
Findings of the Association for Computational Linguistics: ACL 2023, pages 6599–6612
July 9-14, 2023 ©2023 Association for Computational Linguistics

A Unified Generative Approach to Product Attribute-Value Identification

Keiji Shinzato
Rakuten Institute of Technology,

Rakuten Group, Inc.
keiji.shinzato@rakuten.com

Naoki Yoshinaga
Institute of Industrial Science,

The University of Tokyo
ynaga@iis.u-tokyo.ac.jp

Yandi Xia
Rakuten Institute of Technology,

Rakuten Group, Inc.
yandi.xia@rakuten.com

Wei-Te Chen
Rakuten Institute of Technology,

Rakuten Group, Inc.
weite.chen@rakuten.com

Abstract
Product attribute-value identification (PAVI) has
been studied to link products on e-commerce
sites with their attribute values (e.g., ⟨Material,
Cotton⟩) using product text as clues. Techni-
cal demands from real-world e-commerce plat-
forms require PAVI methods to handle unseen
values, multi-attribute values, and canonical-
ized values, which are only partly addressed in
existing extraction- and classification-based ap-
proaches. Motivated by this, we explore a gen-
erative approach to the PAVI task. We finetune
a pre-trained generative model, T5, to decode a
set of attribute-value pairs as a target sequence
from the given product text. Since the attribute-
value pairs are unordered set elements, how to
linearize them will matter; we, thus, explore
methods of composing an attribute-value pair
and ordering the pairs for the task. Experimen-
tal results confirm that our generation-based
approach outperforms the existing extraction-
and classification-based methods on large-scale
real-world datasets meant for those methods.

1 Introduction

Since organized product data play a crucial role in
serving better product search and recommendation
to customers, product attribute value identification
(PAVI) has been a core task in the e-commerce in-
dustry. For attributes pre-defined by e-commerce
sites, the task aims to link values of those attributes
to products using product titles and descriptions as
clues (Figure 1). For example, from the title “D&G
Cotton piqué polo shirt Designed and manufac-
tured in Italy,” models are required to return a set
of possible attribute-value pairs, namely {⟨Brand,
Dolce & Gabbana⟩, ⟨Material, Cotton⟩, ⟨Country
of origin, Italy⟩, ⟨Country of design, Italy⟩}.

In the literature, PAVI has been addressed ba-
sically by extraction from the product text by us-
ing named entity recognition (Probst et al., 2007;

!"#$"#%&'()*+,(-*.&+/,(0"#*12+'"*&$+(,3
!"#$%&[SEPav] '()*+&,&-#..#$#&[SEPpr]/#0+"1#)&[SEPav]

2(3($&[SEPpr] 2(4$0"5&(6&("171$&[SEPav] 80#)5&[SEPpr]

2(4$0"5&(6&%+917$&[SEPav] 80#)5&</s>

4)$"#%&$,5."6#&7#'*&85''59*.&0:&$,5."6#&.*36,($75)
',-&2(3($&:1;4&<+&:()(&9=1"0&'+917$+%&#$%&>#$46#*04"+%&

1$&80#)5&[SEP] 8$&0=+&'?@&*())+*A($B&0=++$A($&0(&%+0#1)&

>#C+9&#))&0=+&%1D+"+$*+E

;)65.*, <*65.*,

=,*1#,+()*.&*)65.*,1.*65.*,&>5.*'

Figure 1: Overview of our generative approach for PAVI;
it takes product text to return a set of attribute-value
pairs. In this example, the model generates Dolce &
Gabbana as a brand, which is a canonicalized form of
D&G, and two attributes have the entity Italy as values.

Wong et al., 2008; Putthividhya and Hu, 2011;
Bing et al., 2012; Shinzato and Sekine, 2013; More,
2016; Zheng et al., 2018; Rezk et al., 2019; Kara-
manolakis et al., 2020; Zhang et al., 2020) or ques-
tion answering (Xu et al., 2019; Wang et al., 2020;
Shinzato et al., 2022; Yang et al., 2022). However,
since PAVI requires canonicalized values rather
than raw value strings in the product text, some
researchers have started to solve PAVI as classifica-
tion (Chen et al., 2022; Fuchs and Acriche, 2022).

To adopt PAVI models in real-world e-commerce
platforms, there are the following challenges.

Unseen values. Since values can be entities such
as brands, models need to identify values unseen
in the training data (Zheng et al., 2018). Since
the classification-based approach assumes a pre-
defined set of target classes (attribute-value pairs),
it cannot handle such unseen attribute-value pairs.

Multi-attribute values. When values can be as-
sociated with multiple attributes (e.g., Italy in Fig-
ure 1), models need to identify multiple attributes
for a single value string in the text. To address this,
the extraction-based approach must solve nested
named entity recognition (Wang et al., 2020).

6599

Approach Unseen Multi Canon

Extraction Support Partially Not
Classification Not Support Support
Generation (ours) Support Support Support

Table 1: Comparison of different PAVI approaches in
terms of the challenges: handling unseen values, multi-
attribute values, and canonicalized values.

Canonicalized values. E-commerce vendors
need attribute values in the canonical form (e.g.,
Dolce & Gabbana for D&G) in actual services
such as faceted product search (Chen et al., 2022).
The extraction-based approach needs a further step
to canonicalize extracted raw value strings (Put-
thividhya and Hu, 2011; Zhang et al., 2021).

Motivated by the shortcomings of the existing ap-
proaches to PAVI (Table 1), we propose to cast PAVI

as sequence-to-set generation, which can handle
all the challenges by using canonicalized attribute-
value pairs for training (Figure 1). We expect that 1)
generation can decode unseen values by consider-
ing corresponding values in the input, 2) generation
can decode the same string in the input multiple
times as values for different attributes, and 3) gen-
eration can learn how to canonicalize raw strings in
input. We finetune the pre-trained generative model
T5 (Raffel et al., 2020) to autoregressively decode
a set of attribute-value pairs from the given text.
As discussed in (Vinyals et al., 2016; Yang et al.,
2018; Madaan et al., 2022), the output order will
matter to decode sets as a sequence. We therefore
explore methods of composing an attribute-value
pair and ordering the pairs for the task.

We evaluate our generative framework on two
real-world datasets, MAVE (Yang et al., 2022) and
our in-house product data. The experimental results
demonstrate that our generation-based approach
outperforms extraction- and classification-based
methods on their target datasets.

Our contribution is as follows.

• We have solved the product attribute-value
identification task as a sequence-to-set gener-
ation for the first time.

• We revealed the effective order of attribute-
value pairs for the T5 model among various
ordering schemes (Table 2).

• We provided the first comprehensive compar-
ison among extraction-, classification-, and
generation-based models on two real-world

PAVI datasets, and empirically confirmed that
the generation-based models outperformed
the others (Table 6) while addressing all chal-
lenges in PAVI (Tables 9, 11 and 12).

