Modeling Cross-Cultural Pragmatic Inference with Codenames Duet
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Abstract

Pragmatic reference enables efficient interper-
sonal communication. Prior work uses simple
reference games to test models of pragmatic
reasoning, often with unidentified speakers and
listeners. In practice, however, speakers’ so-
ciocultural background shapes their pragmatic
assumptions. For example, readers of this paper
assume NLP refers to “Natural Language Pro-
cessing,” and not “Neuro-linguistic Program-
ming.” This work introduces the CULTURAL
CODES dataset, which operationalizes socio-
cultural pragmatic inference in a simple word
reference game.

CULTURAL CODES is based on the multi-turn
collaborative two-player game, Codenames
Duet. Our dataset consists of 794 games with
7,703 turns, distributed across 153 unique play-
ers. Alongside gameplay, we collect informa-
tion about players’ personalities, values, and
demographics. Utilizing theories of communi-
cation and pragmatics, we predict each player’s
actions via joint modeling of their sociocultural
priors and the game context. Our experiments
show that accounting for background charac-
teristics significantly improves model perfor-
mance for tasks related to both clue giving and
guessing, indicating that sociocultural priors
play a vital role in gameplay decisions.

1 Introduction

“Most of our misunderstandings of other
people are not due to any inability to...
understand their words... [but that] we
so often fail to understand a speaker’s
intention.”

— George Armitage Miller (1974)

Certain pragmatic inferences can only be inter-
preted by individuals with shared backgrounds.
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Figure 1: An example interaction where difference
in sociocultural background results in misinterpreta-
tion. Steps 1-5 outline high-level gameplay tasks. THE
CLUE GIVER targets the words fall and drop, giving the
hint slip. THE GUESSER misinterprets slip as a piece of
paper, guessing reciept and check.

For example, what researchers call fun may not
be fun for kindergartners. Theories from so-
ciolinguistics, pragmatics, and communication
aim to explain how sociocultual background af-
fects interpersonal interaction (Schramm, 1954)—
especially since variation occurs across several di-
mensions: class (Bernstein, 2003; Thomas, 1983),
age (Labov, 2011), gender (Eckert and McConnell-
Ginet, 2013), race (Green, 2002), and more.
Rigorously modeling how culture affects prag-
matic inference on all axes is understandably chal-
lenging. The board game Codenames Duet of-
fers a more restricted setting of turn-based word
reference between two players. In each round,
THE CLUE GIVER provides a single-word clue;
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then THE GUESSER must interpret this clue to
select the intended word references on the game
board. Ideal inferences come from the players’
common ground—the set of shared beliefs between
them (Clark, 1996). In practice, however, a player’s
behavior can be idiosyncratic. Each player has
knowledge and experience that shape how they in-
terpret clues and make guesses. When players’
backgrounds differ, they may be more likely to
misinterpret their partner, as seen in Figure 1.
Inspired by the above, we model the role of
sociocultural factors in pragmatic inference with
a new task and a series of ablation experiments.
First, we describe the CULTURAL CODES dataset
of cross-cultural Codenames Duet gameplay, with
relevant background information from the play-
ers’ demographics, personalities, and political and
moral values (§3). Then, we deconstruct each ac-
tion in a game into a distinct modeling task, taking
inspiration from work on cross-cultural pragmat-
ics (§4). Finally, we model each task with/without
sociocultural priors, and highlight how player back-
ground improves model performance (§6). Our
dataset and code is released publicly at https:
//github.com/SALT-NLP/codenames

2 Related Work

Cross-Cultural Pragmatics and NLP Pragmat-
ics describes the nonliteral meaning that comes
from context and social inference (Purpura, 2004;
Thomas, 1983; Hatch et al., 1992). Although some
pragmatic categories are universal (e.g., politeness),
they can be expressed differently in sociocultural
contexts (Taguchi, 2012; Shoshana et al., 1989;
Gudykunst and Kim, 1984). When an intended
meaning is misinterpreted, this is known as ‘prag-
matic failure’ (Thomas, 1983)—often the result
of misaligned reference frames or differences in
common ground (Stadler, 2012; Crawford et al.,
2017). Especially relevant to Codenames are com-
munal lexicons, where common ground manifests
in shared community vocabulary (Clark, 1998).
Another axis of difference is between low/high-
context cultures (Hofstede, 2001); high-context cul-
tures rely more on shared background. Pragmatics
also differs by age (Saryazdi et al., 2022), region,
ethnicity, politics, and class (Thomas, 1983), as
does theory of mind (Fiske and Cox, 1979; Miller,
1984; Shweder, 1984; Lillard, 1998, 1999).
Outside of work on politeness (Sperlich et al.,
2016; Fu et al., 2020), sarcasm (Joshi et al., 2016),

and irony (Karoui et al., 2017), the NLP subfield
has not closely considered cross-cultural pragmat-
ics. While there is work on understanding the role
of individual culture—for example, learning de-
mographic word vectors (Garimella et al., 2017),
identifying deception/depression (Soldner et al.,
2019; Loveys et al., 2018), or improving transla-
tion (Specia et al., 2016)—modeling cross-cultural
pragmatic inference in communication remains a
challenge (Hershcovich et al., 2022).

Still, a culture-free pragmatics has played a cen-
tral role in various NLP tasks, from instruction-
following (Fried et al., 2018), image captioning
(Andreas and Klein, 2016), persona-consistent
dialogue (Kim et al., 2020), and summariza-
tion (Shen et al., 2019). Much of this work is
grounded in Bayesian models of cognition (Grif-
fiths et al., 2008), with models like Bayesian Teach-
ing (Eaves Jr et al., 2016), Naive Utility Calculus
(Jara-Ettinger et al., 2016; Jern et al., 2017), and
the Rational Speech Acts (RSA) model (Goodman
and Frank, 2016; Franke and Jdger, 2016) that in-
tegrate language, world knowledge, and context to
explain ideal pragmatic reasoning (Noveck, 2018)
and grounded reference (Monroe et al., 2017). In-
stead of modeling socioculture in isolation, we
model pragmatic inference, highlighting the role of
culture in general interpersonal interaction.

