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Abstract

Hybrid Question-Answering (HQA), which tar-
gets reasoning over tables and passages linked
from table cells, has witnessed significant re-
search in recent years. A common challenge
in HQA and other passage-table QA datasets
is that it is generally unrealistic to iterate over
all table rows, columns, and linked passages
to retrieve evidence. Such a challenge made
it difficult for previous studies to show their
reasoning ability in retrieving answers. To
bridge this gap, we propose a novel Table-
alignment-based Cell-selection and Reasoning
model (TACR) for hybrid text and table QA,
evaluated on the HybridQA and WikiTable-
Questions datasets. In evidence retrieval, we de-
sign a table-question-alignment enhanced cell-
selection method to retrieve fine-grained evi-
dence. In answer reasoning, we incorporate a
QA module that treats the row containing se-
lected cells as context. Experimental results
over the HybridQA and WikiTableQuestions
(WTQ) datasets show that TACR achieves state-
of-the-art results on cell selection and outper-
forms fine-grained evidence retrieval baselines
on HybridQA, while achieving competitive per-
formance on WTQ. We also conducted a de-
tailed analysis to demonstrate that being able
to align questions to tables in the cell-selection
stage can result in important gains from ex-
periments of over 90% table row and column
selection accuracy, meanwhile also improving
output explainability.

1 Introduction

Text-based question-answering datasets derive an-
swers based on reasoning over given passages (Ra-
jpurkar et al., 2016; Chen et al., 2017; Joshi et al.,
2017; Yang et al., 2018), while table-based QA
datasets collect tables from sources such as WikiTa-
bles (Pasupat and Liang, 2015a; Zhong et al., 2017;
Chen et al., 2019). However, datasets combining
textual passages and tables, like HybridQA (Chen

*indicates equal contribution.

et al., 2020b), OTT-QA (Chen et al., 2020a), and
TAT-QA (Zhu et al., 2021) are more realistic bench-
marks. As the answer to a given question may
come from either table cells or linked passages,
current hybrid QA models usually consist of two
components, a retriever to learn evidence and a rea-
soner to leverage the evidence to derive answers.
Such models retrieve evidence from different gran-
ularities, coarse-grained (e.g., row or column) or
fine-grained (e.g., cell), and directly use a span-
based reading comprehension model to reason the
answer.

Kumar et al. (2021), for example, chooses
coarse-grained regions as evidence, e.g., a table
row. Chen et al. (2020b) and Eisenschlos et al.
(2021), however, focus on fine-grained units, table
cells and linked passages. To preserve the advan-
tages and eliminate the disadvantages of different-
granularity evidence, Sun et al. (2021a) propose
MuGER,2 which performs multi-granularity evi-
dence retrieval and answer reasoning.

Wang et al. (2022) conducts extensive experi-
ments to prove that a coarse-grained retriever con-
tributes less than a fine-grained retriever. Moreover,
fine-grained methods, although giving an exact po-
sition of candidate cells, fail to illustrate why the
selected cells are chosen, while our method is based
on row and column selection probabilities. We thus
further extend the fine-grained method by aligning
questions with tables, letting our approach know
which parts of questions are accounted for by which
modalities. Intuitively, multi-hop questions in the
text-table QA task usually contain two pieces of
information from different modalities, tables and
passages. Moreover, tables and passages are con-
nected with evidence contained in tabular data. Our
method implicitly decomposes the questions for dif-
ferent modalities to locate evidence and improve
cell-selection accuracy.

As illustrated in Figure 1, an example from the
HybridQA dataset shows how humans work on
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Figure 1: Example from the HybridQA dataset. The top sentence is the original question, and words in different
colors show different parts of questions required for reasoning in different modalities. the two headers in blue-dashed
boxes are column names aligned with the given question. TACR first uses a method based on table-question-
alignment to align the original question with table columns to help obtain golden table cells and then retrieve the
final answer based on linked passages.

multi-hop and multi-modal QA tasks. The original
question "What is the middle name of the player
with the second most National Football League
career rushing yards ?" can be divided into two
parts, "What is the middle name of" and "the player
with the second most National Football League
career rushing yards?" for passages and tables, re-
spectively. Such sub-questions are connected with
the evidence of a cell ( "Walter Payton"). For hu-
mans, we first locate who was the player in the
second rank, which requires information from two
columns: "Rank" and "Player". After locating the
cell, we can finally determine Walter Payton’s mid-
dle name from the passage. Such reasoning process
inspired us to develop TACR, a Table-alignment-
based Cell-selection and Reasoning model, which
incorporates a fine-grained evidence-retrieval mod-
ule that utilizes table-question-alignment to learn
which parts of the question are used for retrieving
evidence from different modalities and reasoning
towards answers.