2 Related Work

Product Attribute-Value Extraction Tradition-
ally, a myriad of previous studies formulated PAVI

as named entity recognition (NER) (Probst et al.,
2007; Wong et al., 2008; Putthividhya and Hu,
2011; Bing et al., 2012; Shinzato and Sekine,
2013; More, 2016; Zheng et al., 2018; Rezk et al.,
2019; Karamanolakis et al., 2020; Zhang et al.,
2020). However, since the number of attributes in
real-world e-commerce sites can exceed ten thou-
sand (Xu et al., 2019), the NER-based models suffer
from the data sparseness problem, which makes the
models perform poorly. While the extraction-based
approach can identify unseen values in the training
data, it cannot canonicalize values by itself and
is difficult to handle overlapping values, although
nested NER (surveyed in Wang et al. (2022)) can
remedy the latter issue.

To mitigate the data sparseness problem, some
studies leveraged QA models for the PAVI task (Xu
et al., 2019; Wang et al., 2020; Yang et al., 2022;
Shinzato et al., 2022), by assuming the target at-
tribute for extraction as additional input. These
QA-based approaches take an attribute as query and
product text as context, and extract attribute values
from the context as answer for the query. Similar to
the traditional NER-based models, these extractive
QA-based models do not work for canonicalized
values. To improve the ability to find unseen val-
ues, Roy et al. (2021) generated a value for the
given product text and attribute. However, we need
to apply these QA-based models to the same con-
text with each of thousands of attributes, unless
comprehensive attribute taxonomy is designed to
narrow down possible attributes; such taxonomy
is not always available and is often imperfect, as
investigated by Mao et al. (2020) for Amazon.com.

Product Attribute-Value Identification as Classi-
fication Chen et al. (2022) solved PAVI as multi-
label classification (MLC), assuming attribute-value
pairs as target labels. One of the problems in this
approach is that the distribution between positive
and negative labels is heavily skewed because the
number of possible attribute values per product is
much smaller than the total number of attribute
values. To alleviate the imbalanced label prob-

6600

Ordering Attribute-value pairs placed in the target sequence

Rare-first Material [SEPav] Nylon [SEPpr] Color [SEPav] Red [SEPpr] Color [SEPav] White
Common-first Color [SEPav] White [SEPpr] Color [SEPav] Red [SEPpr] Material [SEPav] Nylon
Random Color [SEPav] Red [SEPpr] Material [SEPav] Nylon [SEPpr] Color [SEPav] White

Table 2: Example of attribute-value pair ordering with the attribute-then-value composition. We assume that the
frequency of the pairs is ⟨Color, White⟩ > ⟨Color, Red⟩ > ⟨Material, Nylon⟩.

lem, they introduced a method called label masking
to reduce the number of negative labels using an
attribute taxonomy designed by the e-commerce
platform. To mitigate the extreme multi-class
classification, Fuchs and Acriche (2022) decom-
posed the target label, namely attribute-value pair,
into two atomic labels, attribute and value, to per-
form a hierarchical classification. Although these
classification-based approaches support canonical-
ized values and multi-attribute values, they cannot
handle unseen values.

In this study, we adopt a generative approach to
return a set of attribute-value pairs from given prod-
uct data, and empirically compare it with the above
two approaches. Our approach can be applied to
the task settings adopted by the QA-based models,
by simply feeding one (or more) target attributes as
additional input (e.g., title [SEP] description [SEP]
attributes) to decode their values in order.

3 Proposed Method

As mentioned above, previous studies formalize
PAVI as either sequence tagging or multi-label clas-
sification problems. These approaches do not ad-
dress all the challenges derived from real-world
e-commerce sites at the same time (Table 1).

We thus propose a unified generative framework
that formalizes PAVI as a sequence-to-set problem.
Let us denote x = {x1, x2, . . . , xn} as product
data (title and description) where n is the number
of tokens in x. Given product data x, the model is
trained to return a set of attribute-value pairs y =
{⟨a1,v1⟩, ⟨a2,v2⟩, . . . , ⟨ak,vk⟩} for x, where k
is the number of attribute-value pairs associated
with the product; ai = {a1, a2, . . . , ami} and vi =
{v1, v2, . . . , vli} are corresponding attribute and
value.1 mi and li are the numbers of tokens in ai

and vi, respectively.
As the backbone of our approach, we employ

T5 (Raffel et al., 2020), a pre-trained generative

1When there are more than one value for the same attribute
(e.g., size), we decompose a pair of attribute and n(> 1)
multiple values into n attribute-value pairs (Table 4).

model based on Transformer (Vaswani et al., 2017)
that maps an input sequence to an output sequence.

The key issue in formulating the PAVI task as
sequence-to-sequence generation is how to lin-
earize a set of attribute-value pairs into a sequence.
Firstly, we should consider how to associate at-
tributes and their corresponding values in the out-
put sequence. Secondly, the autoregressive gener-
ation decodes output tokens (here, attributes and
values) one by one conditioned on the previous la-
bels. Thus, if specific (or informative) tokens are
first decoded, it will make it easy to decode the
remaining tokens. However, due to the exposure
bias, decoding specific (namely, infrequent) tokens
are more likely to fail. To address the challenge,
we decompose the issue on linearization into two
subproblems on how to compose an attribute-value
pair and how to order attribute-value pairs. In what
follows, we will describe these subproblems.

3.1 Composition of Attribute-Value Pair

We consider the following ways to compose an
attribute-value pair.2 In both ways, attributes and
values are separated by a special token [SEPav].

Attribute-then-value, ⟨A, V⟩ Attribute is placed,
and then its value (e.g., Color [SEPav] White). In
general, the vocabulary size of attributes is much
smaller than that of values. Thus, models will be
easier to decode attributes than values.

Value-then-attribute, ⟨V, A⟩ Value is placed,
and then its attribute (e.g., White [SEPav] Color).
This will be effective when the target values appear
as raw strings in the given text and are easier to
decode than attributes.

3.2 Ordering of Attribute-Value Pairs

In this work, we design three different types of the
attribute-value pair ordering (Table 2). We use a
special token [SEPpr] as a separator between pairs.

2We have also attempted to generate all attributes prior to
values (namely, a1[SEPpr] . . .ak[SEPav]v1[SEPpr] . . .vk) or
vice versa; this unpaired generation slightly underperformed
the paired generation used here.

6601

MAVE In-House Product Data

Train Dev. Test Train Dev. Test

The number of examples 640,000 100,000 290,773 640,000 100,000 100,000
without values 150,412 23,220 67,936 0 0 0

The number of distinct attributes 693 660 685 1,320 1,119 1,123
The number of distinct attribute values 54,200 21,734 37,092 13,328 8,402 8,445
The number of distinct attribute-value pairs 63,715 25,675 43,605 14,829 9,310 9,356
The number of attribute-value pairs 1,594,855 249,543 722,130 2,966,227 463,463 462,507

with unseen values 0 4,667 13,578 0 443 491
with multi-attribute (or nested) values 134,290 20,832 60,832 103,727 16,280 15,843
whose values appear as raw strings in the product text 1,594,855 249,543 722,130 1,340,043 210,181 207,997

The average number of subwords per example (input) 253.73 253.73 253.56 357.87 359.89 356.93
The average number of subwords per example (output) 10.35 10.39 10.32 46.43 46.44 46.31
The average number of attributes per example 1.64 1.64 1.64 3.24 3.25 3.23
The average number of values per example 2.25 2.25 2.25 4.62 4.62 4.61
The average number of subwords per attribute 2.84 2.82 2.85 4.77 4.72 4.69
The average number of subwords per value 4.15 3.46 3.81 4.09 3.96 3.93

Table 3: Detailed statistics of the datasets. We used the T5 tokenizer to tokenize examples, attributes and values.