Games as Testbeds for AI A significant body
of work focuses on modeling optimal strategy
across a wide set of games, including Go (Silver
et al., 2016), Chess (Schrittwieser et al., 2020),
Poker (Brown and Sandholm, 2017), Diplomacy (,
FAIR), D&D (Callison-Burch et al., 2022; Zhou
etal.,2022), and Mafia (Ibraheem et al., 2022). Ref-
erence games are growing in popularity as testbeds
for Al Tests for artificial pragmatic reasoning of-
ten rely on sequential language games, where two
players leverage private knowledge either to com-
pete Yao et al. (2021) or coordinate towards a
common goal (Potts, 2012; Khani et al., 2018;
Hawkins et al., 2015). In this vein, recent works
have considered Codenames (Koyyalagunta et al.,
2021; Kim et al., 2019; Jaramillo et al., 2020), Con-
nector (Ashok Kumar et al., 2021; Kumar et al.,
2021; Kovacs et al., 2022) InfoJigsaw (Khani et al.,
2018), and image-based games (Bao et al., 2022).
Word association games have been used in psy-
chology to study semantic associations in cultural
(Korshuk, 2007) and religious (Tikhonova, 2014)
contexts. We utilize games to model the effect of
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cross-cultural interactions on pragmatic inference.

3 The CULTURAL CODES Dataset

This study has been approved by the Institutional
Review Board (IRB) at the authors’ institution. The
purpose of the CULTURAL CODES dataset is to un-
derstand how measurable social factors influence
dyadic communication in English. By collecting
relevant participant background information, we
aim to understand how these factors affect linguis-
tic reasoning in a collaborative reference game.

3.1 Codenames Duet Game Overview

Codenames Duet is a collaborative variant of Co-
denames (Vlaada, 2015) designed for 2 players.
The players share a 5 x 5 board of 25 common
words. Each player has a distinct (but sometimes
partially overlapping) map from words on the board
to the following objectives: goal, neutral, and
avoid. One player’s map is hidden from the oppos-
ing player. The objective of the game is for both
players to guess all of their partner’s goal words
without guessing any of their partner’s avoid words,
as doing so results in an immediate loss.

CULTURAL CODES uses an adapted version of
Codenames Duet. With each turn, players alternate
between the THE CLUE GIVER and THE GUESSER
roles. To begin the turn, THE CLUE GIVER (1) se-
lects one or more associated goal words as targets.
Next, THE CLUE GIVER (2) provides a single word
clue that relates to the associated target(s). This
clue is displayed to THE GUESSER, along with
the number of targets she should find. The THE
CLUE GIVER also (3) provides a justifying ratio-
nale for the clue, describing the relationship be-
tween the clue and the target(s). This rationale is
not displayed to the partner. Using the clue and the
number of target words THE GUESSER (4) guesses
targeted words. For each guess, THE GUESSER
(5) provides a justifying rationale for the guess.
After ending the turn, players alternate roles and
continue until all goal words are selected for both
sides, or players are eliminated for guessing an
avoid word. An overview of roles is illustrated in
Figure 1. In §4, we formalize actions (1)-(4) as
distinct modeling tasks.

3.2 Selecting Board Game Words

All experiments are run on a strategically filtered
subset of the 400 words from Codenames Duet.
We select the 100 most abstract and semantically

ambiguous board game words to elicit diverse re-
sponses from players. Since the polysemy (Ravin
and Leacock, 2000) of a word—the number of re-
lated senses it includes—predicts the expected di-
versity of player responses, we retain only nouns
with two or more senses in WordNet (Miller, 1992).
Next, we rank polysemous words with Brysbaert
et al. (2014)’s concreteness list, selecting the 100
most abstract words according to the mean of
their human concreteness scores (finalized list can
be found in Appendix A.)

When a player starts a game, we initialize the
board with a random subset of 25 words from the
filtered 100. For each player, 9 words are randomly
mapped to goal, 3 are avoid, and 13 are neutral.

3.3 Gameplay Data

To collect gameplay data, we modified an open-
source implementation of Codenames Duet,' auto-
matically pairing individuals who visited the game
website. To source players, we relied on Amazon’s
Mechanical Turk. We provided MTurkers with an
initial instruction video detailing rules and how to
play. To be eligible for the task, Turkers had to get
> 80% questions right on a qualifying quiz about
Codenames rules and gameplay (Appendix D.1).
Average game length was around 17.4 minutes, and
MTurkers were paid $2.50 for every game.

Gameplay Attributes For each completed turn,
we collected the following game state information
from THE CLUE GIVER. Elements marked in gray
were hidden from THE GUESSER.

Clue: THE CLUE GIVER’s clue ¢ (e.g. ¢
could be “transport” for the target “car”

Target Word(s): (Hidden) The target words
t, (e.g. “car”) that THE CLUE GIVER in-
tended THE GUESSER to guess.

Target Word(s) Rationale(s): (Hidden) A
free-text phrase r,,, that describes the relation-
ship between each target word ¢,, and the clue
c (e.g. “a car is a mode of transport”).

To summarize, each turn from THE CLUE GIVER
results in a clue c and at least one target-rationale
pair (t,,7y). On the other hand, we collect the
following for THE GUESSER.

Guesses: The guesses g, that THE GUESSER
selected for THE CLUE GIVER’s clue c.

"https://github.com/jbowens/
codenamesgreen
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Figure 2: Age (left) and Race (right) across our anno-
tators. Most of our annotators are between 30-45 and
are White; however, we still see moderate representation
across other racial groups and ages.

Rationale for Each Guess: A free-text phrase
r,, that relates the guess g, to the clue ¢

Manual inspection revealed a wide range of ratio-
nales. To prevent models from exploiting variance,
we instructed GPT-3 to normalize text, removing
pronouns and determiners.> We provided few-shot
examples of reformatted rationales and manually
inspected normalized outputs. Additional prepro-
cessing information can be found in Appendix B.

3.4 Sociocultural Priors and Worker Diversity

Because we aim to understand the role of socio-
cultural priors on gameplay, we asked Turkers to
complete the standardized surveys below, which
cover three broad dimensions: demography, per-
sonality, and morality.