To explicitly and correctly show the reasoning
process in the text-table QA task, in the evidence re-
trieval stage, TACR first selects the golden cells and
avoids redundant information in multi-granularity
evidence that would lower the performance of
the answer-reasoning module. The table-cell-
selection module of TACR is designed to navigate
the fine-grained evidence for the reader by fusing
well-learned information from the table-question-
alignment module. Compared with current fine-
grained retrievers, the table-question-alignment
module of TACR can help our model learn which
parts of questions are used for reasoning in which

modality, and which parts of tables contain candi-
date cells. Together with the alignment module,
TACR preserves both high golden cell-selection
accuracy and shows competitive performance on
the HybridQA and WikiTableQuestions (WTQ)
datasets, while providing improved explainability.

Our contributions are as follows: (1) TACR is
the first model able to explicitly show its reason-
ing process in the passage-table QA task; (2) We
jointly train the cell-selection and table-question
alignment modules to improve golden cell selection
performance and preserve the QA reader’s perfor-
mance; and (3) We conduct extensive experiments
on the HybridQA and WTQ datasets to demonstrate
the effectiveness of TACR.

2 Related Work

2.1 Table Question Answering

Table QA has gained much attention, as shown
by benchmark datasets such as WikiTable-
Questions (Pasupat and Liang, 2015b), Wik-
iSQL (Zhong et al., 2018), SPIDER (Yu et al.,
2018), and TABFACT (Chen et al., 2019). How-
ever, these datasets mainly focus on reasoning on
tables and ignore important knowledge stored in
the textual corpus. Consequently, QA covering
both tabular and textual knowledge has gained in-
creasing interest. Chen et al. (2020b) pioneered
a passage-table QA benchmark, HybridQA, with
Wikipedia tables linked to relevant free-form text
passages (e.g., Wikipedia entity-definition pages).
The OTT-QA (Chen et al., 2020a) benchmark
extended HybridQA to the open domain setting,
where a system needs to retrieve a relevant set of
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tables and passages first before trying to answer
questions. Moreover, the links from the table and
passage are not provided explicitly.

2.2 Table-Question Alignment
There are several table-question-alignment meth-
ods. Schema-linking-based methods, such as RAT-
SQL (Wang et al., 2019), introduce a relation-aware
transformer encoder to improve the joint encoding
of a question and schema. Liu et al. (2022) pro-
pose a similarity learning-based question-schema-
alignment method to obtain a semantic schema-
linking graph and observed how the pre-trained
language model (PLM) embeddings for the schema
items are affected. Zhao and Yang (2022) use the
same words that appear in both the natural lan-
guage statement and the table as weak supervised
key points and design an interaction network to
explore the correlation between the representations
of the natural language statements and tables.

2.3 Hybrid QA
Studies on hybrid QA usually retrieve different
granularities of evidence from heterogeneous data
to retrieve the final answer. Hybrider, proposed
by Chen et al. (2020b), is a two-phase pipeline
framework to retrieve gold table cells as evidence
and input their values and linked passages into a
QA model to extract the final answer. Sun et al.
(2021b) proposes Dochopper, an end-to-end multi-
hop retrieval model that directly concatenates rows
with related textual evidence as its inputs. Pan
et al. (2020) explores an unsupervised multi-hop
QA model, called MQA-QG, which can generate
human-like multi-hop questions by building a rea-
soning graph from heterogeneous data resources.
Kumar et al. (2021) propose MITQA, which ap-
plies multiple-instance training objectives to re-
trieve coarse-grained evidence. On the contrary,
Eisenschlos et al. (2021) introduce a transformer-
based model with row- and column-wise attentions
for fine-grained evidence retrieval, e.g., table cells.
Wang et al. (2022) propose a unified retriever that
tries to preserve the advantages and eliminates the
disadvantages of different-granularity evidence re-
trieval methods.