Rare-first Specific attribute values (e.g., brands)
can help models decode other attribute values. For
example, since Levi’s has many products made of
denim, it is easy to decode the material if Levi’s is
decoded in advance. Meanwhile, since there are
many brands that have products made of denim,
decoding denim as a material in advance is useless
to decode the brands. To capture this inter-value de-
pendency, we assume a correlation between the fre-
quency and specificity of attribute-value pairs, and
place attribute-value pairs to the target sequence in
rare-first ordering of attribute-value pair frequency
calculated from the training data. The attribute-
value pairs with the same ranking will be placed
randomly for this and following ordering.

Common-first When the model autoregressively
decodes outputs, intermediate errors affect future
decoding. Thus, it is important to decode from
confident attribute-value pairs. Since models will
be easier to decode attribute-value pairs that have
more training examples, we place attribute-value
pairs to the target sequence in the common-first
ordering of attribute-value pair frequency. This
approach is adopted by Yang et al. (2018) in solving
multi-label document classification as generation.

Random To see whether the orders matter, we
randomly sort attribute-value pairs in the target se-
quence; more precisely, we collect, uniquify, and
shuffle attribute-value pairs taken from all train-
ing examples, and sort the pairs in each example
according to the obtained order of the pairs. If
this random ordering shows inferior performance
against the above orderings, we can conclude out-
put orders matter in this task.

4 Experiments

We evaluate our generative approach to PAVI using
two real-world datasets. In the literature, different
types of approaches are rarely compared due to
the proprietary nature of codes and datasets in this
task. We thus compare our generation-based model
with extraction- and classification-based models,
all of which are based on public pre-trained models,
using not only in-house but also public datasets.

4.1 Datasets
We used MAVE (Yang et al., 2022)3 and our in-
house product data for experiments. The MAVE

dataset is designed to evaluate the extraction-based
PAVI models, while the in-house dataset is designed
to evaluate classification-based models (Table 3).

MAVE dataset compiles the product data taken
from Amazon Review Data (Ni et al., 2019). The
dataset contains various kinds of products such as
shoes, clothing, watches, books, and home decor
decals. Each example consists of product titles
and descriptions, attribute, value, and span of the
attribute value. To construct such tuples, Yang
et al. (2022) trained five AVEQA models (Wang
et al., 2020) using a large amount of silver data
where attribute values were annotated using man-
ually tailored extraction rules. Then, they applied
the trained models to the Amazon Review Data
in order to detect spans of values corresponding
to attributes given to the models. To produce at-
tribute value spans with high precision, they chose
only attribute values that all five models extracted

3https://github.com/google-research-datasets/
MAVE

6602

https://github.com/google-research-datasets/MAVE
https://github.com/google-research-datasets/MAVE

Title Description (original attribute-value info.) Attribute-value pairs

Chicago Blackhawks
Pet Dog Hockey Jer-
sey LARGE

Chicago Blackhawks pet jersey -
size LARGE. This great-looking jer-
sey features screened-on logos on
the sleeves and screened-on team
name/number on the back.

⟨ Type, Jersey, 0, 34, 40 ⟩,
⟨ Type, jersey, 1, 23, 29 ⟩,
⟨ Type, jersey, 1, 63, 69 ⟩,
⟨ Clothing Type, Jersey, 0, 34, 40 ⟩,
⟨ Clothing Type, jersey, 1, 23, 29 ⟩,
⟨ Clothing Type, jersey, 1, 63, 69 ⟩,
⟨ Special use, None ⟩

⟨ Type, Jersey ⟩,
⟨ Type, jersey ⟩,
⟨ Clothing Type, Jersey ⟩,
⟨ Clothing Type, jersey ⟩,
⟨ Special use, None ⟩

Northwave [north-
wave] Espresso
Original Red Men’s /
Women’s / Sneakers
25 - 27cm

Product description. These sneakers
are the perfect accent for your feet
and come in a soft red color. The
sole is made of lightweight rubber to
reduce weight. It is a popular color.

⟨ Shoe size (cm), 25.0 ⟩,
⟨ Shoe size (cm), 26.0 ⟩,
⟨ Shoe size (cm), 27.0 ⟩,
⟨ Color, Red ⟩

⟨ Shoe size (cm), 25.0 ⟩,
⟨ Shoe size (cm), 26.0 ⟩,
⟨ Shoe size (cm), 27.0 ⟩,
⟨ Color, Red ⟩

Table 4: Example product data in MAVE (top) and our in-house datasets (bottom, translated from Japanese), which
include multi-attribute values (e.g., jersey) and non-canonicalized values (e.g., 25). MAVE provides tuples of an
attribute, value, paragraph ID, and the value’s beginning and ending positions in the paragraph, while our in-house
data provides canonicalized attribute values. To train BERT-NER, values in text are annotated by using the value
positions in MAVE and by matching with the canonicalized values in the in-house data. To train T5 and BERT-MLC
and evaluate all models, we use attribute-value pairs (right).

(positive). In addition, if no span is extracted from
either model, and there is no extracted span from
the extraction rules, they consider that there are
no values for the attributes (negative); refer to Ta-
ble 4 for example product data. As a result, MAVE

consists of 2,092,898 product data for training and
290,773 product data for testing. Similar to Yang
et al. (2022), to make the training faster, we ran-
domly selected 640,000 and 100,000 product data
as the training and development sets from the orig-
inal training data, respectively. We used the test
data in MAVE for our evaluation as it is.
In-House Product Data is taken from our e-
commerce platform, Rakuten,4 which sells a wide
range of products such as smartphones, car sup-
plies, furniture, clothing, and kitchenware. Each
example consists of a tuple of title, description,
and a set of attribute-value pairs. The sellers as-
sign products attribute-value pairs defined in the
attribute taxonomy provided by the e-commerce
platform. Since both attributes and values in the
taxonomy are canonicalized, there exist spelling
gaps between values in the taxonomy and those
in the product text (e.g., Dolce & Gabbana in
the taxonomy and D&G in the title). For exper-
iments, among our in-house product data with one
or more attribute-value pairs, we randomly sam-
pled 640,000, 100,000, and 100,000 product data
for training, development, and testing, respectively.

4.2 Models
We compare the following models:

4https://www.rakuten.co.jp/

BERT-NER: extraction-based model. On the top
of BERT, we place a classification layer that uses
the outputs from the last layer of BERT as feature
representations of each subword. Each subword
is classified into one of the labels. We employ
BILOU chunking scheme (Sekine et al., 1998; Rati-
nov and Roth, 2009); the total number of labels is
N × 4 + 1, where N is the number of distinct at-
tributes in the training data. We have used BERT as
the backbone here because the common extraction-
based baseline (Zheng et al., 2018) uses classic
BiLSTM-CRF as the backbone (Huang et al., 2015)
and BERT-based models outperform in QA-based
models (Wang et al., 2020); BERT-NER can be a
stronger and easily replicable baseline.