Demographic Data (Figure 2) comes from both
the annotation UI and in the task’s qualifying ques-
tionnaires. In the Ul, we asked Turkers for their nu-
meric age, their country of origin, and whether En-
glish is their native language. These were required
features, so we will denote them as Demogeq. In
the qualifier, we included an extended demographic
survey with age range, level of education, mari-
tal status, and native language (Appendix D.2.1),
which we will denote as Demo 41;. We find that our
annotator demographics are moderately diverse,
mirroring Moss et al. (2020). Reported gender
across annotators are evenly split: 53% identify as
women, 47% identify as men, and 0% as other. Ad-
ditional details are in Figure 2 and Appendix D.2.1.

Personality (Figure 3) surveys also offer insight
into interpersonal interactions. We administer the
Big 5 Personality Test (John et al., 1991), measur-
ing a range of personality dimensions on a 5 point

2We use the text-davinci-003 variant from OpenAl. With-
out GPT-3 normalization, we find that model performance is
artificially inflated.

IS

5 Pt. Likert

Figure 3: Big 5 Personality (John et al., 1991) results
across annotators. Each personality dimension has a
standard deviation ~ 1, indicating a reasonable diversity
across our annotator pool.
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Figure 4: Self-reported political leaning (left) and
Haidt and Graham (2007)’s Moral Foundations The-
ory (right) across annotators. A majority of our work-
ers are liberal (57%), 39% are conservative, and the
remaining 5% are libertarian. As observed in Haidt
(2012), values like loyalty, authority, and sanctity are
higher for conservative leaning annotators, while fair-
ness is higher for liberal annotators (p < 0.05, t-test)

Likert Scale. Features include Openness, Conscien-
tiousness, Extraversion, Agreeableness, and Neu-
roticism. Definitions are in Appendix D.2.2.

Moral and Political Leaning (Figure 4) also in-
fluences decision making processes. Therefore,
we asked annotators to self-report their politi-
cal leaning (liberal, conservative, libertarian, etc).
While political leaning captures broad elements
of annotator values, Haidt and Graham (2007)’s
widely adopted Moral Foundations Theory (MFT)
deconstructs values into individual foundations
(Care/Harm, Fairness/Cheating, Loyalty/Betrayal,
Authority/Subversion, and Sanctity/Degradation).
Differences in each foundation can stem from cul-
tural variation (Haidt, 2012). To record annotator
leaning on MFT, we administer an abridged version
of the Moral Foundations Questionnaire (Graham
et al., 2008), which reports each dimension on a 5
point Likert scale (see Appendix D.2.3). Later, we
refer to all recorded features as Morality.
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Agent Task Description Input Output N
CLUE GIVER (1) Target Words {goal} {targets} 7,961
Generate, from the goal p; = {BOS,p1,p2,..., Pn, EOS} = {BOS, t1,t2, ..., tm, EOS}
words, a subset of targets ¢;.
Targets are used to generate a
single clue word.
(2) Generating a Clue {avoid, neutral, targets } {clue} 7,703
Generate a one word clue = {BOS,AVO0,a1,az,...,a, = {BOS, ¢;, EOS}
ci that relates selected target NEU, N1, ..., Nn,
words while avoiding avoid TGT, t1,t2,...,tm,EO0S}
a; and neutral n; words.
(3) Framing a Clue {targets, clue, target} {rationale} 9,519
Generate reasoning r that = {BOS,TGTS,t1,...,tn, = {BOS, r,EOS}
frames a candidate clue word CLUE, ¢;, TGT, t;, EOS}
¢; w.r.t. a target t; word from
the set of targets.
GUESSER (4) Selecting Guess Words {unselected, clue} {guesses} 7,703
Generate a series of guesses = {BOS, UN, u1, ..., Un, = {B0S, ¢1,92, -, gm, EOS}
{g1,.--;gm} from the unse- CLUE, ¢;,EOS}
lected words given a clue ¢;.
(5) Framing Guesses {guesses, clue, guess } {rationale} 9,382
Generate reasoning r that = {BOS,GUESSES,g¢i,-..,gn, = {BOS, r,EOS}
frames a guess g; (from all CLUE, ¢;, GUESS, ¢;, EOS}
guesses) w.r.t. clue ¢;
BoTH Predict Correct Guess {unselected, target, rationale, clue} {7, F'} 9,519

Classify if CLUE GIVER mes-
sage (using target, rationale,
and clue) is correctly inter-
preted by the GUESSER

= {BOS7 UN, g1, -, Gn,
TR, ti, 74, CLUE, ¢;, EOS}

Table 1: Tasks associated with a turn in Codenames. THE CLUE GIVER starts by selecting information to encode
(in the form of a clue), and THE GUESSER decodes clues through guesses. In our experiments, we evaluate models
with and without sociocultural priors. Task formulation (generation/classification) is underlined.

3.5 General Dataset Statistics

In total, we collect 794 games, with a total of 199
wins and 595 losses.? Games lasted an average of
9.7 turns, resulting in 7,703 total turns across all
games. THE CLUE GIVER targeted an average of
1.24 words per turn. For all collected games, both
players provided Demogreq. For 54% of games,
both players completed all background surveys; for
the remaining 46% of games, at least one player
completed all surveys. There were no games with
no background information.

4 Tasks and Modeling

To investigate the role of sociocultural factors in
pragmatic inference, we propose a set of tasks (Ta-
ble 1) associated with THE CLUE GIVER (§4.1)
and THE GUESSER (§4.2) roles. Concretely, we
formalize each action into a conditional generation
problem instead of classification, since outputs in

3Some players went inactive before a game was completed.
We only collect games that are reasonably long: greater than
the 90™" percentile of incomplete games, or > 7 turns.

CULTURAL CODES are unconstrained: actions and
outputs depend on a changing board state.

