilov and Hutter, 2019), used in several previous works (Mohammadshahi et al., 2019;
Devlin et al., 2019; Mohammadshahi and Henderson, 2021b,a, 2020).

Hyper-parameter Specification

Architecture T5-base(220M)
No. Encoder Layers 12
No. Decoder Layers 12
No. Epochs 15
Dropout 0.1
Learning rate 3e-5
Batch size 32
No. GPUs 8

(a) MixQG

Hyper-parameter Specification

Architecture GPT2(117M)
No. Encoder Layers 12
No. Epochs 12
Dropout 0.1
Learning rate 3e-4
Batch size 32
No. GPUs 8

(b) GPT2

Table 5: Hyper-parameters for fine-tuning QG models on evaluated datasets.

6860



Appendix C Instruction of Human Evaluation

Annotators are asked to evaluate the quality of a question, given the context and answer span. An input
example is shown in Figure 7. They should provide 3 scores for grammaticality, answerability, and
relevance. For grammar, the syntactic structure of the sentence is evaluated. They should score 3 for
"no grammatical errors", 2 for "not grammatically acceptable but able to get the meaning", and 1 for
"unacceptable" questions. For answerability, the score should express the completeness of the candidate
question and its consistency with the given answer. So, annotators are required to consider two criteria
while scoring; the question should contain question words (e.g. wh-words) and necessary entities, and it
should not include the answer. They should score 3, if the question contains all important information,
and is consistent with the answer. Score 2 is for the cases, in which some important information is missing
in the question or it contains the answer. They should score 1 if all important information is missing in the
question and the question is not consistent with the answer.
For relevance, annotators should score the relatedness of the question to the answer, given the context.
They should score 2 if the question is answerable by the context and related to the given answer. They
should score 1, if the question is out-of-context, or not related to the given answer.
We sample 600 examples (200 for each dataset) from the evaluation sets of SQuAD (v1), NQ, and
MS-MARCO. Samples are shuffled and anonymized. All annotators are fluent English speakers.

Context: The Rhine is the longest river in Germany. It is here that the Rhine encounters some more of its main 

tributaries, such as the Neckar, the Main and, later, the Moselle, which contributes an average discharge of more than 300 

m3/s (11,000 cu ft/s). Northeastern France drains to the Rhine via the Moselle; smaller rivers drain the Vosges and Jura 

Mountains uplands. Most of Luxembourg and a very small part of Belgium also drain to the Rhine via the Moselle. As it 

approaches the Dutch border, the Rhine has an annual mean discharge of 2,290 m3/s (81,000 cu ft/s) and an average width of 

400 m (1,300 ft).

Grammaticality(1-3):          Answerability(1-3):          Relevance(1-2): 

Question What is the average discharge of the Moselle?

Figure 7: The input example of the human evaluation.

Appendix D Correlation with Human Evaluation

Metric
Answerability Relevance

r ρ τ r ρ τ

Unsupervised
BLEU-4 0.256 0.291 0.224 0.213 0.207 0.168
ROUGE-1 0.317 0.292 0.230 0.303 0.281 0.231
ROUGE-L 0.345 0.332 0.263 0.312 0.286 0.235
METEOR 0.337 0.316 0.249 0.308 0.291 0.237
QBLEU 0.296 0.300 0.238 0.272 0.274 0.223
MOVERScore 0.296 0.317 0.248 0.258 0.270 0.218
BERTScore 0.344 0.343 0.266 0.306 0.288 0.233

Regression-based
BLEURT-20 0.340 0.311 0.242 0.326 0.306 0.247

Ranking-based
COMET 0.355 0.359 0.279 0.271 0.276 0.222

Generation-based
BARTScore 0.391 0.383 0.300 0.378 0.334 0.270

Ref-Free
CTC 0.236 0.130 0.099 0.271 0.189 0.152
QRelScore 0.332 0.276 0.212 0.262 0.213 0.175

RQUGE 0.688 0.388 0.303 0.588 0.404 0.327

Table 6: Correlation of human judgment and evaluation metrics based on Pearson r, Spearman ρ, and Kendall τ
correlation coefficients on SQuAD (v1) (Rajpurkar et al., 2016) dataset.
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Metric
Answerability Relevance

r ρ τ r ρ τ

Unsupervised
BLEU-4 0.405 0.494 0.398 0.393 0.467 0.380
ROUGE-1 0.533 0.530 0.430 0.517 0.510 0.418
ROUGE-L 0.514 0.523 0.425 0.491 0.491 0.403
METEOR 0.533 0.535 0.430 0.513 0.505 0.411
QBLEU 0.502 0.524 0.417 0.500 0.497 0.405
MOVERScore 0.434 0.482 0.385 0.419 0.480 0.391
BERTScore 0.480 0.490 0.398 0.488 0.495 0.406

Regression-based
BLEURT-20 0.501 0.506 0.408 0.488 0.509 0.413

Ranking-based
COMET 0.405 0.393 0.310 0.397 0.403 0.325

Generation-based
BARTScore 0.421 0.439 0.351 0.419 0.437 0.358

Ref-Free
CTC 0.270 0.266 0.208 0.270 0.254 0.207
QRelScore 0.415 0.309 0.276 0.394 0.292 0.264

RQUGE 0.781 0.564 0.446 0.783 0.592 0.476

Table 7: Correlation of human judgment and evaluation metrics based on Pearson r, Spearman ρ, and Kendall τ
correlation coefficients on Natural Questions (Kwiatkowski et al., 2019) dataset.