To annotate entities in text, we referred the begin-
ning and ending positions in tuples for MAVE, and
performed a dictionary matching for our in-house
dataset. If annotations are overlapped, we keep
the longest token length value, and drop all other
overlapping values. For multi-attribute values, we
adopt the most frequent attribute-value pair.

BERT-MLC: classification-based model. We put a
classification layer on the top of BERT, and feed the
embeddings of the CLS token to the classification
layer as a representation of given text (Chen et al.,
2022). The model predicts all possible attribute
values from the representation through the classi-
fication layer. The total number of labels is the
number of attribute values in the training data.

BERT-MLC w/ Tax: the current state-of-the-art
classification-based model that can be comparable
with the other methods. We added to BERT-MLC the

6603

https://www.rakuten.co.jp/

MAVE In-House Product Data

BERT-NER BERT-MLC T5 BERT-NER BERT-MLC BERT-MLC w/ TAX T5

Training (10 epochs) 22 22 24 × 10 22 22 22 24 × 10
Inference (the dev set) 8 8 80 × 10 8 8 8 80 × 10
Inference (the test set) 1.6 1.6 16 × 6 0.8 0.8 0.8 8 × 6

Total 31.6 31.6 1,136 30.8 30.8 30.8 1,088

Table 5: GPU hours to perform our experiments. For T5, we finetune and evaluate *-first models for each
composition (2 × 2 models). For the random ordering, we train three models for each composition (3 × 2 models),
and check the performance on the development set to choose the model with the best micro F1 for testing.

label masking (Chen et al., 2022), which leverages
the skewed distributions of attributes in training
and testing, using an attribute taxonomy defined
for our in-house data. Although this is the state-of-
the-art classification-based method, it requires the
attribute taxonomy as extra supervision. Since
the MAVE dataset does not provide the attribute
taxonomy, we train and evaluate this model only
on our in-house dataset.

T5: generation-based model of ours. We finetune
T5 on the training data obtained by each element
in {Attribute-then-value, Value-then-attribute} ×
{Random, Rare-first, Common-first}. For random
ordering, we create three training data with differ-
ent random seeds, next train a model on each train-
ing data, and then chose the model that achieves
the best micro F1 on the development set.

4.3 Implementations
We implemented all models in PyTorch.5 We used
t5-base6 and sonoisa/t5-base-japanese7 in
Transformers (Wolf et al., 2020), both of which
have 220M parameters, as the pre-trained T5 mod-
els for MAVE and our in-house data, respectively.
For training and testing, we used the default hy-
perparameters provided with each model. We ran
teacher forcing in training, and performed beam
search of size four in testing. For BERT-based
models, we used bert-base-cased8 for MAVE,
and cl-tohoku/bert-base-japanese9 for our in-
house dataset, both of which have 110M parame-
ters.10 We set 0.1 of a dropout rate to a classifica-
tion layer.

5https://pytorch.org/
6https://huggingface.co/t5-base
7https://huggingface.co/sonoisa/

t5-base-japanese
8https://huggingface.co/bert-base-cased
9https://huggingface.co/cl-tohoku/

bert-base-japanese
10Training with BERTlarge (330M parameters) did not work

for BERT-MLC on either dataset; see Table 13 in Appendix.

We use Adam (Kingma and Ba, 2015) optimizer
with learning rates shown in Table 14 in Appendix.
We trained the models up to 10 epochs with a batch
size of 32 and chose the models that perform the
best micro F1 on the development set.

Computing Infrastructure We used NVIDIA
DGX A100 GPU on a Linux (Ubuntu) server with
a AMD EPYC 7742 CPU at 2.25 GHz with 2 TB
main memory for performing the experiments. Ta-
ble 5 shows GPU hours taken for the experiments.

4.4 Evaluation Measure

Following the literature (Xu et al., 2019; Wang
et al., 2020; Yang et al., 2022; Shinzato et al., 2022;
Chen et al., 2022), we used micro and macro preci-
sion (P), recall (R), and F1 as metrics. We compute
macro performance in attribute-basis. Since the
goal of PAVI is not to detect spans of values in text
but to assign attribute-value pairs to products, we
pick one attribute-value pair from multiple identical
attribute-value pairs in MAVE (e.g., ⟨Type, jersey⟩
in Table 4). Note that we do not need this unifi-
cation process for our in-house dataset because it
provides unique attribute-value pairs.

Since attribute values in the MAVE dataset are
based on outputs from QA-based models (Wang
et al., 2020) and those in our in-house data are
assigned voluntarily by sellers on our marketplace,
both datasets may contain some missing values. To
reduce the impact of those missing attribute-value
pairs, we discard predicted attribute-value pairs if
there are no ground truth labels for the attributes.

In the MAVE dataset, there are attributes whose
values do not appear in the text (negative). For the
ground truth with such no attribute values, mod-
els can predict no values (NN), or incorrect val-
ues (FPn) while for the ground truth with concrete
attribute values, the model can predict no values
(FN), correct values (TP), or incorrect values (FPp).
Based on those types of predicted values, P and R

6604

https://pytorch.org/
https://huggingface.co/t5-base
https://huggingface.co/sonoisa/t5-base-japanese
https://huggingface.co/sonoisa/t5-base-japanese
https://huggingface.co/bert-base-cased
https://huggingface.co/cl-tohoku/bert-base-japanese
https://huggingface.co/cl-tohoku/bert-base-japanese

MAVE In-House Product Data

Models Micro Macro Micro Macro

P (%) R (%) F1 P (%) R (%) F1 P (%) R (%) F1 P (%) R (%) F1

extraction-based
BERT-NER 96.38 84.91 90.28 80.36 57.75 64.61 96.09 40.26 56.75 45.26 18.12 23.50

classification-based
BERT-MLC 93.52 70.37 80.31 40.53 20.72 25.40 94.53 74.43 83.29 40.81 18.05 22.82
BERT-MLC w/ TAX - - - - - - 93.65 77.47 84.79 58.19 32.76 39.33

generation-based (ours)
T5 ⟨A, V⟩ Rare-first 95.45 91.70 93.54 77.57 64.35 68.97 88.61 81.50 84.91 66.33 47.25 53.10

Common-first 95.29 92.16 93.70 78.26 66.94 70.63 85.30 82.83 84.05 62.10 41.85 47.49
Random 95.10 91.46 93.24 77.24 62.71 67.45 87.73 81.41 84.45 61.64 42.47 47.92

⟨V, A⟩ Rare-first 95.24 91.97 93.57 80.59 68.02 72.51 89.82 80.73 85.03 65.73 44.61 50.93
Common-first 94.62 92.85 93.73 80.50 69.72 73.47 84.25 82.97 83.60 63.61 43.61 49.13
Random 95.13 92.04 93.56 80.56 67.28 71.83 88.25 81.41 84.69 63.06 42.09 48.10

Table 6: Performance of each model on two PAVI datasets; The best score is in bold face and the second best score
is underlined. BERT-MLC w/ TAX uses the extra supervision (taxonomy) for label masking, and it reduces the size of
labels relevant to inputs from 14,829 to 405 on average.

are computed as follows:

P =
|TP|

|TP|+ |FPp|+ |FPn|
, R =

|TP|
|TP|+ |FN| .