TACR differs from the above models mainly in
two aspects: (1) TACR focuses on providing an ex-
plicit reasoning process by aligning multi-hop ques-
tions to tables, so it learns which parts of multi-hop
questions are accounted for by retrieving evidence
from which modality; and (2) The table-question

alignment can enhance the reasoning ability of the
table cell selection module with the help of our
generated hybrid alignment dataset. TACR shows
competitive performance to that of other table QA
models on the HybridQA and WTQ datasets on
the basis of high row, column, and cell selection
accuracy. To the best of our knowledge, no text-
table QA system handles the challenge of explicitly
showing its reasoning process and multi-hop ques-
tion table alignment.

2.4 Table Cell Retrieval

Jauhar et al. (2016) construct a multiple-choice
table QA benchmark that includes over 9000
question-table pairs via crowd-sourcing and pro-
posed a table-cell search model based on calcu-
lating all relevance scores between each cell and
question. Such a model is reasonable and intuitive
but time-consuming. TACR selects gold cells based
on row and column selection. Suppose that a ta-
ble contains n rows and m columns; the table cell
search method must calculate n∗m scores for each
cell, while TACR needs to calculates only n+m
scores for each row and column, and selects the
gold cell in the row and column with the highest
score. Sun et al. (2016) focus on extracting enti-
ties from questions and building a row graph and
then mapping the question to the pair of cells in the
same row of a table. However, some entities may
not appear in both questions and table cells, e.g.,
an entity of the question in Figure 1 that should be
extracted is National Football League, but it cannot
be mapped into any cells.

3 Framework

As described in the previous section, both coarse-
and fine-grained approaches fail to provide a rea-
soning process showing which parts of multi-hop
questions map to which modality and evidence.
Here we describe the details of TACR and its three
main components: (1) data augmentation for train-
ing the table-question alignment module; (2) a
multi-task learning module for table-question align-
ment and table-cell-selection; and (3) a text-based
multi-hop QA module for retrieving answers. Fig-
ure 2 shows the overall architecture of TACR.

3.1 Task Definition

Given a question Q (a sequence of tokens) and N
rows of table T together with linked passages P ,
where each table column has a header hi=M

i=1 (M is
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Figure 2: TACR model architecture. From left to right, we first construct a hybrid alignment dataset to jointly
train the table-question-alignment and table-cell-selection modules. We then concatenate filtered linked passages
with selected top-k candidate cells as paragraphs and feed them into a text-based multi-hop QA module to retrieve
answers.

the number of table headers), the task is to find a
candidate cell ci,j that contains the answer α.

3.2 Data Construction

We generate multi-hop questions from tables and
linked passages, as well as table-question align-
ment labels from questions and table columns
for training the table-question-alignment module.
However, such supervision information is not of-
fered in the HybridQA dataset and other text-table
QA datasets, which makes the alignment task dif-
ficult. We use an unsupervised text-table QA-
generation method to generate questions as well as
alignment labels.

Alignment Generation. We follow the settings
of the MQA-QG method (Pan et al., 2020), us-
ing a pre-trained Google T5 (Raffel et al., 2019),
fine-tuned on the SQuAD dataset (Rajpurkar et al.,
2018), to generate multi-hop questions from tables
and passages based on a bridge entity, a table cell
that contains the bridge entity, and a linked passage
that describes the bridge entity. The bridge entity is
critical in reasoning because it connects the tables
and passages, which are difficult to locate in the
original HybridQA dataset.

Such bridge entity provides us with additional
information to align table headers with generated
questions based on the column containing golden
cells and the column containing the bridge entity.
We align the columns which contain bridge
entities and answers to questions following two
schema-linking alignment rules:

Name-based Linking. This rule refers to exact
or partial occurrences of the column/table names
in the question, such as the occurrences of “player”
in the question in Figure 1. Textual matches are the
most explicit evidence of table-question alignment
and, as such, one might expect them to be directly
beneficial to the table-question alignment module.

Value-based Linking. Table-question align-
ment also occurs when the question mentions any
values that occur in the table and consequently par-
ticipate in the table-cell selection, such as “the
second most” in Figure 1. While it is common
for examples to make the alignment explicit by
mentioning the column name (e.g., “Rank”), many
real-world questions do not (like in the example).
Consequently, linking a value mentioned in the
question to the corresponding column also requires
background knowledge.