4.1 Modeling THE CLUE GIVER

4.1.1 Selecting Target Words

To start, THE CLUE GIVER identifies target word(s)
(1) on a board, which are later used to construct
a target clue for the inference. Clues will target
salient words, where salience is at least partially
determined by the speaker’s cultural background
(Wolff and Holmes, 2011). Each set of targets is
a subset of the remaining goal words for a given
turn (targets C goal)—we enforce this restriction
in our annotation UL

4.1.2 Giving a Clue

After selecting target words, THE CLUE GIVER
must generate a common clue word across the tar-
gets (2). Here, THE CLUE GIVER must select a
prototypical word across the targets. Because cul-
tural background plays a role in inference (Thomas,
1983), a clue should lie in players’ common ground.
Furthermore, the clue word should not lead the
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Priors Model Target R-1 | Guess R-1 Priors Model Clue R-1  fastText cos
Random 0.60 0.65 Random 0.08 5.76
No Priors k-NN fastText | N/A 58.04 No Priors k-1 fastText | 0.00 10.33
TS 32.57 64.96 TS 23.86 40.38
BART 31.82 63.30 BART 23.00 40.97
J With Sociocultural Priors J With Sociocultural Priors
Demoreq T3 32.71 67.25 Demoreq TS 25.47 4291
BART 29.45 65.18 BART 20.64 38.91
Demoan TS 33.14 65.24 Demoan TS 25.74 42.07
BART 32.27 66.02 BART 21.45 39.45
Personality T5 33.61 65.56 Personality TS 24.13 41.00
BART 28.55 63.14 BART 23.32 41.49
Morality T5 34.58 64.60 Morality T5 26.54 43.31
BART 31.32 65.09 BART 23.59 41.39
All TS 33.38 66.31 All TS 26.27 44.03
BART 30.17 64.78 BART 24.40 41.60

Table 2: Target (§4.1.1) & Guess (§4.2.1) Selection Gen-
eration Results. We report only R-1 scores, since tasks must
contain exact single-word matches to reference labels. Target
Selection is maximized when using Morality priors, while
Guess Selection is maximized by using only Demoreg-

guesser to pick a avoid n; or neutral e; word, since
these words can end the game or turn (see §3.1).
Therefore, we also include avoid and remaining
neutral words in our input.

4.1.3 Framing the Target Rationales

The relationship between the target and clue word
plays a critical role in communication—how infor-
mation is framed with respect to common ground
can influence pragmatic success (Crawford et al.,
2017). To this end, we model THE CLUE GIVER’S
framing of the rationale r for a specific target word
t (3), connecting the target ¢ to the clue (c.f., §3.3).
Because the framing is constructed in relation to
every target word (if multiple are provided), we
also encode all targets in the input.

4.2 Modeling THE GUESSER
4.2.1 Selected Guesses

With the clue word, the THE GUESSER pragmati-
cally infers THE CLUE GIVER’s targets, selecting
a sequence of corresponding guesses (4). For this
task, we model the sequence of all selected guesses,
regardless of correctness. We input all unselected*

“Note that goal/avoid/neutral words differ across players.
A goal word for one player can be avoid for another; game
states are asymmetric. A clue from THE CLUE GIVER may
also target a goal word for the THE GUESSER. As long as one
does not guess a avoid word from the opposing player, the

Table 3: Clue Generation Results (§4.1.2) We report R-1
scores and fastText cos similarities between the reference and
generation, since outputs must be semantically close to or
exactly match the reference labels. We find that Morality and
All maximize performance over our metrics.

words at the start of each turn for THE GUESSER,
along with the provided clue. Like with Target
Word Selection, guesses must be a subset of the
unselected words (guesses C unselected); we en-
force this during annotation.

4.2.2 Framing Guess Choice

Finally, THE GUESSER also provides framing ra-
tionale for their respective guesses, framing clues
with respect to their guess (5).

4.3 Predicting Pragmatic Success

So far, our tasks focus on replicating elements of
a game turn: the Selected Guesses task (§4.2.1),
for example, models both incorrect and correct
guesses. However, we also wish to understand
if an entire turn sequence results in a successful
inference; differences in cross-cultural inferences
can result in pragmatic failures (Thomas, 1983).
We formulate this as binary classification.
Importantly, we only consider a guess correct if
it is intentional. A guess is intentional if and only if
the clue giver listed it as a target. If THE GUESSER
selects a goal word that is not a target word, we
count it as “incorrect.” Like with guess generation,
we encode unselected words in the input. Because
we are not predicting the guess itself, we include

game continues. See §3.1.
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Target Framing Guess Framing
Priors Model R-1 R-2 R-L BLEU BScore | R-1 R-2 R-L BLEU BScore
Random | 14.08 3.80 13.88  3.46 86.88 8.31 1.01 8.07 0.80 85.88
No Priors SBERT 53.14  23.10 49.13 20.04 92.24 40.49 10.82  33.57 10.53 89.31
T5 69.22  36.82 64.13 34.11 94.52 54.67 19.65 47.22 17.40 91.25
BART 66.20 31.85 59.84  30.09 93.72 52.36 17.27  44.49 14.72 90.85
J With Sociocultural Priors
Demoreq T5 70.15 37.86  64.81 35.05 94.61 5726  23.19 4832  23.31 91.63
BART 67.16 3452 6097 31.47 94.00 54.55 19.11 45.69 17.62 90.95
Demoa; T5 7040  38.14 6498 35.07 94.60 5722 23.14 4836  21.05 91.59
BART 66.14 3221 59.72  31.36 93.88 52.43 16.51 43.52 13.23 90.78
Personality T5 69.68 38.31 64.74  35.27 94.47 57.41 23.08 48.72 21.37 91.61
BART 67.12 3436 6134 32.10 93.88 52.89 18.85  45.07 15.55 90.92
Morality T5 69.82 3796 64.35 34.53 94.63 58.06 23.67 4885 2262 91.76
BART 67.78 3447 6149 3225 94.25 53.46 1849  45.73 14.95 90.93
All T5 70.39  38.27 6549 34.01 94.66 57.64  23.13 48779 22.22 91.68
BART 67.66 3445 6228 31.59 93.95 52.12 18.13  44.51 15.96 90.92

Table 4: Framing Generation Results for Target (§4.1.3) and Guess (§4.2.2) words.

We find that the best models with

sociocultural priors universally outperform their baseline counterparts. For Target Rationale Generation, jointly modeling
all features yields highest improvements; Guess Rationale generation sees improvements when using Morality priors. Guess
Rationale Performance sees higher relative/absolute improvement from baselines compared to Target Rationale Generation.

