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Abstract
In target-oriented dialogue, the representation
and achievement of targets are two interrelated
essential issues. In current approaches, the tar-
get is typically assumed to be a single object
represented as a word, which makes it relatively
easy to achieve through dialogue with the help
of a knowledge graph (KG). However, when the
target has complex semantics, the existing KG
is often incomplete in tracking semantic rela-
tions. This paper studies target-oriented dialog
where the target is a topic sentence. We com-
bine the methods of knowledge retrieval and
relationship prediction to construct a context-
related dynamic KG, in which we can track
the implicit semantic paths in the speaker’s
mind that may not exist in the existing KGs.
In addition, we also designed a novel metric to
evaluate the tracked path automatically. The
experimental results show that our method can
control the agent more logically and smoothly
toward the complex target.

1 Introduction

Different from the open-domain and task-oriented
dialog, the target-oriented dialog is a more chal-
lenging task that aims to achieve a global target
through the dialog. This process cannot be de-
composed into subtasks as in a task-oriented dia-
logue and is excepted to be semantically coherent
and effective with fewer turns. Target-oriented di-
alog agents have a broad-based demand, e.g., psy-
chotherapy (Sharma et al., 2020), conversational
recommendation (Kang et al., 2019), and education
(Clarizia et al., 2018), where the agent is expected
to guide the dialog to a global target, e.g., a mental
state, an item, and a knowledge point, respectively.

In general, the target of target-oriented dialog
can be an entity (e.g., an item) or a topic (e.g., a
knowledge point). The topic target is more chal-
lenging because of complex semantics, often sim-
plified as keywords in existing works (Tang et al.,
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Figure 1: An example of using KG path in transferring
topic to a target sentence. The key phrase “learn dif-
ferent languages” in the context is missed in the KG,
and only “translator” appears in the human transition
response. This happens because some relations in the
human speaker’s mind do not exist in the KG. If missed
concepts and relations can be completed in kG, we can
link the context and target with the transition response.

2019; Zhong et al., 2021a). In this way, existing
approaches often require a knowledge Graph (KG)
to retrieve relevant knowledge between the current
dialog context and target keywords (Zhong et al.,
2021a; Yang et al., 2022). Some latest work of
target-oriented dialog also used the stored knowl-
edge in LM to generate knowledge paths to assist
dialog generation (Gupta et al., 2022).

However, there are still issues for knowledge-
based approaches to target-oriented dialogue: (1)
The keywords are often ambiguous to represent
complex target semantics. (2) KG knowledge is
often insufficient. Concepts and relations for target-
oriented processes in specific dialogue are often
missed in widely used common KG (Zhong et al.,
2021a; Yang et al., 2022), which results in failed
or redundant long processes. For example, in Fig-
ure 1, the key phrase “learn different languages”
can reflect contextual semantics better than a single
concept. But it is not a node in the KG. In addi-
tion, the critical two-hop logic used by the speaker
(language-translator-job) is missed in KG, while in
the alternative long path, the concepts (e.g., “En-
glish”, “worker”) are redundant for the response
generation. (3) KG path acquisition is challenging
due to the large search space. Furthermore, com-
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plex target semantics requires more precise control
over the space of knowledge selection, which is
different from current works that use knowledge to
enrich response generation without target restric-
tion (Zou et al., 2021; Zhou et al., 2022) or only
use the keyword as the target (Gupta et al., 2022).

To address these issues, in this work, we rep-
resent the target topic with a sentence instead of
keywords. Subsequently, instead of using a static
KG, we achieve the target sentence by reasoning
on a dynamic KG. Before the response generation,
the dynamic KG is generated based on static KG
according to the dialogue context and the target
sentence. This dynamic KG is expected to involve
a more context-relevant and shorter path toward
the target sentence. Specifically, besides the node
and edges in the static KG, the additional dynamic
nodes include key phrases in the dialog context.
A relationship prediction model predicts the ad-
ditional dynamic edges. To control the space of
KG path selection more reasonably, in constructing
the dynamic node, we use an extended "phrases
bag" and a trained model respectively to ensure the
diversity and relevance of nodes in the dynamic
graph. In addition, we design an automatic met-
ric for knowledge path evaluation, considering the
convergence of path semantics with the context and
target semantics.