3.3 Passage Filtering

In this stage, we aim to filter out linked passages un-
related to a question, namely keeping almost noise-
free passages for the following modules. Moreover,
the total number of tokens in passages linked to
table cells can be large, exceeding the maximum
input sequence length of current LMs. Thus, we
utilize Sentence-BERT (Reimers and Gurevych,
2019) to obtain question and passage embeddings
and rank the top-k sentences based on their text
similarities. We expand the cells with the filtered
top k-related sentences to both fit in the max input
length of language models and to preserve the use-
ful information from passages. More details on this
stage are provided in Appendix A.
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Figure 3: The table-question-alignment module of
TACR. We treat the alignment objective as a similar-
ity learning task.

3.4 Table Alignment & Cell Selection

In this stage, we jointly train a multi-task model
with the objectives of selecting the expanded cell
that contains the answer and table-question align-
ment to different modalities to enhance the previous
objective. TACR accepts the full table as inputs
and outputs the probabilities of selected cells based
on the probabilities of row and column selection.

3.4.1 Table-Question Alignment
Given a natural language question Q ={
q1, ....q|Q|

}
, a table consisting of several column

headers C =
{
c1....c|C|

}
, and the corresponding

table-question alignment labels L =
{
l1, ...l|C|

}

where li ∈ [0, 1] (0 meaning the column header
is unrelated to the question Q and 1 meaning the
column header is related to Q). The goal of our
table-question alignment module is to learn the rele-
vance between table-column headers and questions.
Table-question relations aid TACR by aligning col-
umn references in the question to the corresponding
table columns.

We first feed the questions and table columns
into the pre-trained model and map them into
hidden representations. The question and table-
column headers can be denoted as

{
q1, ....q|Q|

}

and
{
c1....c|C|

}
, respectively. Our goal is to in-

duce a function f(qi, cj) to capture the relevance
of a question word qi has on the representation of
column header cj . Figure 3 shows the structure of

the alignment module.
Specifically, we use ALBERT (Lan et al., 2019)

as the encoder to learn the representations of tables
and column headers. Here we concatenate column
headers as a pseudo sentence. The representations
of the question (hq) and the column headers se-
quence (hc) are first computed independently. The
relevance where each column header ci is the target
of the question is then given by using softmax. The
respective equations are as follows:

hq = BERT(Q), (1)

hc = BERT(C), (2)

p(Ci ∈ C) = softmax(W (hq ∗ hc) + b). (3)

3.4.2 Table-Cell Selection
Inspired by the previous idea of modeling the at-
tention on rows and columns (Eisenschlos et al.,
2021), we design a cell-selection module based
on row and column selection. The probabilities
of each row and column are given and the cells
with the top-k highest scores are returned as the
candidate answers, or to aid in locating the relevant
passage. However, unlike in MATE (Eisenschlos
et al., 2021), we can derive probabilities of candi-
date cells from the probabilities of row and column.

We utilize the Row-Column-Intersection (RCI)
model, designed for the single-hop table-QA
task (Glass et al., 2021) (based on ALBERT (Lan
et al., 2019)), as our backbone and decompose the
table QA task into two subtasks: projection - cor-
responding to identifying columns; and selection -
identifying rows. Every row and column identifi-
cation is a binary sequence pair classification. We
concatenate the question as the first sequence and
the row or column as the second sequence. We feed
concatenated two sequences, with standard sepa-
rator tokens [CLS] and [SEP ], as the input to the
model. The representation of the final hidden state
is sent to the linear layer, followed by a softmax
to classify whether the column or row contains the
answer or not. Each row and column is assigned a
probability of containing the answer. This module
finally outputs the top-k cells with the sum of row
and column probabilities. Therefore, given a table
T with N rows and M columns, we can obtain
two sets of scores produced from the RCI model:
Pr = p1, ....pN for rows and Pc = p1, ....pM for
columns. We then calculate the overall probability
score for each cell.

The final training loss is the summation of table-
question-alignment loss, table-row-selection loss,
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and table-column-selection loss:

L = L_row+ L_column

+ σ × BCE(pred_headers, target_headers),
(4)

where σ is a hyper-parameter to balance cell-
selection training and table-question-alignment
training. The details of choosing the best σ are
provided in Appendix C.

