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Abstract

The knowledge-augmented deep learning
paradigm refers to a paradigm in which do-
main knowledge is identified and integrated
into deep models. Conventional methods typi-
cally employ task-specific approaches to gather
external knowledge from various sources. In
contrast, large language models are extensively
pre-trained and can serve as a comprehensive
source of external knowledge. In this paper, we
propose CoT-KA, a Chain-of-Thought-based
method that augments knowledge for deep
learning. CoT-KA avoids the need for addi-
tional knowledge retrieval or knowledge rea-
soning models, as required in conventional aug-
mentation methods. Our results demonstrate
that CoT-KA outperforms both pure CoT-based
methods and the non-augmented method across
the majority of eleven publicly available bench-
marks for various reasoning tasks 1.

1 Introduction

The Knowledge-Augmented deep learning
(KADL) (Cui et al., 2022) paradigm refers to
the deep learning paradigm in which domain
knowledge is identified and integrated into the
deep model. Adding domain knowledge makes
it possible to develop deep learning that is
data-efficient, generalizable, and interpretable
(Cui et al., 2022). For example, retrieving external
knowledge from an external knowledge pool like
Wikipedia is typically required for open domain
question answering and dialog generation (Izacard
and Grave, 2021; Zhang et al., 2023). Logical
equivalence laws such as contraposition and
transitive laws help extend the implicit logical
information (Yu et al., 2019; Wang et al., 2022a).

External knowledge is derived from various
sources. For instance, commonsense knowledge
can be extracted from commonsense knowledge

∗Corresponding author: Jing Zhang.
1Our code and data are available at https://github.

com/RUCKBReasoning/CoT-KA

Figure 1: A various sources of external knowledge. We
use LLM as our source of knowledge.

bases like ConceptNet (Speer et al., 2017) and
ATOMIC (Sap et al., 2019). Domain-specific
knowledge can be retrieved from knowledge bases
such as Wikipedia and Freebase (Bollacker et al.,
2008). Logic knowledge, on the other hand, can
be in the form of human-defined propositional or
first-order logic, which is then utilized as rules
for reasoning. In summary, existing knowledge
augmentation methods typically involve either cre-
ating a retriever to gather relevant knowledge or
developing a reasoner to leverage the logical rules
within the external knowledge sources (Chen et al.,
2017; Izacard and Grave, 2021; Wang et al., 2022a;
Zhang et al., 2023).

Recently, large language models (LLMs) (Zhao
et al., 2023) have shown their potential as both
the source and the retriever or reasoner of external
knowledge. LLMs are pre-trained on a huge scale
of datasets. Thus, they have already embedded a
large amount of knowledge into their parameters,
which can be considered a source of external knowl-
edge. The reasoning ability of LLMs allows them
to provide knowledge from their parameters with-
out needing an extra retriever or a reasoner. The
latest chain-of-thought (CoT) prompting technique
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(Wei et al., 2022), which elicits LLMs to gener-
ate a series of sentences that mimic the reasoning
process for arriving at the answers, improves the
reasoning ability of LLMs. It has proved to be
remarkably effective in a variety of complex rea-
soning tasks such as math word problems and com-
monsense question answering (Wei et al., 2022).
CoT prompting shows potential as a general tech-
nique to retrieve knowledge from LLMs.

In this paper, we propose CoT-KA – a CoT-
based method to retrieve knowledge from LLMs
for Knowledge-Augmented deep learning. CoT-
KA utilizes an LLM as a knowledge source, lever-
aging CoT prompting to guide the LLM in provid-
ing knowledge that can serve as evidence to sup-
port downstream reasoning from the input to the
answer. Unlike conventional KADL approaches,
CoT-KA eliminates the need for additional knowl-
edge retrieval or a separate knowledge reasoning
model. Specifically, we begin by extracting CoTs
as knowledge from the LLM using either few-shot
(Wei et al., 2022) or zero-shot (Kojima et al., 2022)
CoT prompting. The former involves providing
a few demonstrations to guide the LLM’s reason-
ing, while the latter employs a template such as
“let’s think step by step” to inspire the LLM. The
extracted CoTs are then appended to the original
inputs, marked by a special token, to create aug-
mented text. Finally, we fine-tune a small task-
relevant pre-trained language model (PLM) on the
dataset augmented with CoTs.