Priors \ Random BERT RoBERTa XLNet
None \ 0.50 0.57 0.57 0.57
J With Sociocultural Priors
Demoreq - 0.52 0.55 0.52
DeIIlOAn — 0.59 0.63 0.62
Personality | — 0.57 0.67 0.64
Morality - 0.57 0.64 0.61
All - 0.57 0.65 0.63

Table 5: Macro F-1 scores for Predicting Pragmatic Success
(84.3): models must predict if a guesser will guess correctly
given the target word, target rationale, and clue. We use base
variants of all models and experiment with ablations across
different background characteristics.

target and rationale from THE CLUE GIVER.

4.4 Augmenting with Sociocultural Priors

We hypothesize that players’ backgrounds in-
fluence Codenames gameplay. To this end, we
encode background player information for each
task. For each dimension described in §3.4, we
encode an attribute/answer pair (e.g. age: 22)
for each survey question. Then, we prepend all
attributes to the encoded strings for each outlined
task (§4), using a unique token to delimit attributes
for THE CLUE GIVER and THE GUESSER.

N socio = {BOS, GIVER, Clue Givert;:a,
GUESSER, Guesserag:a | + in

If a player did not respond to a specific attribute, we
replace the attribute/answer pair with None. From
our sociocultural priors (§3.4), we have 5 ablations:
DemoRreq, Demoay, Personality, Morality, and
All (concatenating and modeling all ablations). We
additionally use no priors as a baseline, using in
instead of 27 50¢40 tO test our hypothesis.

S Experiment Setup

Baselines and Dataset Splits For generation
baselines, we use two Seq2Seq models: TS5 (Raffel
et al., 2020) and BART (Lewis et al., 2020). We
optimize the associated language modeling objec-
tive across our tasks. Additionally, we experiment
with two retrieval baselines for all generation tasks:
(1) randomly selecting a generation from the train
set and (2) selecting the nearest k-N inputs using
pretrained SentenceBERT (Reimers and Gurevych,
2020) or fastText (Bojanowski et al., 2017). Re-
trieval baselines yield insight into how well off-
the-shelf pretrained models capture sociocultural
diversity. For classification, we experiment with
BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019), and XLNet (Yang et al., 2019). Models are
base variants, and results are averaged over 5 runs.

For each task, we split clue givers into 80-10-10
train/val/test, since all tasks depend on initial clue
giver choices. Importantly, a single clue giver’s
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data is not distributed across splits, since clue
givers may reuse clues/strategies.

Evaluation Metrics We use a range of metrics to
generation tasks. Rationale generation tasks (Tar-
get §4.1.3 & Guess §4.2.2) output entire sentences;
therefore, we report F-1 scores from ROUGE-(1, 2,
L) (Lin, 2004), BLEU (Papineni et al., 2002), and
BERTScore (Zhang et al., 2020). For tasks that gen-
erate a single or set of words where order does not
matter, (Guess Selection §4.2.1; Clue Generation
§4.1.2), we report only ROUGE-1 and averaged
word vector (fastText) cosine similarity.

6 Generation Results & Discussion

Including cultural priors improves modeling perfor-
mance across all tasks. For generation problems,
TS5 generally outperforms BART, and our retrieval
baselines lag behind more complex models. Fi-
nally, we conduct 42 a qualitative analysis of 20
random samples from each task.

Picking Targets and Guesses From our results
(Table 2), we find that selecting guesses is an eas-
ier modeling task than picking target words, likely
because the input for selecting a guess contains
the clue word. Intuitively, selecting target words is
more arbitrary than selecting a guess from a clue—
especially since our generation task does not en-
force guess correctness. Our models reflect this ob-
servation. Guess Selection has R-1 scores that are,
on average, twice as good as Target Word Selection
(Target 34 vs. Guess 66). Furthermore, Guess Se-
lection only requires demographics (DemoReq) to
maximize performance, unlike Morality for Target
Words. Regardless, both tasks see R-1 increase by
~ 2 points over no prior baselines.

- Looking at model outputs between the None
and Morality, we observe that models generate
words like Well/Grace instead of Death/Poison and
vice versa, depending on player background.

Generating a Clue for Targets Moving to our
clue generation models, we again find that includ-
ing sociocultural priors improves model perfor-
mance (Table 3). Highest R-1 scores (26.54) occur
when using Morality as a prior, resulting in a ~ 2
pt. R-1 and 4 pt. cos-similarity increase when com-
pared to a no prior baseline. We also suspect that
selecting target words and generating a hint are in-
terrelated processes: annotators are likely thinking
about clues/targets in parallel. Therefore, the same
Morality prior results in maximized performance.

&~ While there are themes related to Morality
in clue differences for a target word (accident —
death vs. lucifer; or fair — equal vs. good), we also
find that generations are more specific given socio-
cultural priors. Consider these generated target —
clue pairs v with and X without priors:

* match — X game v cricket
* bond — X connection v/ james
* undertaker — X funeral v wrestler

Each v example generates a clue that relies on
shared cultural background: specifically, knowing
that cricket is a sport; that James Bond is a popular
character; and that the Undertaker is a wrestler.
More details can be found in Appendix C, Table 6.

Clue Generation Errors Across Sociocultural
Subtypes Despite jointly modeling cross-cultural
information, our performance is far from perfect.
Generating successful clues is a core element of
Codenames; however, our exact match accuracy
on clue generation is only ~ 26%. To understand
errors, we sample 100 generated clues from the
Clue Generation Task, and identify errors and dif-
ferences between (socioculturally) generated clues
and the ground truth label.

For 43 samples, we notice that sociocultural pri-
ors have no effect on clue generation; the output
is identical to the no prior model for the given tar-
get word. In these instances, we suspect that our
models fail to exploit common ground between
a giver/guesser, yielding the same clue as with-
out sociocultural priors. Upon further analysis,
we observe that these errors occur frequently (37
samples) when both the clue giver and guesser
are white or from North America. Because these
demographics are already over-represented in our
dataset, we suspect that the model simply ignores
over-informative sociocultural priors.