Metric
Answerability Relevance

r ρ τ r ρ τ

Unsupervised
BLEU-4 0.222 0.272 0.211 0.096 0.109 0.089
ROUGE-1 0.107 0.086 0.070 0.174 0.199 0.165
ROUGE-L 0.146 0.131 0.106 0.180 0.200 0.165
METEOR 0.168 0.167 0.131 0.167 0.181 0.145
QBLEU 0.138 0.128 0.101 0.134 0.134 0.108
MOVERScore 0.200 0.217 0.168 0.197 0.206 0.167
BERTScore 0.201 0.205 0.159 0.153 0.165 0.134

Regression-based
BLEURT-20 0.246 0.255 0.202 0.275 0.280 0.229

Ranking-based
COMET 0.209 0.229 0.181 0.244 0.261 0.213

Generation-based
BARTScore 0.221 0.236 0.184 0.181 0.207 0.168

Ref-Free
CTC 0.401 0.376 0.290 0.154 0.183 0.150
QRelScore 0.351 0.272 0.172 0.226 0.133 0.126

RQUGE 0.400 0.366 0.293 0.397 0.356 0.288

Table 8: Correlation of human judgment and evaluation metrics based on Pearson r, Spearman ρ, and Kendall τ
correlation coefficients on MS-MARCO (Bonifacio et al., 2021) dataset.
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Appendix E Re-Ranking with RQUGE

Figure 8: The relative score of automatic metrics compared to K = 1 for different values of K, after re-ranking the
output of question generation model with RQUGE metric. RQUGE increases as it is the objective of the re-ranking
mechanism.

Appendix F Adversarial Evaluation Set

As discussed in Section 5.3, we create positive samples by two mechanisms:

• Back-Translation. Translating the reference question to an intermediate language, then translating
it back to English. We apply Marian model (Junczys-Dowmunt et al., 2018), and use Chinese and
French as intermediate languages, as Marian model has reasonable performance for these language
directions.

• Quora Paraphrasing. We first train a T5-small (Raffel et al., 2020) model on Quora paraphrasing
dataset, 25 and use it for paraphrasing the reference question.

Outputs of both methods are questions that are semantically similar to the reference questions with a few
lexical differences.
For the negative samples, as shown in Table 2, we apply the following methods:

• Negation. We first scan the reference question to find auxiliary and modal verbs. Then, we randomly
either add not to the sentence or replace the verb with its antonyms by using WordNet (Miller, 1995)
inside the NLTK package (Bird et al., 2009).

• Reverse Gender. The reference question is first scanned to find pronouns, and then pronouns are
replaced with pronouns with the opposite gender.

25https://www.kaggle.com/competitions/quora-question-pairs/data
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• Swap Entity. Stanza (Qi et al., 2020b) named-entity recognition model is applied to the reference
question and the context. Then, we randomly select one extracted entity of the reference question
and replace it with a random entity of the context with the same entity type.

Appendix G Implementation Details of Fine-tuning QA models

All models are trained on NVIDIA A100-SXM4-40GB GPUs.

Hyper-parameter Specification

Architecture T5-small
No. Encoder Layers 6
No. Decoder Layers 6
No. Training Steps 2K
Dropout 0.1
Learning rate 3e-5
Batch size 32
No. GPUs 8

Table 9: Hyper-parameters for fine-tuning QA models on the synthetic data of MS-MARCO.

Appendix H Error Analysis

We investigate on cases, in which there is a substantial difference between the human evaluation and
RQUGE score. The errors are categorised into syntactic and knowledge-based types, as shown in Table 10.
For the syntactic error, RQUGE sometimes computes unacceptable scores for sentences that either miss
the question word (e.g. wh-words) or have wrong word order, as QA module of RQUGE focuses more
on the semantic aspect of the candidate question to predict the answer span. For the knowledge-based
mistakes, RQUGE requires further domain specific and commonsense knowledge to compute the correct
score e.g. full moon is instant, not period of time as illustrated in the sample of Table 10. As shown
in Table 11, RQUGE computes wrong values for some samples in "reversing gender" and "swapping
entities" categories of evaluation set in Section 5.3.
These errors shows the limitations of RQUGE metric, and lead the future work to apply larger and better
QA and span scorer modules.
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Error Type Question Answer & Context RQUGE Avg Human

Syntactic
(1) cost of wooden shutters Exterior window

shutters cover ...
Typical costs: Wooden
or vinyl exterior
window shutters in
stock sizes cost
$20-$200 per pair of
panels.

4.81/5 grammaticality:1.66/3

(2) SAT solvers routinely
handle large instances
of what?

... Similarly,
algorithms can solve
the NP-complete
knapsack problem over
a wide range of sizes in
less than quadratic
time and SAT solvers
routinely handle large
instances of the
NP-complete Boolean
satisfiability problem.

4.76/5 grammaticality:2/3

Knowledge-based how long is a full moon A full lunar cycle
lasts almost a month
(about 29.5 days), and
... However, a full
moon, a new moon,
and a half moon (first
and third quarter) are
instants, not periods of
time.

4.95/5 answerability:1/3, relevance:1/3

Table 10: Different categories of errors that RQUGE metric computes wrong scores.

Corruption Type Ref Question Corrupted Question Answer & Context RQUGE

Reversing gender In what year was the
university’s 5th president
granted his position?

In what year was the
university’s 5th president
granted hers position?

In 1929, the university’s
fifth president, Robert
Maynard Hutchins, took
office; the university
underwent many changes
during his 24-year
tenure...

2.25/5

Swapping entities The Kuznets curve says
with economic
development, inequality
will decrease after what?

The Piketty curve says
with economic
development, inequality
will decrease after what?

Studies on income
inequality and growth
have sometimes found
evidence confirming the
Kuznets curve
hypothesis, which states
that with economic
development, inequality
first increases, then
decreases. Economist
Thomas Piketty
challenges this notion...

4.65/5

Table 11: Some samples from the adversarial subset of Section 5.3, that RQUGE metric is not sensitive to the
corruption.
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