We generate CoTs using the public GPT-3
(Brown et al., 2020) (175B parameters) API2. For
NLU (Natural Language Understanding) tasks, we
employ ALBERT (Lan et al., 2019) and DeBERTa
(He et al., 2021) as the task-relevant models. T5
(Raffel et al., 2020) is utilized as the task-relevant
model for NLG (Natural Language Generation)
tasks. We evaluate models’ performance using
eleven benchmarks, including (i) commonsense rea-
soning (CSQA (Talmor et al., 2019), StrategyQA
(Geva et al., 2021), Date Understanding, Sports
Understanding (Srivastava et al., 2022)); (ii) arith-
metic reasoning (AQUA-RAT (Ling et al., 2017),
GSM8K (Cobbe et al., 2021), SVAMP (Patel et al.,
2021), MultiArith (Roy and Roth, 2015), SingleEq
(Koncel-Kedziorski et al., 2015), AddSub (Hos-
seini et al., 2014)); (iii) symbolic reasoning (Last
Letter Concatenation (Wei et al., 2022)), where all
commonsense reasoning benchmarks and AQUA-

2Public API available at https://openai.com/api/

RAT are formulated as NLU tasks, and the other
arithmetic reasoning benchmarks and Last Letter
Concatenation are formulated as NLG tasks in this
paper. Particularly, we convert all of the multi-
choice question answering tasks into NLU tasks.
Extensive experimental results show that in the ma-
jority of tasks, CoT-KA outperforms the original
fine-tuning results without the use of CoTs as aug-
mented knowledge. CoT-KA also surpasses Few-
Shot-CoT and Zero-Shot-CoT on LLMs, which
directly parse answers from the generated CoTs.

2 Related Work

Knowledge Augmented Technology. The inte-
gration of external knowledge into deep learn-
ing models through knowledge augmentation ap-
proaches has gained significant attention in various
NLP tasks, including question answering (Chen
et al., 2017; Izacard and Grave, 2021), dialogue
generation (Zhang et al., 2023), and logical rea-
soning (Wang et al., 2022a). For instance, in
the context of answering open-domain questions
where supporting evidence is not explicitly pro-
vided (Izacard and Grave, 2021), Chen et al. (2017)
utilized techniques such as bigram hashing and TF-
IDF matching to retrieve relevant documents from
external knowledge sources. Similarly, Fusion-
in-Decoder (Izacard and Grave, 2021) employed
methods like BM25 (Robertson et al., 1995) and
DPR (Karpukhin et al., 2020) for evidence retrieval.
By augmenting the questions with these retrieved
pieces of evidence, the models can better reason
and provide answers. Logic reasoning is another
challenging task that requires a deep understanding
of the logical structure within a given text to arrive
at the correct answer. To facilitate such logic-level
analysis, human-defined logic rules are introduced.
Wang et al. (2022a) proposed LReasoner, a logic-
driven context extension framework that extends
implicit logical information by performing logical
reasoning using these predefined rules. The frame-
work enhances the original input by verbalizing
and concatenating the implicit logical information,
enabling subsequent answer reasoning.

Fusion-in-Decoder and LReasoner inspire our
work to extend the external knowledge into the
original input. However, the knowledge in these
knowledge augmentation methods is sourced from
external knowledge bases or pre-defined logical
rules, requiring a retriever for knowledge extraction
or a reasoner for rule application in the process. In
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contrast, we utilize LLMs that eliminate the need
for an additional retriever or reasoner to acquire
knowledge for augmentation.

Chain of Thought Prompting on LLMs. A CoT
is a series of intermediate natural language reason-
ing steps that lead to the final output, inspired by
how humans use a deliberate thinking process to
perform complicated tasks. Experimental results
using various LLMs, such as GPT-3 (Brown et al.,
2020) and PaLM (Chowdhery et al., 2022), demon-
strate that CoT prompting enhances performance
across a range of arithmetic, commonsense, and
symbolic reasoning tasks (Wei et al., 2022).

Wei et al. (2022) initially propose Few-Shot-
CoT, which requires the manual design of a few
demonstrations to facilitate the generation of rea-
soning paths. In contrast, Kojima et al. (2022) pro-
pose Zero-Shot-CoT, which employs a single zero-
shot prompt that elicits CoTs from LLMs. By sim-
ply adding “Let’s think step by step” before each
answer, Zero-Shot-CoT demonstrates that LLMs
are capable zero-shot reasoners without the need
for any manually constructed few-shot examples.
Furthermore, Wang et al. (2022b) introduce a new
decoding strategy called self-consistency, which in-
volves sampling multiple LLM outputs and aggre-
gating them through majority voting. This strategy
encourages the model to consider multiple CoTs
when generating answers. However, to achieve op-
timal performance, a large number of reasoning
paths (e.g., 40 paths) must be generated, leading to
increased computational costs.

All of these CoT prompting methods directly
extract the answer from the CoTs. In contrast, our
method utilizes the generated CoTs as supplemen-
tary knowledge to improve the fine-tuning of task-
relevant models. Moreover, our method demon-
strates good performance even when a limited num-
ber of CoTs are provided, unlike self-consistency,
which relies on generating a large number of CoTs.