F1 is computed as 2× P × R / (P + R). Note that
since there are no attributes with no values in our
in-house dataset, the value of |FPn| is always 0.

4.5 Results
Table 6 shows the performance of each model on
MAVE and our in-house datasets. Our generation-
based models with *-first ordering mostly out-
performed the extraction- and classification-based
baselines in terms of F1.11 The differences be-
tween the best models and the baselines were sig-
nificant (p < 0.0005) under approximate random-
ized test (Noreen, 1989). The higher recall of our
generation-based models suggests the impact of
capturing inter-value dependencies (§ 3.2).

The impact of the composition of attribute-value
pairs depends on whether the output values are
canonicalized. On the MAVE dataset, the models
with the value-then-attribute composition outper-
formed those with attribute-then-value composi-
tion in terms of macro F1. This is because all
output values appear in the MAVE dataset. Thus,
to the models, it is easier to generate values than
attributes. Meanwhile, the advantage of value-then-
attribute composition is smaller on our in-house

11The gap in performance may be partly attributed to the
difference in the number of parameters in the base models.
However, as shown in Table 1, the generation model still has
the advantage that it can address the challenges in the PAVI
task that the other approaches intrinsically cannot solve.

dataset since there is no guarantee that the target
values appear in the text as raw strings.

The impact of the ordering of attribute-value
pairs depends on the number of attribute-value
pairs per example. On the in-house dataset, the
models with rare-first ordering consistently outper-
formed those with common-first ordering in terms
of F1. This result implies that decoding specific
attribute-value pairs in advance is more helpful
to generate general attribute-value pairs on the in-
house dataset. Meanwhile, there is no clear differ-
ence between the models with *-first orderings on
the MAVE dataset, since the number of attribute-
value pairs per example is small.

These results confirm that the generative ap-
proach learns to flexibly perform canonicalization
if it is required in the training data.12 Meanwhile,
the performance of extraction- and classification-
based approaches depends on whether the attribute-
value pairs are canonicalized or not.

Quantitative comparison of each approach To
see the detailed behaviors of individual approaches,
we categorized the attributes in the MAVE and our
in-house datasets according to the number of train-
ing examples and the number of distinct values per
attribute. We divide the attributes into four accord-

12To make a more lenient comparison for BERT-NER on
the in-house dataset, we have also evaluated all models on
attribute-value pairs in the test data whose attributes are ob-
served in the training data of BERT-NER. On this test data,
our generation-based model still outperformed the BERT-NER
and BERT-MLC models; T5 (⟨V, A⟩, Rare-first) and BERT-NER
show the best micro (macro) F1 of 85.75 (55.48) and 58.92
(30.17), respectively.

6605

Models # of distinct values (med: 19)
(19, ∞) (0, 19] all

training hi NER 90.5 / 80.1 90.2 / 69.3 90.5 / 77.3
examples MLC 80.7 / 40.2 85.5 / 34.9 80.8 / 38.9

(med: 268) T5 93.9 / 86.9 94.4 / 78.2 93.9 / 84.7

lo NER 77.0 / 71.6 72.0 / 41.7 74.6 / 50.3
MLC 18.7 / 9.3 35.7 / 10.0 27.3 / 9.8
T5 81.1 / 76.7 79.4 / 54.8 80.3 / 61.1

all NER 90.4 / 78.0 87.0 / 49.9 90.3 / 64.6
MLC 80.4 / 32.6 78.4 / 17.4 80.3 / 25.4
T5 93.8 / 84.4 91.7 / 61.7 93.7 / 73.5

Table 7: Micro / macro F1 values of each approach on
the MAVE dataset. ‘lo’ and ‘hi’ are intervals for the
number of training examples, (0, 268] and (268, ∞],
respectively. T5 refers to the common-first model with
⟨V, A⟩ composition, which achieves the best micro F1.

ing to median frequency and number of values.
Tables 7 and 8 list micro and macro F1 values

of each approach for each category of attributes on
the MAVE and our in-house datasets, respectively.
From the table, we can see that T5 shows the best
performance in all categories. This suggests that
T5 is more robust than BERT-NER and BERT-MLC

in the PAVI task. We can also observe that the
performance of BERT-MLC drops significantly for
attributes with a small number of training examples
compared to those with a large number of training
examples; the classification-based approach makes
an effort to better classify more frequent attributes.
Meanwhile, the performance drops of BERT-NER

and T5 are more moderate than BERT-MLC, espe-
cially on the MAVE dataset. Moreover, we can
see that T5 shows better micro F1 for attributes
that have a smaller number of distinct values on
our in-house dataset, whereas it shows better mi-
cro F1 for attributes that have a larger number of
distinct values on the MAVE dataset. This implies
that, although it is easy for the generation-based
approaches to extract diverse values from text, it is
still difficult to canonicalize those diverse values.

4.6 Analysis

From the better macro F1 of T5 with *-first order-
ing than with random ordering, we confirmed that
our generation-based models successfully capture
inter-value dependencies to decode attribute-value
pairs. In what follows, we perform further analy-
sis to see if the generative approach addresses the
three challenges; namely, unseen, multi-attribute
(or nested), and canonicalized values (Table 1).

Models # of distinct values (med: 3)
(3, ∞) (0, 3] all

training hi NER 56.4 / 29.6 62.9 / 31.6 56.8 / 30.2
examples MLC 83.5 / 34.1 82.1 / 44.6 83.4 / 37.2
(med: 44) T5 85.0 / 63.2 87.8 / 71.8 85.1 / 65.7

lo NER 25.2 / 14.8 27.7 / 14.0 26.8 / 14.3
MLC 5.0 / 1.6 8.9 / 3.1 7.4 / 2.7
T5 44.5 / 31.3 47.4 / 29.9 46.3 / 30.4

all NER 56.4 / 26.0 62.0 / 20.6 56.7 / 23.5
MLC 83.5 / 26.3 80.6 / 18.8 83.3 / 22.8
T5 84.9 / 55.5 86.8 / 45.7 85.0 / 50.9

Table 8: Micro / macro F1 values of each approach
on the in-house dataset. ‘lo’ and ‘hi’ are intervals for
the number of training examples, (0, 44] and (44, ∞],
respectively. T5 refers to the rare-first model with ⟨V,
A⟩ composition, which achieves the best micro F1.

Models MAVE F1 In-House F1

Micro Macro Micro Macro

BERT-NER 34.57 22.16 14.29 3.02

T5 ⟨A, V⟩ Rare-first 38.21 27.87 19.44 5.08
Common-first 37.34 29.02 17.03 6.55
Random 36.65 27.64 15.94 5.93

⟨V, A⟩ Rare-first 37.44 29.10 18.15 5.89
Common-first 38.19 31.22 18.61 6.15
Random 36.59 28.98 12.64 2.34

Table 9: Performance on unseen values. The scores of
BERT-MLC models are 0.

Can generative models identify unseen values?
To see how effective our generative models are
for unseen attribute values, we compare its perfor-
mance with BERT-NER on attribute-value pairs in
the test data that do not appear in the training data
(13,578 and 491 unseen values exist in the MAVE

and in-house datasets, respectively).
Table 9 shows the results. We can see that the

T5 models outperform BERT-NER, especially in
terms of macro F1. Although the extraction-based
approach can extract unseen values, the unified gen-
erative approach works better for extracting unseen
values than the extraction-based approach.