3.5 Passage Question-Answering
Previous research often simply treat the answer-
reasoning task as a span-extraction task, considered
the first span matching the answer text as the gold
span, and use that for training. Such consideration
is incorrect because the answer text may appear in
multiple passages, but only one of them is right.
Therefore, using all text matches for training span
extraction may introduce a large amount of training
noise. As not all instances are the gold answer text
that has relations with questions, after obtaining the
top-k cells from the cell-selection module, we train
the text-based QA module to predict the final an-
swer that also takes into account the cell-selection
scores.

Specifically, we select clean training instances
where the gold answer text appears only once and
train an initial QA model. In this stage, we use
RoBERTa (Liu et al., 2019) as our backbone model.
Other BERT variants, e.g., either SpanBERT (Joshi
et al., 2019) or DeBERTa (He et al., 2020), could
be also used in this module. Our goal is to obtain
a span s in a given expanded table cell c with its
filtered passage p and the input question q. We
compute a span representation as follows:

hstart = RoBERTar(q, c)[START(s)], (5)

hend = RoBERTar(q, c)[END(s)], (6)

Sspan(q, p) = MLP([h_start, h_end]). (7)

We also consider other cells in the same row as
the retrieved candidate gold cells as the necessary
context. We linearize and concatenate the row into
a passage with the designed template: "The <col-
umn header> is <cell content>". We retrieve the
top-k cells and thus have k samples. Since not all
selected cells contain the gold answer text, we treat
one sample as positive and the others as negative
samples. For each data point, we generate k sam-
ples and match these with the answer text. Let
K = {qi, Ai, P

+
i , P−

i,1, , P
−
i,k−1}ki=1 be the train-

ing data that consist of k instances, where k is the

Split Train Dev. Test Total

In-Passage 35215 2025 2045 39285
In-Table 26803 1349 1346 29498
Compute 664 92 72 864
Total 62682 3466 3463 69611

Table 1: Statistics of HybridQA dataset

number of selected candidate cells. Each instance
contains one question qi, the gold answer text Ai,
and one correct (positive) passage text P+

i , along
with k − 1 wrong passages P−

i,j . For positive sam-
ples, the answer is the text span of the passage,
while for negative samples, the answers are -1.

4 Experiments

4.1 Datasets
HybridQA (Chen et al., 2020b) is the first large-
scale multi-hop QA dataset that requires reasoning
over hybrid knowledge, including tables and linked
Wikipedia passages. The dataset contains 62,682
instances in the training set, 3,466 instances in the
development set, and 3,463 instances in the test set.

WikiTableQuestions (Pasupat and Liang,
2015a), WTQ for short, consists of 22033 com-
plex questions and 2108 semi-structured Wikipedia
tables. The questions are designed by crowd-
sourcing to contain a wide range of domains. The
answers are derived from several operations such as
table lookup, aggregation, superlatives, arithmetic
operations, joins, and unions.

To verify the performance of TACR, we first
conduct experiments on HybridQA (Chen et al.,
2020b), a dataset of multi-hop question-answering
over tabular and textual data. The basic statistics
of HybridQA are listed in Table 1. The dataset
contains three partitions: ‘In-Table’, where the an-
swer derives from table cell values; ‘In-Passage’,
where the answer exists in a linked passage; and
‘Compute’, where the answer should be computed
by executing numerical operations. We mainly fo-
cus on the first two types. We also provide results
over WTQ to illustrate TACR’s capabilities in table-
focused QA.

4.2 Baselines
MQA-QG, proposed by (Pan et al., 2020), is
an unsupervised question-generation framework
that generates multi-hop questions from tables and
linked passages, and uses the generated questions
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to train an HQA model.
Table-Only (Chen et al., 2020b) only retrieves the
tabular information to find an answer by parsing
the question into a symbolic form and executing it.
Passage-Only (Chen et al., 2020b) only retrieves
answers from the table-linked passages.
Hybrider (Chen et al., 2020b) addresses HQA us-
ing a two-stage pipeline framework to retrieve the
gold table cell and extract an answer in its value or
linked passages.
Dochopper (Sun et al., 2021b) first converts a table
with its hyperlinked passages into a long document
then concatenates column headers, cell text, and
linked passages in each row of tables as a para-
graph.
MATE (Eisenschlos et al., 2021) applies sparse
attention to rows and columns in a table. To apply
it to the HybridQA dataset, the authors propose
a PointR module, which expands a cell using the
description of its entities, selects the golden cells,
then retrieves answers from them.
MITQA (Kumar et al., 2021) designs a multi-
instance training method based on distant super-
vision to filter the noisy information from multiple
answer spans.