3 Pilot Study

In this section, we explore the effectiveness of CoT-
augmented fine-tuning by simply appending one
CoT to the original input. We assess the validity
of this approach on two commonsense reasoning
datasets, CSQA and StrategyQA.

CoT-augmented Fine-tuning. To perform fine-
tuning on ALBERT, we extend the original input
text by adding a CoT. We utilize ALBERT-large-

Method/Dataset CSQA StrategyQA

Baseline
(ALBERT)

63.4 64.8

Zero-Shot-CoT
(ALBERT)

70.1 67.5

Few-Shot-CoT
(ALBERT)

76.2 73.1

Table 1: Accuracy (%) of original fine-tuning (baseline)
and CoT-augmented fine-tuning results.

v2 for our experiments. Specifically, we gener-
ate CoTs using both few-shot and zero-shot CoT
methods, known as Few-Shot-CoT and Zero-Shot-
CoT, respectively. Few-Shot-CoT employs the
same demonstrations as described in (Wei et al.,
2022). For Zero-Shot-CoT, we utilize the template
“Let’s think step by step”. As the LLM, we employ
GPT-3 with 175-billion parameters (text-davinci-
002). Subsequently, we extend the generated CoT
into the input of each sample within the CSQA
and StrategyQA datasets. Finally, we perform fine-
tuning on ALBERT using the augmented datasets.

The experiment results in Table 1 show that both
the Zero-Shot-CoT and Few-Shot-CoT augmented
fine-tuning significantly enhance the performance
of the original fine-tuning method.

The Impact of CoT as Additional Knowledge.
Given that the answers within CoTs can potentially
be incorrect, we hypothesize that this portion of the
CoTs will have a negative effect on the fine-tuning
and mislead the model’s prediction. To further ex-
plore the effect of CoTs on fine-tuning, we compare
the fine-tuning result of the PLMs before and after
adding CoTs through a variety of data analyses.

We investigate the extent to which the predic-
tion results are altered when the model’s input is
expanded with a CoT. We perform fine-tuning on
both the original samples (baseline) and the ex-
panded samples (CoT-extended). Subsequently, we
evaluate the fine-tuned models using the valida-
tion set. For each instance in the validation set,
we compare its predictive result between the origi-
nally fine-tuned ALBERT and the CoT-augmented
fine-tuning version. Additionally, we define three
categories of CoTs during the process.

• A CoT is labeled as a positive CoT if the addition
of the CoT changes the prediction result from
incorrect to correct. This indicates a beneficial
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Figure 2: The observation when the original question
added a CoT. The figure on the left shows the ratio of
positive, neutral, and negative CoTs in the validation set
of StrategyQA. The figure on the right shows the pro-
portion of model predictions that do not align with the
answer in the CoT. “Not misled” denotes that the answer
in the CoT is incorrect, but the model is not misled by
the CoT and makes accurate predictions. “Not inspired”
denotes that the answer in the CoT is correct, but the
model does not follow the correct CoT and makes incor-
rect predictions.

influence on the model’s prediction.

• Conversely, a CoT is labeled as a negative CoT
if the addition of the CoT changes the prediction
result from correct to incorrect. This indicates a
misleading effect on the model’s prediction.

• Furthermore, a CoT is labeled as a neutral CoT if
the model’s prediction result remains the same af-
ter the CoT is added. In such cases, it is not easy
to judge the impact of this CoT on the model.

The left figure in Figure 2 illustrates the ratio
of positive, neutral, and negative CoTs. It is ob-
served that among the model’s prediction results
that change after adding a CoT, the ratio is 36.2%
(166 out of 458). Within this group, the ratio of
positive CoTs is 61.4%, while the ratio of negative
CoTs is 38.6%. These findings suggest that the
model successfully resolves 63.3% (102/161, the
number of positive CoTs divided by the number
of incorrectly predicted samples in the baseline)
of the data samples that were incorrectly predicted
prior to adding a CoT.

The second objective is to test our hypothesis
that an incorrect CoT (the answer in the CoT is in-
correct) may have a negative impact on the model
and therefore mislead the prediction of the model.
If an incorrect CoT is added to the original input
text, what impact does it have on the model’s pre-
diction? As the right figure in Figure 2 shows, when
an incorrect CoT is added to the original input, the
model still has a high probability (17.1%) of not
being misled by the incorrect CoT and making ac-
curate predictions. Furthermore, we investigate the

extent to which the model would mispredict when
a correct CoT (the answer in the CoT is correct)
is added. As shown in the figure on the right of
Figure 2, the model has a low probability (5.0%)
of making an incorrect prediction.