Can generative models identify multi-attribute
values? Next, to see how effective our generative
models are for identifying multi-attribute values,
we compare its performance to the baselines on
attribute-value pairs in the test data that appear only
as multi-attribute (or nested) values in input text.
The number of such values in the MAVE and our in-
house datasets is 60,832 and 15,843, respectively.

Table 11 shows the results. We can see that
the T5 models outperform all baselines in terms

6606

Required processing Attribute-value pair Text

Understand structured values ⟨Series, iPhone (Apple)⟩ iPhone 6S iPhone Softbank...
⟨Chest (cm), 104 - 112⟩ ...Size [L] Chest 110cm Length 66cm...

Refer to the world knowledge ⟨Sleeve length, Long⟩ Women’s Trench Coat Dark Brown...
⟨Indication, Rhinitis⟩ For runny nose, nasal congestion, sore throat,...

Recognize paraphrase ⟨Material, Polyurethane⟩ Material: PU leather / Plastic
⟨Compatible brand, Galaxy S8 plus⟩ SC-03J Galaxy S8+ Galaxy...

Understand text ⟨Feature, With card holder⟩ The card slot is on the left.
⟨With or without casters, With casters⟩ Table leg: Pipe, twin-wheel casters with stopper...

Table 10: Example of canonicalization that T5 models need to perform to generate values that do not appear in text.
Substrings in text that can be regarded as a clue to generate the values are in italic.

Models MAVE F1 In-House F1

Micro Macro Micro Macro

BERT-NER 47.85 35.60 81.35 45.54
BERT-MLC 68.79 24.95 76.43 30.47
BERT-MLC w/ TAX - - 77.19 41.55

T5 ⟨A, V⟩ Rare-first 75.14 54.30 79.90 58.44
Common-first 75.31 53.89 80.16 55.09
Random 74.73 52.48 80.45 53.50

⟨V, A⟩ Rare-first 75.40 56.11 80.13 57.81
Common-first 75.38 57.07 80.16 60.83
Random 74.97 54.28 80.18 56.08

Table 11: Performance on attribute-value pairs that can
be obtained only by identifying multi-attribute values.

of macro F1. Although the classification-based
models can identify multi-attribute values, the gen-
erative models outperformed those models.

Can generative models identify canonicalized
values? Lastly, to verify how effective our gener-
ative models are for identifying canonicalized val-
ues, we compare its performance with BERT-MLC

(w/ TAX) on 207,997 attribute-value pairs whose
values do not appear as raw strings in the corre-
sponding product text in our in-house dataset.

Table 12 shows the results. The T5 models show
comparable performance to and outperform the
baselines in terms of micro and macro F1, respec-
tively. To see what types of canonicalization the
T5 models need to perform when the canonical-
ized values do not appear in the text, we manually
inspect attribute-value pairs whose values do not
appear in text on the development set.

Table 10 exemplifies canonicalization that T5
models need to perform. From the table, we can
see that the canonicalization included understand-
ing structure in values (labels) (e.g., iPhone is a
product of Apple), referring the world knowledge
(the coat has long sleeves), recognizing paraphrases
(PU is an abbreviation of polyurethane), and under-
standing product descriptions (“the card slot is on

Models Micro F1 Macro F1

BERT-MLC 72.49 20.10
BERT-MLC w/ TAX 73.87 35.12

T5 ⟨A, V⟩ Rare-first 73.09 43.40
Common-first 71.91 39.07
Random 72.48 39.19

⟨V, A⟩ Rare-first 72.93 40.08
Common-first 71.20 37.95
Random 72.30 37.20

Table 12: Performance on attribute-value pairs whose
values do not appear as raw strings in input text in our
in-house test data. The score of BERT-NER is 0.

the left” entails that the product has a card holder).
We conclude that our generative model addressed
all the challenges in the PAVI task better than the
other two approaches.

5 Conclusions

We have proposed a generative framework for prod-
uct attribute-value identification (PAVI), which is
a task to return a set of attribute-value pairs from
product text on e-commerce sites. Our model can
address the challenges of the PAVI task; unseen
values, multi-attribute values, and canonicalized
values. We finetune a pre-trained model T5 to au-
toregressively decode a set of attribute-value pairs
from the given product text. To linearize the set
of attribute-value pairs, we explored two types
of attribute-value composition and three types of
the orderings of the attribute-value pairs. Experi-
mental results on two real-world datasets demon-
strated that our generative approach outperformed
the extraction- and classification-based baselines.

We plan to augment the ability to decode unseen
values by using a pluggable copy mechanism (Liu
et al., 2021). We will evaluate our model on another
PAVI setting where the target attribute(s) are given.

6607

6 Limitations

Since our generative approach to product attribute-
value identification autoregressively decodes a set
of attribute-value pairs as a sequence, the inference
is slow (Table 5) and how to linearize the set of
attribute-value pairs in the training data will affect
the performance (Table 6). The best way of com-
posing an attribute-value pair and ordering the pairs
will depend on the characteristics of the datasets
such as the existence of canonicalized values and
the number of attribute-value pairs per example.
Those who attempt to apply our method to their
own datasets should keep this in mind.

Acknowledgements

This work (second author) was partially supported
by JSPS KAKENHI Grant Number 21H03494. We
thank the anonymous reviewers for their hard work.

References
Lidong Bing, Tak-Lam Wong, and Wai Lam. 2012. Un-

supervised extraction of popular product attributes
from web sites. In Information Retrieval Technology,
pages 437–446, Berlin, Heidelberg. Springer Berlin
Heidelberg.

Wei-Te Chen, Yandi Xia, and Keiji Shinzato. 2022. Ex-
treme multi-label classification with label masking
for product attribute value extraction. In Proceedings
of The Fifth Workshop on e-Commerce and NLP (EC-
NLP 5), pages 134–140, Dublin, Ireland. Association
for Computational Linguistics.

Gilad Fuchs and Yoni Acriche. 2022. Product titles-to-
attributes as a text-to-text task. In Proceedings of The
Fifth Workshop on e-Commerce and NLP (ECNLP
5), pages 91–98, Dublin, Ireland. Association for
Computational Linguistics.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidi-
rectional LSTM-CRF models for sequence tagging.
CoRR, arXiv:1508.01991.

Giannis Karamanolakis, Jun Ma, and Xin Luna Dong.
2020. TXtract: Taxonomy-aware knowledge extrac-
tion for thousands of product categories. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 8489–8502, On-
line. Association for Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceedings
of the third International Conference on Learning
Representations, San Diego, CA, USA.

Yi Liu, Guoan Zhang, Puning Yu, Jianlin Su, and
Shengfeng Pan. 2021. BioCopy: A plug-and-play

span copy mechanism in Seq2Seq models. In Pro-
ceedings of the Second Workshop on Simple and Ef-
ficient Natural Language Processing, pages 53–57,
Virtual. Association for Computational Linguistics.