4.3 Quantitative Analysis

We use exact match (EM) and F1 scores as evalua-
tion metrics on the HybridQA dataset to compare
the performance of TACR with that of previous
baselines. As shown in Table 2, TACR outper-
forms most baselines and achieved competitive per-
formance to state-of-the-art (SOTA) models (e.g.,
MITQA) in both EM and F1 scores over the Hy-
bridQA dataset. Table 3 reports the accuracy perfor-
mance on WTQ. Though TACR is trained on a base
model, it presents comparable accuracy to the large
SOTA models and outperforms other base mod-
els. It is important to note that, besides both using
much larger LMs than TACR (GPT-3 and BART-
large respectively, versus RoBERTa-base), neither
Binder nor Omnitab-large provide explainability.
With the help of the table-question-alignment mod-
ule, TACR boosts relative accuracy by +18.5% on
the test set compared with RCI (Glass et al., 2021),
which is also based on cell selection. This com-
petitive performance is mainly based on the high
cell selection along with table-question alignment.
We further verified the effectiveness of the table-
question-alignment module in an ablation study
discussed in Section 4.5.

4.4 Qualitative Analysis

We compare the cell-selection accuracy of TACR
and baseline models, as shown in Table 4. The
high cell selection accuracy is based on the high
row- and column-selection accuracies shown in Ta-
ble 6. On the HybirdQA dataset, TACR shows
SOTA performance and 0.4% higher than that of
MATE (Eisenschlos et al., 2021) in the top 3 cell-
selection accuracies due to its 89.3% row-selection
accuracy and 98.3% column-selection accuracy, as
shown in Table 6. Moreover, by achieving soft
question decomposition (i.e., showing which parts
of questions are connected to reasoning in the dif-
ferent modalities), TACR both improves the ex-
plainability of its results and provides valuable sig-
nals for future improvements.

4.5 Ablation Study

To evaluate the impact of the table-question-
alignment module, we conduct an ablation study,
shown in Table 5. We test DeBERTa-base,
ALBERT-base, and RoBERTa-base models as
TACR backbones for generality. Different top-k re-
sults show that the alignment module consistently
significantly improves results; with the best model
based on ALBERT improving cell-selection accu-
racy by 2.5, 3.9, and 4.3% in top 1, 3, and 5 cell
selection respectively; and mean reciprocal rank
(MRR) improving by 3.7%. The results indicate
that the table-question-alignment module has an im-
portant role in the table-question-reasoning stage to
select the most related cells that support the answer
to the question.

4.6 Case Study

To illustrate TACR can successfully learn which
parts of tables contain golden cells and which parts
of questions are required for reasoning in the dif-
ferent modalities, we choose two examples from
the HybridQA development set. Appendix B in-
cludes Figures 4 and 5 showing their word rele-
vances heatmap and analysis.

The question in Case 1 is "Who is the athlete in
a city located on the Mississippi River ?". The con-
catenated table headers string for the correspond-
ing table is "Year Score Athlete Place". The table-
question-alignment module helps TACR learn that
header terms "Athlete" and "Place" have higher rel-
evance to the question than the headers of other
columns, thus guiding cell-selection. Figure 4
shows its relevance heatmap. TACR again learns
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Model Dev. Test
In-Table In-Passage Total In-Table In-Passage Total

EM F1 EM F1 EM F1 EM F1 EM F1 EM F1

Table-Only 14.7 19.1 2.4 4.5 8.4 12.1 14.2 18.8 2.6 4.7 8.3 11.7
Passage-Only 9.2 13.5 26.1 32.4 19.5 25.1 8.9 13.8 25.5 32.0 19.1 25.0
Hybrider (τ=0.8) 54.3 61.4 39.1 45.7 44.0 50.7 56.2 63.3 37.5 44.4 43.8 50.6

PointR + SAT 66.5 71.8 60.3 69.2 61.2 68.7 64.6 70.1 59.6 68.5 60.1 67.4
PointR + TAPAS 68.1 73.9 62.9 72.0 63.3 70.8 67.8 73.2 62.0 70.9 62.7 70.0