In the case of StrategyQA, when the answer
in the CoT is incorrect, the alignment ratio is
1 − Ratio (#Not misled), which equals 82.9%;
When the answer in the CoT is correct, the align-
ment ratio is 1−Ratio (#Not inspired), which
equals 95.0%. The result demonstrates that CoT
is a powerful feature, and the model’s predictions
tend to align closely with the answers provided in
CoT. On the other hand, the fine-tuning strategy
employed causes the model’s predictions to treat
CoT as a secondary feature of the original input,
rather than strictly following it. In cases where
the answer in CoT is correct, the model is likely
to align its predictions with the answers in CoT.
Conversely, when the answer in CoT is incorrect,
there is a relatively high probability that the model
will deviate from the answer in the CoT, preventing
misleading from the incorrect CoT.

In addition, our attempts to preserve the reason-
ing steps in the CoTs while removing the answers
have resulted in a degradation in performance. We
recognize that the presence of incorrect answers
in some CoTs can have a negative impact. How-
ever, we also believe that the inclusion of correct
answers in CoTs can yield positive effects, and the
answers within CoTs are a more influential factor
than the reasoning paths themselves.

4 CoT-KA

In this section, we propose CoT-KA – a CoT-based
method for knowledge augmentation. Our method
leverages multiple CoTs retrieved from LLMs to
provide more auxiliary knowledge for KADL. CoT-
KA consists of three steps as shown in Figure 3:
(1) CoT Generation: Generating multiple CoTs for
each sample in the train, dev, and test sets. (2) Input
Augmentation: Taking the generated CoTs as the
additional knowledge into the original input text
for each sample. (3) Task-relevant Model Training:
Fine-tuning a task-relevant model using the CoT-
augmented samples.

4.1 CoT Generation

We try both Few-Shot-CoT and Zero-Shot-CoT
prompting on LLM f to generate multiple CoTs.
Formally, given an original samples (xi, yi), where
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Figure 3: Overview of the CoT-KA method. Both Zero-Shot-CoT (on the left) and Few-Shot-CoT (on the right) can
be used in the CoT generation stage for CoT-KA.

xi is the original input and yi ∈ Y denotes the label.
We generate a CoT set consisting of multiple CoTs
based on the model f :

CoT (i) = f(d, xi) (1)

where d denotes the CoT demonstrations that in-
spire model f to generate CoTs, and CoT (i) is the
generated CoT set of the i-th sample, which con-
sists of m CoTs:

CoT (i) = {CoT
(i)
1 , CoT

(i)
2 , ..., CoT (i)

m } (2)

For each sample, we independently generate m
CoT outputs from f in each run.

4.2 Input Augmentation

In the second step, we apply the generated CoTs as
additional knowledge to enrich the input text of the
original samples. The extended input text of each
sample is a concatenation of an original input (e.g.
a question), and the generated multiple CoTs. For
each sample, we construct an extended input text
as follows:

x̃(i) = concat(x(i), CoT (i)) (3)

where x̃(i) is the i-th extended input text, x(i) is the
i-th original input, and CoT (i) is the i-th generated
CoT set. concat() is a concatenation function that
concatenates the original input and the generated
CoTs. More concretely:

concat(x(i), CoT (i))

= x(i)|| [EXT ] CoT
(i)
1 ... || [EXT ] CoT (i)

m (4)

where [EXT ] is the special token to denote a CoT,
and || denotes the concatenation operator.

5 Experiments

5.1 Experimental setup

Tasks and Datasets. We evaluate CoT-KA on
the following reasoning benchmarks3.

3By default we use the train, dev, and test split of all the
datasets if the labels are available for evaluation. For CSQA
and StrategyQA, we only use the train and dev split.
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Commonsense Arithmetic

Method/Dataset
CSQA StrategyQA Date Sports AQuA

Dev Dev Dev Test Dev Test Dev Test
Zero-Shot-CoT 64.6* 54.8* 67.5* 52.4* 33.5*
Few-Shot-CoT - (73.5*) 68.3 (65.4*) 54.7/47.4 (52.1*) 83.2/86.7 (82.4*) -/37.9 (35.8*)
Self-Consistency
(5 Zero-Shot-CoTs)

71.2 64.6 29.2/35.6 57.6/58.9 33.2/37.0

Self-Consistency
(5 Few-Shot-CoTs)

77.6 73.6 53.4/50.1 85.4/90.5 40.6/40.2

Baseline
(ALBERT)

61.8 62.2 33.2 33.5 57.2 53.2 25.6 22.7

CoT-KA
(5 Zero-Shot-CoTs, ALBERT)