Errors also occur because clues are over (20 in-
stances, e.g. “guevera” instead of “overthrow”) or
underspecified (13 instances, e.g. “supernatural”
instead of “monster””) compared to the gold clue.
In 21/33 of these instances, there is a demographic
mismatch between the clue-giver and guesser: the
clue-giver and guesser do not share race/country
demographics. In contrast to having no effect, we
suspect that models mispredict the common ground
between guesser/giver. We also judge 18 genera-
tion errors to be of similar specificity to the target
word—prefixes/suffixes of the gold label—or com-
pletely unrelated to the gold clue (6 instances).
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Rationalizing Targets and Guesses Beyond gen-
erating target words and guesses, we ask models
to explain how a target or guess is related to a
clue word (e.g. James Bond is a movie character).
Again, we find that providing contextual priors im-
proves performance (Table 4). For Target Rationale
Generation, models see maximized performance
when all priors are included, while Guess Rationale
generation sees improvements for Morality.

#- Like with Clue Generation, we find that im-
provements in Guess Rationale are from increased
specificity (e.g. “actors are cast” — “actors are part
of a cast”; “money is center” — “money is the cen-
ter of everything”). While qualitative differences
are clear for Guess Rationale, Target Rationale re-
sults are more subtle: improvements stem from
minor variations in the type of framing ("a kind of"
vs. "a type of") used by the annotator. Additional
generations can be found in Appendix C, Table 7.

Classifying Pragmatic Failure We find that clas-
sification performance across each architecture is
maximized when using sociocultural priors during
training (Table 5). While BERT sees reduced im-
provement (an increase of only +0.02 F-1 over a
no-prior baseline), XLNet and RoBERTa see max-
imum increases of +0.07 and +0.10 respectively.
Both XLNet and RoBERTa see these improvements
across the same Personality setting. Sociocultural
priors improve performance across mirroring and
evaluating pragmatic inference.

A Word on Word Vector Baselines Surprisingly,
retrieving nearest words using a word vector ap-
proach (fastText) performs poorly for both Clue
and Guess Generation (Tables 2 & 3). We suspect
that pretrained vectors fail to capture sociocultural
inference in word association tasks.

7 Conclusion

Language is grounded in rich sociocultural context.
To underscore this context, we propose a setting
that captures the diversity of pragmatic inference
across sociocultural backgrounds. With our Code-
names Duet dataset (7K turns across 156 players),
we operationalize cross-cultural pragmatic infer-
ence. Across our experiments, we detail improve-
ments in mirroring/evaluating inferences when us-
ing sociocultural priors. Our work highlights how
integrating these priors can align models toward
more socially relevant behavior.

8 Limitations

Cross-Cultural Inference Beyond Codenames
Our work explores sociocultural pragmatic infer-
ence in a very limited setting, using a core vocab-
ulary of just 100 words. Despite this limitation,
we find significant diversity in our dataset; fur-
thermore, our models successfully capture these
diverse inferences. While a limitation of our work
is its focus on a single setting, we expect do-
mains outside of Codenames to see similar vari-
ance. Understanding and highlighting miscom-
munication in dialog—due to culture-dependent
misinterpretation—is one such extension. These
domains are likely much nosier than Codenames;
we urge future work to further investigate them.

Spurious Correlations across Sociocultural Fac-
tors Across all tasks but one (Target Rationale
Generation §4.1.3), jointly modeling all sociocul-
tural priors does not result in the highest perform-
ing model. Because our sociocultural factors al-
ready correlate with each other (§3.4), we sus-
pect that modeling all features may be redundant,
adding spurious correlations and resulting in over-
fitting. Improved modeling methodology and care-
ful regularization may address these issues; we
leave these experiments for future work.

Bigger Models and Task Specific Modeling
Currently, we evaluate small Seq2Seq models due
to computational constraints; however, evaluation
of 0-shot and few-shot performance on larger lan-
guage models (e.g. GPT-3) is necessary. Given
the changing state of the Codenames board—along
with evidence that LL.Ms struggle with theory-of-
mind-esque perspective taking (Sap et al., 2022)—
our dataset can serve as a challenging benchmark
for sociocultural understanding. However, success-
fully encoding game state into prompts for LLMs
may require experimentation.

Finally, our current task formulation and model-
ing setup are straightforward: we simply encode all
information in-context and do not assume recursive
reasoning like in RSA (Goodman and Frank, 2016).
Future work can explore these directions.

Human Evaluations Our evaluation is limited to
automatic metrics and qualitative analysis. Evalu-
ating cross cultural generation depends on the eval-
uator’s own culture. Each generation depends on
the player’s sociocultural background; finding eval-
uators who match the player may be prohibitive.
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9 Ethics

Broadly, our work models user background to de-
termine the choices they make. While we focus
on a fairly harmless setting (Codenames), our op-
erationalization can be used in harmful ways (e.g.
tracking and modeling user behavior without con-
sent). Future work that uses sociocultural informa-
tion should only be applied to settings where there
is no foreseeable harm to end-users.

Furthermore, learning sociocultural associations
can introduce positive and negative stereotypes;
documenting and reducing harmful stereotypes is
an important avenue for future work. Finally, we
emphasize that our work is not evidence for linguis-
tic determinism: sociocultural variation in language
can influence but not determine thought.
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A Finalized Codenames Word List

We sample from the following list of 100 words:
luck, grace, soul, fair, life, pass, revolution, change,
charge, degree, force, code, genius, compound,
time, wake, plot, draft, ghost, play, part, spell, well,
point, link, mass, disease, sub, state, alien, space,
mine, ray, millionaire, agent, bond, unicorn, fig-
ure, war, cycle, boom, sound, trip, centaur, death,
club, crash, angel, cold, center, spring, round, date,
press, cast, day, row, wind, fighter, embassy, beat,
leprechaun, comic, pitch, mount, march, fall, under-
taker, green, switch, strike, king, superhero, capital,
slip, lead, check, lap, mammoth, air, match, spy,
roulette, contract, witch, stock, light, drop, spot,
novel, vacuum, cover, scientist, tag, conductor, field,
racket, poison, ninja, opera.