PointR + TABLEETC 36.0 42.4 37.8 45.3 36.1 42.9 35.8 40.7 38.8 45.7 36.6 42.6
PointR + LINFORMER 65.5 71.1 59.4 69.0 60.8 68.4 66.1 71.7 58.9 67.8 60.2 67.6
PointR + MATE 68.6 74.2 62.8 71.9 63.4 71.0 66.9 72.3 62.8 71.9 62.8 70.2

MQA-QG (unsupervised) – – – – – – 36.2 40.6 19.8 25.0 25.7 30.5
Dochopper – – – – 47.7 55.0 – – – – 46.3 53.3
MITQA 68.1 73.3 66.7 75.6 65.5 72.7 68.5 74.4 64.3 73.3 64.3 71.9
MuGER2 58.2 66.1 52.9 64.6 53.7 63.6 56.7 64.0 52.3 63.9 52.8 62.5

TACR (ours) 66.7 70.3 63.4 72.5 64.5 71.6 64.1 69.6 65.4 70.7 66.2 70.2

Human 88.2 93.5

Table 2: EM and F1 results of models on the HybridQA dataset. In-Table and In-Passage subsets refer to the location
of answers.

Model Dev Test
Acc Acc

TAPEX-Large (Liu et al., 2021) 57.0 57.5
Binder (Cheng et al., 2022) 65.0 64.6
OmniTab-Large (Jiang et al., 2022) 62.5 63.3
TAPAS_base (pre-trained on SQA) (Herzig et al., 2020) - 48.8
UnifiedSKG (Xie et al., 2022) 50.7 49.3
TaBERT_base (Yin et al., 2020) 51.6 51.4

RCI (Glass et al., 2021) 45.3 41.7
TACR_RoBERTa-base (ours) 58.9 60.2

Table 3: Execution-accuracy results of models on WTQ

Model Hits@1 Hits@3 Hits@5

TABLEETC (Ainslie et al., 2020) 51.1 72.0 78.9
LINFORMER (Wang et al., 2020) 77.1 86.5 90.0
MATE (Eisenschlos et al., 2021) 80.1 86.2 90.5

TACR (ours) 83.3 87.8 91.2

Table 4: Comparison of cell-retrieval results on Hy-
bridQA dataset (dev set)

which parts of the question account for retrieving
evidence in tables.

The question in Case 2 is "What is the middle
name of the player with the second most National
Football League career rushing yards ?". The
concatenated table headers string for it is "Rank
Player Team(s) by season Carries Yards Average".
The table-question-alignment module helps TACR
learn that the sub-question "the player with the sec-
ond most National Football League career rushing
yards" has a higher relevance to the table headers
than that of other parts of the original question,
thus guiding modality relevance. Figure 5 shows

its relevance heatmap.

4.7 Error Analysis
To further analyze TACR, we also calculate statis-
tics for error cases in the model predictions. The
error statistics are based on the development set
of HybridQA. Through the cell-selection accuracy
statistics in Table 4, we find there are 347 tables
whose cells are incorrectly selected.

To better understand the advantages and disad-
vantages of table-question alignment-based cell se-
lection, we manually sample and examined 20 such
error cases (i.e., where TACR does not provide the
correct answer in the correct row, column, and cell
position). Out of the 20 samples, we find that five
error cases (25%) are due to requiring numerical
reasoning operations that cross several cells (which
is out of scope for TACR). The majority of errors,
13 of the remaining incorrect cases, are in the same
column with a correct answer while in the wrong
row. Only one case is from a different row but the
same column with the correct answer and only one
incorrect case is in a completely different row and
column to the correct answer.

5 Conclusion

This paper presents TACR, a Table question
Alignment-based cell selection and Reasoning
model for hybrid text and table QA, evaluated on
the HybridQA and WikiTableQuestions datasets.
When answering questions given retrieved table
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Model MRR Hits@1 Hits@3 Hits@5

TACR-DeBERT_base w/o alignment 78.9 74.9 79.4 83.7
TACR-Roberta_base w/o alignment 80.7 74.3 82.6 84.4
TACR-ALBERT_base w/o alignment 80.1 77.1 82.8 85.4

TACR-DeBERTa_base w/ alignment 82.4 78.3 83.4 86.2
TACR-RoBERTa_base w/ alignment 82.5 76.5 85.5 88.9
TACR-ALBERT_base w/ alignment 83.8 79.6 86.7 89.7

Table 5: Ablation study of table-question-alignment module impact. Experiment results of cell-retrieval on
HybridDQA (dev set) show the effectiveness of this module in the table-cell-selection stage.