73.6 66.1 58.6 64.1 68.8 69.6 42.3 40.2

CoT-KA
(5 Few-Shot-CoTs, ALBERT)

78.8 75.7 74.2 76.6 89.9 89.8 46.9 47.6

Baseline
(DeBERTa)

84.2 68.8 73.6 72.7 84.5 82.8 27.8 26.5

CoT-KA
(5 Zero-Shot-CoTs, DeBERTa)

80.3 72.3 69.2 73.8 91.3 90.5 40.1 40.3

CoT-KA
(5 Few-Shot-CoTs, DeBERTa)

82.0 76.9 80.4 78.0 96.9 95.6 45.9 46.5

Table 2: Accuracy on five NLU datasets from two categories of reasoning tasks. For CSQA and StrategyQA, we
report the evaluation results of the dev set. For the other datasets in which the labels are available, we report the
results of both the dev and test. * indicates the results comes from (Wei et al., 2022) and (Kojima et al., 2022).
The results of baseline methods and CoT-KA are based on ALBERT-large-v2 and DeBERTa-v3-large. “Baseline”
denotes the fine-tuning baseline with original data. “5 Zero-Shot-CoTs” and “5 Few-Shot-CoTs” denotes five CoTs
used at Self-Consistency and CoT-KA. Bold denotes the best-performed results. For Few-Shot-CoT, the results
before and after the “/” symbol indicate the results of directly parsing the answers from the CoT (from Wei et al.
(2022)) for the dev and test set, respectively, under our data partitioning. For Self-Consistency, the results before
and after the “/” symbol represent the results obtained by parsing the answer from multiple CoTs (We generated) in
the dev and test set, respectively, under our data partitioning and then applying majority voting.

• Commonsense reasoning. We evaluate our
method on four commonsense reasoning tasks:
CSQA (Talmor et al., 2019), StrategyQA (Geva
et al., 2021) and two benchmarks from the BIG-
bench effort (Srivastava et al., 2022): Date Un-
derstanding and Sports Understanding.

• Arithmetic reasoning. We use six arithmetic
reasoning benchmarks: AQUA-RAT (Ling et al.,
2017), GSM8K (Cobbe et al., 2021), SVAMP
(Patel et al., 2021), MultiArith (Roy and Roth,
2015), SingleEq (Koncel-Kedziorski et al., 2015),
AddSub (Hosseini et al., 2014).

• Symbolic Reasoning. We use the Last Letter
Concatenation from Wei et al. (2022). 4

Implementation.
4We do not use the Coin Flip dataset for the evaluation

because it is a simple classification task for fine-tuning. This
is because ALBERT-large-v2 and DeBERTa-v3-large can al-
ready achieve 100% accuracy in the evaluation phase.

• CoT Generation Models. We use GPT-3 of the
text-davinci-002 engine with 175-billion parame-
ters to generate the CoTs used in CoT-KA.

• CoT Demonstrations. For a fair comparison,
we perform Few-Shot-CoT with the same demon-
strations as in Wei et al. (2022) and use the same
zero-shot prompt as in Kojima et al. (2022) to
perform Zero-Shot-CoT.

• Sampling Scheme. To generate diverse CoTs,
we apply temperature sampling during the CoT
generation. Specifically, we use the same T=0.7
as in (Wang et al., 2022b) for a fair comparison.

• Data Preprocessing. For certain undivided
datasets, we divide them into train, dev, and test
sets for fine-tuning, following a ratio of 6:2:2.
Further details regarding the dataset splits can
be found in Appendix A.1. Additionally, as the
original questions and demonstrations used for
CoT generation may include option information
(e.g., Answer Choices: (a) ignore ...(e) avoid),
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Arithmetic Symbolic

Method/Dataset
GSM8K SVAMP MultiArith SingleEq AddSub Letter (4)

Dev Test Dev Test Dev Test Dev Test Dev Test Dev Test
Zero-Shot-CoT 40.7* 63.7* 78.7* 78.7* 74.7* 57.6*
Few-Shot-CoT -/46.5 (46.9*) 69.2/69.0 (68.9*) 85.8/90.0 (91.7*) 82.4/87.3 (86.6*) 79.7/65.8 (81.3*) (59.0**)
Self-Consistency
(5 Zero-Shot-CoTs)

51.7/52.2 70.0/73.4 81.7/96.4 64.8/92.0 79.7/73.7 66.3/60.2

Self-Consistency
(5 Few-Shot-CoTs)

55.7/56.6 74.7/75.5 94.8/95.7 88.5/91.9 86.8/73.9 59.0/60.5

Baseline (T5) 5.3 4.4 8.0 8.5 12.5 8.3 5.9 2.9 6.3 6.3 30.0 26.0
CoT-KA
(5 Zero-Shot-CoTs, T5)

58.9 57.3 64.2 82.3 82.7 93.3 62.9 73.3 80.3 74.9 75.9 60.4

CoT-KA
(5 Few-Shot-CoTs, T5)

61.2 61.5 71.8 70.8 81.8 95.3 76.7 75.7 86.6 78.7 71.8 69.8

Table 3: Accuracy on six NLG datasets from two categories of reasoning tasks. * indicates the results comes from
(Wei et al., 2022) and (Kojima et al., 2022) and ** denotes the result comes from (Zhang et al., 2022).