Our main contributions are as follows:
(1) For guiding dialogues towards a given target

sentence, we design a knowledge path generation
method based on a dynamic KG. As far as we know,
this is the first time relationship prediction has been
used for multi-hop reasoning of topic transition in
target-oriented dialogues.

(2) We propose an automatic metric to evalu-
ate the quality of generated knowledge paths, con-
sidering the inference relationship between path
fragment semantics and sentence semantics.

(3) We extracted a subset from the dialogue data
set including hard cases where the target-oriented
transition cannot be matched by a static KG path
and verified the effectiveness of our method on it.

2 Related Work

Target-oriented dialogue agents In the study of
target-oriented dialogue agents, a typical simpli-
fied task is keyword-guided dialog leading the di-
alog to a given keyword or a recommended item
through multi-turn dialogue. The task is often di-
vided into two stages (Tang et al., 2019; Qin et al.,

2020; Zhong et al., 2021a), in which the first stage
is to predict a next-turn keyword, and the second
stage is keyword-based response retrieval. Instead
of keywords, our work uses sentences with more
complex semantics as the global target. In this
direction, (Gupta et al., 2022) obtains SOTA per-
formance using a pre-trained language model to
generate multi-hop paths between a pair of con-
cepts for transition response generation. Regarding
data, (Sevegnani et al., 2021) propose a popular
dataset for target-oriented dialog, which will be
used in our work.

Commonsense Reasoning Recent approaches
have realized the importance of commonsense
reasoning in language generation, e.g., (Ji et al.,
2020a) studied commonsense explanation genera-
tion. In this work, we follow the researches that
utilize commonsense reasoning in generation mod-
els (Zhong et al., 2021b; Zou et al., 2021; Zhou
et al., 2022). (Yang et al., 2022; Zou et al., 2021)
select next-turn concepts from the static KG, con-
ditioned on the dialogue context. Different from
this kind of knowledge retrieval method, (Zhou
et al., 2022; Gupta et al., 2022) generates implicit
knowledge using a language model. (Becker et al.,
2021) combines relation classification and target
prediction for generating commonsense knowledge
representations over text. Similarly to it, we also
used the relation prediction method. Still, we use
it to complement the knowledge graph to obtain
multi-hop paths and combined knowledge retrieval
to enhance controllability.

Commonsense Path Evaluation Most research
that involves utilizing commonsense knowledge
for tasks such as question answering (Kapanipathi
et al., 2020) and commonsense reasoning (Lin et al.,
2019) tend to use paths extracted from static knowl-
edge graphs. However, the effectiveness of the
knowledge paths is evaluated indirectly through the
performance of downstream tasks in these work.
(Becker et al., 2021) automatically evaluates the
knowledge path through the similarity with the im-
plicit knowledge in the dataset. Still, this method
only works when annotated golden paths are pro-
vided in the dataset. We will address this issue with
a novel automatic evaluation metric based on the
semantic connection between dialogues and paths.

3 Methodology

3.1 Problem Statement

We frame the target-oriented response generation:
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Figure 2: Framework of our model. A dynamic KG is completed for transition response generation through two
steps: node selection and edge construction. The node selection includes path routing and model selection in
ConceptNet, and the edge construction includes relation prediction and discrimination. Finally, the top connected
multi-hop paths from the dynamic graph are sent to the commonsense response generator for response generation.

Given a dialog context c and a target t, a condi-
tional language model learns to predict a transition
response y. Our model finds a bridge path p on a
dynamically acquired KG G. Then we use p, c and
t to generate a proper y. The explanation of c, t,
and y are as follows: dialog context c: A sentence
that can represent the topic in the current dialog
context. target t: A sentence representing the tar-
get topic of the current dialog. transition response
y: A sentence that logically connects the semantics
of c and t.