Aman Madaan, Dheeraj Rajagopal, Niket Tandon, Yim-
ing Yang, and Antoine Bosselut. 2022. Conditional
set generation using seq2seq models. In Proceed-
ings of the 2022 Conference on Empirical Methods
in Natural Language Processing, pages 4874–4896,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Yuning Mao, Tong Zhao, Andrey Kan, Chenwei Zhang,
Xin Luna Dong, Christos Faloutsos, and Jiawei Han.
2020. Octet: Online catalog taxonomy enrichment
with self-supervision. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, KDD ’20, page
2247–2257, New York, NY, USA. Association for
Computing Machinery.

Ajinkya More. 2016. Attribute extraction from product
titles in ecommerce. In KDD 2016 Workshop on
Enterprise Intelligence, San Francisco, CA, USA.

Jianmo Ni, Jiacheng Li, and Julian McAuley. 2019.
Justifying recommendations using distantly-labeled
reviews and fine-grained aspects. In Proceedings
of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 188–197, Hong
Kong, China. Association for Computational Lin-
guistics.

Eric W. Noreen. 1989. Computer-intensive methods for
testing hypotheses. Wiley, New York.

Katharina Probst, Rayid Ghani, Marko Krema, An-
drew E. Fano, and Yan Liu. 2007. Semi-supervised
learning of attribute-value pairs from product de-
scriptions. In Proceedings of the 20th International
Joint Conference on Artificial Intelligence, IJCAI’07,
pages 2838–2843, Hyderabad, India. Morgan Kauf-
mann Publishers Inc.

Duangmanee Putthividhya and Junling Hu. 2011. Boot-
strapped named entity recognition for product at-
tribute extraction. In Proceedings of the 2011 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1557–1567, Edinburgh, Scotland,
UK. Association for Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(140):1–67.

Lev Ratinov and Dan Roth. 2009. Design challenges
and misconceptions in named entity recognition. In
Proceedings of the Thirteenth Conference on Compu-
tational Natural Language Learning (CoNLL-2009),
pages 147–155, Boulder, Colorado. Association for
Computational Linguistics.

6608

https://doi.org/10.1007/978-3-642-35341-3_39
https://doi.org/10.1007/978-3-642-35341-3_39
https://doi.org/10.1007/978-3-642-35341-3_39
https://doi.org/10.18653/v1/2022.ecnlp-1.16
https://doi.org/10.18653/v1/2022.ecnlp-1.16
https://doi.org/10.18653/v1/2022.ecnlp-1.16
https://doi.org/10.18653/v1/2022.ecnlp-1.12
https://doi.org/10.18653/v1/2022.ecnlp-1.12
https://arxiv.org/abs/1508.01991
https://arxiv.org/abs/1508.01991
https://doi.org/10.18653/v1/2020.acl-main.751
https://doi.org/10.18653/v1/2020.acl-main.751
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.18653/v1/2021.sustainlp-1.6
https://doi.org/10.18653/v1/2021.sustainlp-1.6
https://aclanthology.org/2022.emnlp-main.324
https://aclanthology.org/2022.emnlp-main.324
https://doi.org/10.1145/3394486.3403274
https://doi.org/10.1145/3394486.3403274
https://doi.org/10.18653/v1/D19-1018
https://doi.org/10.18653/v1/D19-1018
https://doi.org/10.1002/sim.4780100325
https://doi.org/10.1002/sim.4780100325
https://dl.acm.org/doi/10.5555/1625275.1625732
https://dl.acm.org/doi/10.5555/1625275.1625732
https://dl.acm.org/doi/10.5555/1625275.1625732
https://aclanthology.org/D11-1144
https://aclanthology.org/D11-1144
https://aclanthology.org/D11-1144
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://aclanthology.org/W09-1119
https://aclanthology.org/W09-1119

Martin Rezk, Laura Alonso Alemany, Lasguido Nio,
and Ted Zhang. 2019. Accurate product attribute
extraction on the field. In Proceedings of the 35th
IEEE International Conference on Data Engineering,
pages 1862–1873, Macau SAR, China. IEEE.

Kalyani Roy, Pawan Goyal, and Manish Pandey. 2021.
Attribute value generation from product title using
language models. In Proceedings of The 4th Work-
shop on e-Commerce and NLP, pages 13–17, Online.
Association for Computational Linguistics.

Satoshi Sekine, Ralph Grishman, and Hiroyuki Shinnou.
1998. A decision tree method for finding and clas-
sifying names in Japanese texts. In Sixth Workshop
on Very Large Corpora, pages 171–178, Quebec,
Canada.

Keiji Shinzato and Satoshi Sekine. 2013. Unsupervised
extraction of attributes and their values from product
description. In Proceedings of the Sixth International
Joint Conference on Natural Language Processing,
pages 1339–1347, Nagoya, Japan. Asian Federation
of Natural Language Processing.

Keiji Shinzato, Naoki Yoshinaga, Yandi Xia, and Wei-
Te Chen. 2022. Simple and effective knowledge-
driven query expansion for QA-based product at-
tribute extraction. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 227–234,
Dublin, Ireland. Association for Computational Lin-
guistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30, pages 5998–6008, Red
Hook, NY, USA. Curran Associates, Inc.

Oriol Vinyals, Samy Bengio, and Manjunath Kudlur.
2016. Order matters: Sequence to sequence for sets.
In The fourth International Conference on Learning
Representations, San Juan, Puerto Rico.

Qifan Wang, Li Yang, Bhargav Kanagal, Sumit Sanghai,
D. Sivakumar, Bin Shu, Zac Yu, and Jon Elsas. 2020.
Learning to extract attribute value from product via
question answering: A multi-task approach. In Pro-
ceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery and Data Min-
ing, KDD ’20, pages 47–55, New York, NY, USA.
Association for Computing Machinery.

Yu Wang, Hanghang Tong, Ziye Zhu, and Yun Li. 2022.
Nested named entity recognition: A survey. ACM
Trans. Knowl. Discov. Data, 16(6):1–29.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven
Le Scao, Sylvain Gugger, Mariama Drame, Quentin

Lhoest, and Alexander Rush. 2020. Transformers:
State-of-the-art natural language processing. In Pro-
ceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing, pages 38–45,
Online. Association for Computational Linguistics.

Tak-Lam Wong, Wai Lam, and Tik-Shun Wong. 2008.
An unsupervised framework for extracting and nor-
malizing product attributes from multiple web sites.
In Proceedings of the 31st Annual International ACM
SIGIR Conference on Research and Development in
Information Retrieval, SIGIR ’08, page 35–42, New
York, NY, USA. Association for Computing Machin-
ery.

Huimin Xu, Wenting Wang, Xin Mao, Xinyu Jiang, and
Man Lan. 2019. Scaling up open tagging from tens
to thousands: Comprehension empowered attribute
value extraction from product title. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 5214–5223, Florence,
Italy. Association for Computational Linguistics.

Li Yang, Qifan Wang, Zac Yu, Anand Kulkarni, Sumit
Sanghai, Bin Shu, Jon Elsas, and Bhargav Kanagal.
2022. MAVE: A product dataset for multi-source
attribute value extraction. In Proceedings of the Fif-
teenth ACM International Conference on Web Search
and Data Mining, WSDM ’22, page 1256–1265, New
York, NY, USA. Association for Computing Machin-
ery.