Model HybridQA WTQ
Row Col Row Col

top 1

TACR_DeBERTa_base 85.1 95.3 53.2 93.9
TACR_ALBERT_base 86.7 96.1 56.8 94.4
TACR_RoBERTa_base 86.0 96.2 52.3 94.7

top 3

TACR_DeBERTa_base 86.2 96.2 57.6 94.2
TACR_ALBERT_base 88.3 97.1 62.4 95.1
TACR_RoBERTa_base 87.9 97.3 59.3 94.9

top 5

TACR_DeBERTa_base 87.5 97.8 59.1 94.8
TACR_ALBERT_base 89.9 98.3 68.1 95.4
TACR_RoBERTa_base 89.3 98.4 64.5 95.2

Table 6: Performance of TACR with different backbone
models. Top-k rows and columns selection accuracies
on HybridQA and WTQ datasets, where k=1, 3, 5. Re-
sults demonstrate the effectiveness of TACR.

cells and passages, TACR attempts to align multi-
hop questions to different modalities for correct
evidence retrieval. To enhance the QA module
with better table cell-selection and table-question-
alignment ability, we construct a hybrid align-
ment dataset generated from the HybridQA dataset.
TACR shows state-of-the-art performance in re-
trieving intermediate gold table cells and com-
petitive performance on the HybridQA and Wik-
iTableQuestions datasets, while improving output
explainability.

6 Limitations

In this paper, we focus on the hybrid QA task,
where the answers to most questions can be ex-
tracted from cell values in tables and linked pas-
sages using a reading comprehension model. Al-
though TACR performs well in cell selection, one
of its limitations is that it lacks numerical reasoning

ability across different cells, such as counting and
comparing. To enable TACR to answer numerical
questions, we will further develop its numerical
reasoning capabilities in future work. Another lim-
itation of TACR is that it shows a strong ability in
column selection while performing relatively worse
in row selection. For future work, we plan to try to
improve its row-selection accuracy.
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A Passage Filtering

Passage filtering plays an important role in cell se-
lection as well as answer extraction. Pre-trained
language models such as BERT, RoBERTa, and
LLMs have the limitation of max input sequence
length. Passage filtering ensures that it is unlikely
to lose information relevant to the questions, while
fitting model input limits. We used the well-trained
DistilBert-based model to obtain question and pas-
sage embeddings to rank and filter relevant pas-
sages.1

B Alignment Analysis

Here we provide example heatmaps showing the
relevance of questions and table headers. The rele-
vance is in the [0,1] range, where the higher rele-
vance between words from questions and column
headers is shown in the warmer colors and vice
versa. Figure 4 shows that the column headers "ath-
lete" and "place" have more relevance to the ques-
tion, which helps TACR identify which columns
contain potential gold cells. In Figure 5, the words
"player with second most national football league"
from the question have more relevance to columns,
which help TACR learn which parts of the question
better use to retrieve gold cells.

C Implementation Details of Cell
Selection and Alignment

TACR is implemented using Pytorch version 1.13
and the Huggingface transformers (Wolf et al.,

1https://huggingface.co/sebastian-hofstaetter/distilbert-
dot-tas_b-b256-msmarco
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Figure 4: Heatmap of question and table-header relevance - Case 1

2020) library. We trained TACR using two
NVIDIA A6000 GPUs. The cell selection and
table–question-alignment modules are trained for
four epochs and we selected the best model based
on the dev fold performance. AdamW is used as
optimizer algorithm with a learning rate of 5×10-5
and a batch size of 32. We set the per-GPU train
batch size to 16 while training the span-based QA
model. Final answers are evaluated using EM and
F1 scores. We also automatically iterated through
increments of 0.1 in the range [0, 1] to select the
best σ to balance the multi-task training.

Hyper-parameter Details: We tune hyper-
parameters based on the loss on the development
set and use the following range of values for select-
ing the best hyper-parameters:
• Batch size: [8, 16, 32, 64]
• Learning rate: [1e-3, 1e-4, 1e-5, 1e-6, 3e-3, 3e-4,
3e-5, 3e-6, 5e-3, 5e-4, 5e-5, 5e-6]
• σ : [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
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Figure 5: Heatmap of question and table header relevance - Case 2
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