StrategyQA

Question: Would Siduri enjoy an unlimited buffet?
Blink: Siduri is a character in the "Epic of Gilgamesh". She is an "alewife", a wise female
divinity associated with fermentation (specifically beer and wine).
Few Shot CoT: Siduri is a fairy in Irish mythology. She was known for her hospitality, so
she would probably enjoy an unlimited buffet. So the answer is yes.

Sports

Question: Will Fuller was perfect from the line?
Blink: William Vincent Fuller V (born April 16, 1994) is an American football wide receiver
for the Houston Texans of the National Football League (NFL). He was drafted by the Texans
in the first round of the 2016 NFL Draft. He played college football at Notre Dame.
Few Shot CoT: Will Fuller is a football player. Being perfect from the line is part of basketball,
not football. So the answer is no.

Table 4: Knowledge augmentation examples from commonsense reasoning tasks. The first case comes from
StrategyQA. In this case, the description of Siduri does not mention the relationship between Siduri and the
unlimited buffet, which is the key to answering the question. The second case comes from Sports Understanding. In
this case, we need to know that being perfect from the line is part of basketball, and Will Fuller is a football player,
while the entity-knowledge can only provide the latter.

the generated CoT will also contain option mark-
ers (e.g., the answer is (a)). To provide valuable
information within the CoTs, we replace the op-
tion markers in the generated CoT with their cor-
responding textual content (e.g., the answer is

“ignore”).

• Classifier Models. We conduct the main exper-
iments using two backbone PLMs: ALBERT-
large-v2 and DeBERTa-v3-large. The hyper-
parameters for the training process are reported
in Appendix A.2.

Baselines. We take three methods as the base-
lines: Zero-Shot-CoT, Few-Shot-CoT, and Self-
Consistency. Furthermore, to demonstrate the ex-
tent to which the CoT knowledge elicits the KADL,
we also compare our method with the original fine-
tuning baselines, which solely employ the original
text for fine-tuning.

5.2 Main Results

Table 2 compares the accuracy across eleven
datasets from three categories of NLU and NLG
tasks. The Zero-Shot-CoT results are taken from
Kojima et al. (2022), and the Few-Shot-CoT re-
sults are taken from Wei et al. (2022). For Self-
Consistency (5 sampled CoTs), we report the result
based on a majority vote. The CoT-KA results are
averaged over at least five random runs (see Ap-
pendix for more details), where we use the different
seeds to sample 5 CoTs from a CoT set containing
10 generated CoTs in each run.

As shown in Table 2 and 3, the performance of
CoT-KA surpasses all baselines on most tasks. We
have made several findings: (1) The CoTs gener-
ated by Zero-Shot-CoT and Few Shot-CoT can be
utilized with CoT-KA, resulting in significantly im-
proved performance compared to the fine-tuning
baselines. Additionally, the CoTs generated by
Few-Shot-CoT exhibit better performance com-
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pared to Zero-Shot-CoT when they are used with
CoT-KA. (2) CoT-KA achieves better performance
on the NLU tasks than on the NLG tasks. (3) CoT-
KA shows different robustness on different models.
While DeBERTa outperforms ALBERT on most
tasks, CoT-KA is more robust on ALBERT and ex-
hibits performance improvements across all tasks.

5.3 Knowledge Augmentation Comparison
To compare CoT-KA with other knowledge aug-
mentation methods, we employ BLINK (Wu et al.,
2020) to enrich the entity knowledge in the ques-
tion. BLINK is a two-stage entity linking approach
based on BERT (Kenton and Toutanova, 2019).
We use BLINK to link the entities mentioned in
the question and retrieve their corresponding entity
information. BLINK provides a short description
for each entity, which we utilize as extensions to
enrich the questions.

Method/Dataset
StrategyQA Sports

Dev Dev Test
Baseline (ALBERT) 62.2 57.2 53.2
BLink (ALBERT) 58.0 81.3 77.4
CoT-KA (ALBERT) 75.7 89.9 89.8
Baseline (DeBERTa) 68.8 84.5 82.8
BLink (DeBERTa) 67.7 92.5 87.5
CoT-KA (DeBERTa) 76.9 96.9 95.6

Table 5: Knowledge augmentation comparison.