Pengcheng Yang, Xu Sun, Wei Li, Shuming Ma, Wei
Wu, and Houfeng Wang. 2018. SGM: Sequence
generation model for multi-label classification. In
Proceedings of the 27th International Conference on
Computational Linguistics, pages 3915–3926, Santa
Fe, New Mexico, USA. Association for Computa-
tional Linguistics.

Danqing Zhang, Zheng Li, Tianyu Cao, Chen Luo,
Tony Wu, Hanqing Lu, Yiwei Song, Bing Yin, Tuo
Zhao, and Qiang Yang. 2021. QUEACO: Borrow-
ing treasures from weakly-labeled behavior data for
query attribute value extraction. In Proceedings of
the 30th ACM International Conference on Informa-
tion and Knowledge Management, CIKM ’21, page
4362–4372, New York, NY, USA. Association for
Computing Machinery.

Hanchu Zhang, Leonhard Hennig, Christoph Alt,
Changjian Hu, Yao Meng, and Chao Wang. 2020.
Bootstrapping named entity recognition in E-
commerce with positive unlabeled learning. In Pro-
ceedings of The 3rd Workshop on e-Commerce and
NLP, pages 1–6, Seattle, WA, USA. Association for
Computational Linguistics.

Guineng Zheng, Subhabrata Mukherjee, Xin Luna
Dong, and Feifei Li. 2018. OpenTag: Open attribute
value extraction from product profiles. In Proceed-
ings of the 24th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining,
KDD ’18, pages 1049–1058, New York, NY, USA.
Association for Computing Machinery.

6609

https://doi.org/10.18653/v1/2021.ecnlp-1.2
https://doi.org/10.18653/v1/2021.ecnlp-1.2
https://aclanthology.org/W98-1120/
https://aclanthology.org/W98-1120/
https://aclanthology.org/I13-1190
https://aclanthology.org/I13-1190
https://aclanthology.org/I13-1190
https://doi.org/10.18653/v1/2022.acl-short.25
https://doi.org/10.18653/v1/2022.acl-short.25
https://doi.org/10.18653/v1/2022.acl-short.25
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
http://arxiv.org/abs/1511.06391
https://doi.org/10.1145/3394486.3403047
https://doi.org/10.1145/3394486.3403047
https://doi.org/10.1145/3522593
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.1145/1390334.1390343
https://doi.org/10.1145/1390334.1390343
https://doi.org/10.18653/v1/P19-1514
https://doi.org/10.18653/v1/P19-1514
https://doi.org/10.18653/v1/P19-1514
https://doi.org/10.1145/3488560.3498377
https://doi.org/10.1145/3488560.3498377
https://aclanthology.org/C18-1330
https://aclanthology.org/C18-1330
https://doi.org/10.1145/3459637.3481946
https://doi.org/10.1145/3459637.3481946
https://doi.org/10.1145/3459637.3481946
https://doi.org/10.18653/v1/2020.ecnlp-1.1
https://doi.org/10.18653/v1/2020.ecnlp-1.1
https://doi.org/10.1145/3219819.3219839
https://doi.org/10.1145/3219819.3219839

MAVE In-House Product Data

Models Micro Macro Micro Macro

P (%) R (%) F1 P (%) R (%) F1 P (%) R (%) F1 P (%) R (%) F1

extraction-based (large)
BERT-NER 96.85 86.65 91.47 79.85 61.76 67.71 96.33 40.26 56.79 46.57 18.60 24.23

classification-based (large)
BERT-MLC 93.19 51.63 66.45 17.31 7.40 9.49 NaN 0 NaN NaN 0 NaN
BERT-MLC w/ TAX - - - - - - 94.36 77.99 85.40 52.36 28.01 33.92

generation-based (ours)
T5 ⟨A, V⟩ Rare-first 95.45 91.70 93.54 77.57 64.35 68.97 88.61 81.50 84.91 66.33 47.25 53.10

Common-first 95.29 92.16 93.70 78.26 66.94 70.63 85.30 82.83 84.05 62.10 41.85 47.49
Random 95.10 91.46 93.24 77.24 62.71 67.45 87.73 81.41 84.45 61.64 42.47 47.92

⟨V, A⟩ Rare-first 95.24 91.97 93.57 80.59 68.02 72.51 89.82 80.73 85.03 65.73 44.61 50.93
Common-first 94.62 92.85 93.73 80.50 69.72 73.47 84.25 82.97 83.60 63.61 43.61 49.13
Random 95.13 92.04 93.56 80.56 67.28 71.83 88.25 81.41 84.69 63.06 42.09 48.10

Table 13: Performance of each model on two PAVI datasets. We used BERTlarge as a base model for extraction- and
classification-based approaches. The best score is in bold face and the second best score is underlined. BERT-MLC
w/ TAX uses the extra supervision (taxonomy) for label masking, and it reduces the size of labels relevant to inputs
from 14,829 to 405 on average.

Hyperparameters BERT-NER BERT-MLC T5

Max token length (encoder) 512 512 512
Max token length (decoder) n/a n/a 256
Epoch 10 10 10
Batch size 32 32 32
Dropout rate (classifier) 0.1 0.1 n/a
Learning rate 5e-5 5e-5 3e-4
Weight decay 0 0 0

Table 14: Hyperparameters for training models.

A Final Hyperparameters Used for Each
Model

Table 14 shows the hyperparameters we used for
training models. Other than those, we follow the
default hyperparameters of T56 7 and BERT8 9 avail-
able from the HuggingFace models.

B Performance of Models Using BERTlarge

Table 13 shows the performance of models
when we use BERTlarge as the base model for
extraction- and classification-based approaches.
We adopt bert-large-cased13 for MAVE and
cl-tohoku/bert-large-japanese14 for our in-
house data. From the table, we can see that train-
ing BERT-MLC did not work well on both datasets.
Especially, we cannot compute the performance
on our in-house data because the model did not
predict any attribute-value pairs for all inputs. Al-
though BERTlarge has a larger number of parame-

13https://huggingface.co/bert-large-cased
14https://huggingface.co/cl-tohoku/

bert-large-japanese

ters (330M) than the T5 models (220M), BERT-NER

based on BERTlarge still shows lower performance
than our generative models on both datasets. This
result means that our generative approach is more
effective in the PAVI task than the extraction-based
approaches based on BERT-NER. Meanwhile, BERT-
MLC w/ TAX shows a slightly better micro F1 score
than ours. Given that it requires an attribute tax-
onomy as the extra supervision and exhibits low
macro F1, the generative approach is sufficiently
comparable to the classification-based approach.

6610

https://huggingface.co/bert-large-cased
https://huggingface.co/cl-tohoku/bert-large-japanese
https://huggingface.co/cl-tohoku/bert-large-japanese

ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

Section 6.

�3 A2. Did you discuss any potential risks of your work?
Section 6.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
Abstract and Section 1.

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
Section 4

�3 B1. Did you cite the creators of artifacts you used?
Section 4

�7 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
The license or terms of the data we used is not described on the official page.

� B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Not applicable. Left blank.

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Not applicable. Left blank.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Not applicable. Left blank.

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Section 4.

C �3 Did you run computational experiments?
Section 4

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Section 4

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

6611

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Section 4 and Appendix

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Section 4

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Section 4

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

6612