B Reformatting Rationales using GPT-3

Some annotators wrote verbose rationales (I think
fall happens after you slip), while other annotators
were more succinct (fall after slip). To prevent mod-
els from learning grammar variation across annota-
tors, we normalize our text using GPT-3. We use
the following prompt, using hand-written few-shot
examples. Some of the examples are unchanged—
we include them in the prompt to demonstrate posi-
tive examples to the model.

Normalize the text, removing
determiners like “the” and “a” at
the start of a sentence, along
with any pronouns. Correct
spelling and grammar mistakes.

If possible, the final text
should be formatted with the clue
first and the target last or the
target first and the clue last.

clue: “sub”
target: “sandwich”
text: “you can make a sub, which

is a type of sanwich”

output: “sub is a type of
sandwich”

clue: "die"

target: "cliff"

text: "you may die if you fall
off a cliff"

output: "die if fall off a
cliff"

clue: "explosion"

target: "boom"

text: "it makes sound"

output: "explosion makes boom"
clue: "superman"

target: '"superhero"

text: "most famous superhero"
output: "superman is most famous
superhero"

clue: "night"

target: "club"

text: "i love night club"
output: "night club is a kind of
club"

clue: "horn"

target: "air"

text: "an air horn is a type of
horn"

output: "air horn is a type of
horn"

clue: "ivy"

target: "poison"

text: "poison ivy is a well
known plant"

output: "poison ivy is a well

known plant"

clue: "month"

target: "march"

text: "march is a month"
output: "march is a month"
clue: "{clue}"

target: "{target}"

text: "{text}"

output: "

C Example Generations

Here, we include example generations for a subset
of our tasks, illustrating the influence of sociocul-
tural factors on generated Codenames gameplay.

C.1 Clue Generation

Below, we highlight more clues generated with-
/without sociocultural priors. Note how some of
the without generations are euro-centric: space —
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nasa, {revolution, king} — war; adding priors cre-
ates more specific clues. However, this isn’t always
true: target words {pass, check} — leads to poker
instead of overtake when conditioned on priors. We
suspect that the average player in our pool is not
aware of how {pass, check} are associated with
poker, resulting in a more generic generation.

Target ‘ Without  With Gold
revolution, king war guevara overthrow
check mate inspect  examine
space nasa galaxy  universe
compound wall house together
pass, check overtake  poker go

Table 6: Clue generations with/without sociocultural
priors, given target words on the board

C.2  Clue Framing

Additional generations can be found in Table 7.
Again, we observe that adding sociocultural priors
increases relation specificity.

D Annotation Task Details
D.1 Qualification Test

To qualify for the HIT, workers were required to
complete a consent form detailing dataset collec-
tion and release; and were expected to watch an
instructional video outlining game rules.

Then they had to pass the following qualifying
test, answering at least 6 out of 7 questions cor-
rectly.

1. True or False: "angry dog" is an example of
a clue you could give. [Answer: False]

2. True or False: you and your partner have dif-
ferent lists of black (assassin) words. [Answer:
True]

3. True or False: it is possible to skip a turn
without guessing. [Answer: False]

4. True or False: the tan “down” arrow indi-
cates that you guessed the word wrong, while
the tan “up” arrow indicates that your partner
guessed it wrong. [Answer: True]

5. Multiple Choice: Which of the following
kinds of phrases does not follow from our list
of target rationales types? [Answer: (b)]

(a) “a computer has a mouse”
(b) “a doctor is smart”
(c) “adogis akind of animal”

(d) “a disease causes people to be sick”

6. Multiple Choice: How many guesses do you
get (assuming there are still more words left
to guess) [Answer: (d)]

(a) you get three guesses each turn

(b) the number of guesses you get is the
same as the number of target words your
partner’s clue

(c) as long as you keep picking green words,
you can keep guessing, up to the number
of target words in your partner’s clue

(d) as long as you keep picking green words,
you can keep guessing without any limit,
even if you guess more than the number
of target words in your partner’s clue

7. Multiple Choice: During the 8th timer token
in the video, it looked like my grid froze and
I couldn’t make any more guesses. Why did
this happen? [Answer: (b)]

(a) I guessed an assassin word

(b) I already guessed all my partner’s words
correctly

(c) Iclicked the “end game” button

(d) My partner left the game
D.2 Demographic, Personality, and Moral
Questionnaires

Before starting any HITs, workers also had to com-
plete three standardized surveys about their moral
foundations, personality, and demographic infor-
mation. The survey questions and worker statistics
are given as follows.

D.2.1 Worker Demographics

Questionnaire.
about yourself.

Please answer these 8 questions

1. With what gender do you identify? { Woman,
Man, Transgender, Non-binary / non-
conforming, Other}

2. What is your age? {0-17 years old, 18-22
years old, 22-30 years old, 30-45 years old,
45+}
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Target Clue | Without With Gold
explode boom | explode causes boom  bomb explodes witha explosions make a
boom boom sound
horse  unicorn | a unicorn is a horse unicorn is a type of unicorns are similar to
horse horses
racket tennis | tennis has racket aracket is used in ten- tennis uses a racket
nis
day month | day is month month has many days 30 days in a month

Table 7: Example Rationales for Clues, with/without background priors. With priors, we observe that rationales
become more specific, mentioning explicit relations between the target and clue.

3. Which best describes your race or ethnicity?
{African-American/Black, Asian, Latino or
Hispanic, Native American, Native Hawaiian
or Pacific Islander, White / Caucasian}

4. In which continent are you located? {North
America, Central / South America, Europe,
Africa, Asia, Australia}

5. What is your highest level of education?
{Some High School / No Diploma, High
School Diploma, Associate’s Degree / Trade
School, Master’s Degree, Doctorate Degree}

6. What is your marital status? {Single and never
married, Married or in a domestic partner-
ship, Widowed, Divorced, Separated}

7. Which of the following would you con-
sider your native language { English, Arabic,
French, Mandarin, Spanish, Other}

8. If applicable, please specify your religion
{Buddhism, Catholicism/Christianity, Hin-
duism, Islam, Judaism, Other}

Results. Of the 153 unique players, 124 are from
the U.S, 12 are from India, 8 are from Brazil, 3
from the U.K, 2 from Canada, and the rest are sin-
gle players from the following 7 countries: Indone-
sia, Costa Rica, France, South Africa, Germany,
and Portugal.