As shown in Table 5, the entity knowledge-based
augmentation method improves performance on
Sports Understanding but has a negative impact
on StrategyQA, with both performing worse than
our method. Additionally, we observe that approx-
imately 29% of questions in StrategyQA and 3%
in Sports Understanding could not have entities
extracted. Furthermore, the average number of rec-
ognized entities in a Sports Understanding question
is 1.095, while in StrategyQA, it is 0.928. More-
over, Table 4 demonstrates that entity information
may not always include the specific information
required by the questions. In contrast, our method
can add more useful information, resulting in a
more substantial improvement.

5.4 The Effect of CoT Size
To demonstrate the effect of the number of sampled
CoTs, we vary the number of sampled CoTs (1, 2, 3,
4, 5) in CoT-KA and evaluate on StrategyQA. The
results are shown in Figure 4. The experimental re-
sults indicate that as the number of CoTs increases,

Figure 4: The impact of the sampled CoT size on CoT-
KA . We randomly sampled 1 to 5 CoTs from both the
CoT set generated by Zero-Shot-CoT and Few-Shot-
CoT.

there is a general upward trend in the performance
of CoT-KA . This trend becomes more pronounced
when the CoTs are generated by Few-Shot-CoT.
More results are reported in Appendix B.

5.5 CoT Selection Strategy
CoT-KA can only extend a small number of CoTs
due to the maximum length limitation of the in-
put sequence that the language model can handle.
Therefore, it is natural to consider designing a CoT
selection strategy to choose higher-quality CoTs
from the generated CoT set for KADL. Each CoT
can be expressed as: ti ∈ {t1, t2, ..., tK} , where ti
is the i-th token. We can get the log prob of each
generated token when using GPT3 API to generate
reasoning chains. The log prob refers to the natural
logarithm of the probability that the token occurs
next given the prompt. To select the 5 reasoning
chains with higher confidence from the 10 gener-
ated CoTs, we score the generated CoTs using the
following formula:

score(CoTj) =

∑Kj

i=1 exp(log p(ti))

Kj

=

∑Kj

i=1 p(ti)

Kj
(5)

where p(ti) denotes the probability of generating
the i-th token, and log denotes the logarithm. and
Kj is the total number of tokens in the j-th CoT.
The results shown in Table 6 demonstrate that se-
lecting CoTs from the generated set based on the
probability of token generation in the sentence does
not lead to a significant improvement in the perfor-
mance of CoT-KA .

6 Conclusion and Future Work

This paper introduces a CoT-based method to
retrieve knowledge from LLMs for Knowledge-
Augmented deep learning (CoT-KA) that elicits
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Method StrategyQA
CoT-KA (ALBERT) 75.7
CoT-KA (ALBERT) + CoT Selection 75.9
CoT-KA (DeBERTa) 76.9
CoT-KA (DeBERTa) + CoT Selection 76.9

Table 6: CoT selection strategy based on the log prob

knowledge augmentation on a variety of NLU and
NLG benchmarks. Unlike conventional knowledge
augmentation approaches, our method does not
require a retriever or a reasoner, yet it surpasses
the performance of conventional knowledge-based
methods and other CoT-based approaches across a
range of public NLP tasks.

In the future, it is worthwhile to investigate other
methods that can provide insights from LLMs. Ex-
ploring new approaches for leveraging the capabili-
ties of LLMs to enhance knowledge augmentation
represents a promising area for future research.

7 Limitations

One limitation of CoT-KA is that it performs fine-
tuning based on the PLMs, and the input sequence
length limit of the PLMs allows us to add only a
limited number of CoTs. Therefore, it is important
to explore and develop a CoT selection strategy
in future research. A good CoT selection strategy
would enable the identification of highly effective
CoTs from a set of CoTs, enhancing the efficiency
of KADL.
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A Implementation Detail

A.1 Datasets

Dataset
#Number of samples

We divide the dataset
Train Dev Test

CSQA 9741 1221 1140 No
StrategyQA 1831 458 490 No
Date 221 74 74 Yes
Sports 600 200 200 Yes
AQUA 5000 254 254 Yes
GSM8K 5978 1495 1319 Yes
SVAMP 600 200 200 Yes
MuitiArith 360 120 120 Yes
Single Eq 304 102 102 Yes
Add Sub 237 79 79 Yes
Last Letter 600 200 200 Yes

Table 7: Summary of the datasets we use in this paper.
For datasets that are not pre-divided into train, dev, and
test sets, we conduct the division ourselves.