D.2.2 Worker Personality

Big 5 Personality Questionnaire. Please answer
these 10 questions about yourself on the following
scale: [-2] Strongly Disagree; [-1] Disagree; [0]
Neutral; [1] Agree; [2] Strongly Agree.

1. I see myself as someone who does a thorough
job.

2. I see myself as someone who is reserved.

3. I see myself as someone who is outgoing, so-
ciable.

4. T see myself as someone who gets nervous
easily.

5. I see myself as someone who has few artistic
interests.

6. I see myself as someone who is relaxed, han-
dles stress well.

7. 1 see myself as someone who tends to find
fault with others.

8. I'see myself as someone who is generally trust-
ing.

9. I'see myself as someone who tends to be lazy.

10. I see myself as someone who has an active
imagination.
D.2.3 Moral Foundations And Political
Leaning.

Moral Foundations Theory. Following Haidt
and Graham (2007), we use the five-foundation
theory of moral reasoning to understand our play-
ers’ values and leanings. This theory does not give
explicit definitions for the five foundations, but fol-
lowing recent work by Ziems et al. (2022), we can
assume the following definition sketches:

1. Care: wanting someone or something to be
safe, healthy, and happy.
Harm: wanting someone or something to suf-
fer physically, emotionally, socially, intellec-
tually, or spiritually.
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2. Fairness: wanting to see individuals or
groups treated equally or equitably
Cheating: wanting to see unfairness, injus-
tice, bias, exclusion, or discrimination.

3. Loyalty: wanting unity and seeing people
keep promises or obligations to an in-group.
Betrayal: wanting to see people lie, abandon
an in-group, or become isolated and divided.

4. Authority: wanting to respect social roles,
duties, privacy, peace, and order.
Subversion: wanting to see people disrespect,
disobey or cause disorder, challenge the status-
quo, and do what they do not have permission
to do.

5. Sanctity: wanting people and things to be
clean, pure, innocent, and holy.
Degradation: wanting people to follow self-
ish or crude desires and do things that make
them or others dirty, corrupt, sick, repulsive,
or perverted.

Moral Foundations Questionnaire We use
the associated Moral Foundations Questionnaire,
which we shortened to 12 questions as follows.

Please answer 12 questions about “right” and
“wrong.” The prompts are the same in each case,
but the considerations are different.

1. When you decide whether something is right
or wrong, to what extent are the following
considerations relevant to your thinking? Use
the following scale: [0] Not at all relevant
(It has nothing to do with my judgments of
right and wrong); [1] Not very relevant; [2]
Slightly relevant; [3] Somewhat relevant; [4]
Very relevant; [5] Extremely relevant (It is one
of the most important factors when I judge
right and wrong)

(a) Whether or not someone suffered emo-
tionally.

(b) Whether or not some people were treated
differently than others.

(c) Whether or not someone’s action showed
love for his or her country.

(d) Whether or not someone showed a lack
of respect for authority.

(e) Whether or not someone violated stan-
dards of purity and decency.

(f) Whether or not someone was good at
math.

(g) Whether or not someone cared for some-
one weak or vulnerable.

(h) Whether or not someone acted unfairly.

(i) Whether or not someone did something
to betray his or her group.

(j) Whether or not someone conformed to
the traditions of society.

2. Which of the following best describes your
political views?

(a) Liberal

(b) Moderate Liberal

(¢) Moderate Conservative
(d) Conservative

(e) Libertarian

D.3

We explain that rationales should use at least 3
words to describe the connection between the clue
and the target. Annotators were encouraged to be
creative while trying to use one of the structures
below. We imposed these structures for the sake of
regularity.

Instructions for Writing Rationales

1. MERONYM X has y

(a) adog has a tail
(b) the pacific ocean has water

2. HYPERNYMX is a kind of y

(a) bunkbed is a kind of bed
(b) whisper is a kind of communication

3. SYNONYM x means the same thing as y

(a) car means the same thing as automobile
(b) sluggish means the same thing as slow

4. ANTONYM X means the opposite of y

(a) civilian means the opposite of soldier
(b) fast means the opposite of slow

5. ADJECTIVE x describes y

(a) brave describes a firefighter
(b) scary describes a clown

6. AGENT x does y

(a) a star does twinkle police do make an
arrest

7. CAUSE X causes y
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(a) abed causes people to sleep
(b) an oven causes food to bake
(c) adisease causes people to be sick

8. PATIENT x acts on y

(a) a wrench acts on a bolt
(b) adoctor acts on a patient

9. LOCATION x has an environment y

(a) a star has an environment firmament

E Training and Hyperparameters

For our generation tasks, we perform use 5e-5 as
our initial learning rate and perform a hyperparam-
eter search over {1...20} epochs. For classification,
we use the same splits and perform a hyperparam-
eter sweep over learning rates ({le-4, Se-4, le-5,
Se-5, 1e-6, 5e-6}) and epochs ({1...15}). All mod-
els were trained on an NVIDIA A100 GPU. Across
all experiments, GPU compute time was around
4-5 days.

F Artifact Details

We use several models in our paper for their in-
tended retrieval or generation task. Each model has
its own license and number of parameters, listed
below:

1. TS (Raffel et al., 2020), 220M parameters, is
under the Apache 2.0 License.

2. BART (Lewis et al., 2020), 140M, is under
the Apache 2.0 License.

3. fastText (Bojanowski et al., 2017) is under the
MIT License.

4. SentenceBERT (Reimers and Gurevych,
2020), 33M variant, is under the Apache 2.0
License.

5. BERT (Devlin et al., 2019) base, 110M, is
under the Apache 2.0 License.

6. XLNet (Yang et al., 2019) base, 110M, is un-
der the Apache 2.0 License.

7. RoBERTAa (Liu et al., 2019) base, 123M, is
under the Apache License 2.0.

We plan on releasing CULTURAL CODES and cor-
responding code under Creative Commons Attri-
bution Share Alike 4.0 International. While our

released dataset has extensive demographic infor-
mation, we do not collect any identifiers that can
uniquely isolate a person (e.g. name, MTurk ID,
etc.)
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