For some undivided datasets used in this paper,
we divide them into train, dev, and test sets for fine-
tuning, following a ratio of 6:2:2. Table 7 shows
the division details of each dataset. In the case
of AQUA, the raw training set is too large (97467
samples). To mitigate the computational cost of
generating multiple CoTs using the public GPT3
API, we select a subset of 5000 samples (the top
5000) from the raw train set as our train set.

A.2 Hyper-parameters for Fine-tuning
All experiments are conducted in a Linux envi-
ronment with a single (24G) NVidia RTX 3090
GPU. The model is optimized using the AdamW
optimizer. We do not perform an exhaustive hyper-
parameter search, but only adjust the learning rate
prior to the formal experiment. For most experi-
ments in this paper, a learning rate of 1e-5 is chosen
as the final value for fine-tuning ALBERT and De-
BERTa, except in the following cases for CSQA
and StrategyQA:

• CSQA: A learning rate of 2e-5 is used for
CoT-KA (1 Zero-Shot-CoT, ALBERT).

• StrategyQA: A learning rate of 5e-6 is used
for CoT-KA (1 Zero-Shot-CoT, ALBERT),
CoT-KA (1 Few-Shot-CoT, DeBERTa) and
CoT-KA (5 Few-Shot-CoTs, both ALBERT
and DeBERTa).

More hyper-parameters are shown in Table 8.
The random seed set utilized for experiments is

[0, 10, 20, 30, 40, 50, 60, 70, 80, 90].

ALBERT/DeBERTa T5

Batch Size 16 16
Peak Learning Rate 1e-5 1e-5
Training Steps 2000 2000
Warmup Proportion 0.1 0
Weight Decay 0 0
Adam ϵ 1e-8 1e-8
Adam β1 0.9 0.9
Adam β2 0.999 0.999

Table 8: Hyper-parameters for fine-tuning.

These seeds are used for both CoT sampling and
fine-tuning. For the case of experimental results
averaged over five runs, we use the top five seeds
from the seed set. For NLU tasks, most experimen-
tal results in Table 2 are averaged over ten runs,
except for the following cases:

• CoT-KA (5 Zero-Shot-CoTs) on all NLU
tasks are averaged over five runs.

• CoT-KA (5 Few-Shot-CoTs) on AQUA is av-
eraged over five runs.

For NLG tasks, most results in Table 3 are av-
eraged over ten runs, with the exception of CoT-
KA (5 Zero-Shot-CoTs) and CoT-KA (5 Few-Shot-
CoTs), which are averaged over five runs.

The result for Blink in Table 5 are averaged over
five runs. All the new results in Section 5.4 and
Appendix B, where the number of sampled CoTs
ranges from 1 to 4, are averaged over five runs.

B More results about the Effect of CoT
Size in CoT-KA

We vary the number of sampled CoTs (1, 5) in CoT-
KA and evaluate its performance on ten tasks, ex-
cluding StrategyQA. Figures from 5 to 14 indicate
that in most of these tasks, increasing the number
of CoTs from 0 to 1 significantly improves task
performance. However, when using DeBERTa-v3-
large as the PLM, the performance gain in CoT-KA
for CSQA, Date Understanding, and Sports Under-
standing is slight and even leads to a degradation.
Furthermore, increasing the number of CoTs from 1
to 5 has a relatively small performance gain in CoT-
KA (DeBERTa), except for improved Date Under-
standing and continued degradation in CSQA.

We observe that if the baseline, where the dataset
is not augmented by a CoT, starts with a lower
performance, the performance gain in CoT-KA be-
comes more significant as the number of CoTs
increases.
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Figure 5: Accuracy of CSQA. Performance over various numbers of CoTs used in CoT-KA.

Figure 6: Accuracy of Date Understanding. Performance over various numbers of CoTs used in CoT-KA.

Figure 7: Accuracy of Sports Understanding. Performance over various numbers of CoTs used in CoT-KA.
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Figure 8: Accuracy of AQUA. Performance over various numbers of CoTs used in CoT-KA.

Figure 9: Accuracy of GSM8K. Performance over various numbers of CoTs used in CoT-KA.

Figure 10: Accuracy of SVAMP. Performance over various numbers of CoTs used in CoT-KA.
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Figure 11: Accuracy of MultiArith. Performance over various numbers of CoTs used in CoT-KA.

Figure 12: Accuracy of SingleEq. Performance over various numbers of CoTs used in CoT-KA.

Figure 13: Accuracy of AddSub. Performance over various numbers of CoTs used in CoT-KA.

Figure 14: Accuracy of Last Letter Concatenation. Performance over various numbers of CoTs used in CoT-KA.
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