3.2 Method Overview

Figure 2 shows the overview architecture of our
proposed model. Before using the pre-trained lan-
guage model to generate a transition response, we
built a dynamic graph to obtain the path, includ-
ing two steps of node selection and edge construc-
tion. In the node selection, we ensure the diversity
of nodes in the dynamic graph through extended
"source-phrases bag" and "target-phrases bag" and
ensure the contextual relevance of nodes through
path routing and model selection. In the edge con-
struction, we use a relation prediction model to
complement the static graph. Finally, to gener-

ate transition responses, we generate multi-hop
paths from the dynamic graph and send them into
Commonsense Response Generator (CRG model)
based on a pre-trained GPT2. In order to automati-
cally and unbiasedly evaluate the advantages of our
paths, we design an automatic evaluation metric
referring to the idea of the NLI task. First, each
candidate path is divided into fragments. We sup-
pose that for a path reasonably connected with the
dialog, the source sentence should entail the start
fragment of the path, and the target sentence should
entail the end fragment of the path. With this idea,
we construct positive and negative samples to train
a classifier model for path evaluation.

3.3 Dynamic Graph Building
To both make full use of the existing knowledge in
the KG and infer additional knowledge related to
the current dialog, we combine knowledge retrieval
and relation prediction to build a dynamic graph.

3.3.1 Dynamic Node Selection
This step ensures that the nodes in the dynamic
graph are diverse and context related. We referred
to the idea of using path routing and concept selec-
tion to deactivate nodes in (Ji et al., 2020a), and
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made changes suitable for our tasks regarding path
acquisition, path representation, concept word rep-
resentation, etc.

Path Routing To obtain the initial candidate
nodes, we heuristically retrieve multi-hop paths
from the ConceptNet based on the context and tar-
get sentence. To include diverse candidate words,
we use an extended "source-phrases bag" as the
start of the path, which contains both key phrases
in the source sentence and the most semantically
similar neighbor phrases. Similarly, the "target-
phrases bag" is the end of the path. Then the path
routing propagates the scores along the paths to
each candidate concept. For each retrieved path
p, we calculate a score s(p) according to a soft-
matching procedure. Each p is converted into a
natural language form, and then we use Sentence-
BERT (Reimers and Gurevych, 2019) to measure
s(p) as the p’s semantic similarity with the dia-
logue sentences. Finally, we get the routing score
of a candidate concept c by the average s(p) of all
the paths passing c (i.e., Pv1→c→v2).

s(c) =
1

|Pv1→c→v2 |
∑

p∈Pv1→c→v2

s(p) (1)

A high routing score of a c indicates that the paths
through c are highly related to the dialogue, so the
concept word is important for this context. Finally,
we preserve Vs→t with top-K1 routing scores.

Model Selection For all concepts in Vs→t, we
use the sentence representation to query each con-
cept representation by taking the dot-product atten-
tion and calculating the selection probability with
supervision from concepts in gold response Cs→t:

P (c|s) = σ(hcWhTx ) (2)

Lconcept = −∑
c∈Vx→t

I (c ∈ Cs→t) logP (c | x) (3)

+ [1− I (c ∈ Cs→t)] log[1− P (c | x)]

where hc is the concept representation encoded by
GloVe, hx is the concatenated representations of
the source and target sentence encoded by GRU. W
is a trainable parameter matrix. I (c ∈ Cs→t)is an
indicator function taking the value 1 iff c ∈ Cs→t

and 0 otherwise. Finally, the bridge concepts with
top-K2 P (c|x) and the sentence pair’s key phrase
serve as the dynamic graph’s nodes.

3.3.2 Dynamic Edge Construction
Our dynamic graph first inherits existing edges in
KG and then uses a relation prediction model and
relation discriminator to construct dynamic edges.

Relation Prediction and Discrimination We
trained a relation prediction model to add edges to
the dynamic graph. Given any pair of unconnected
concepts, the model predicts and judges whether
they can be connected. Specifically, we fine-tune
a pre-trained language model DistilBERT on gold
knowledge triples by masking the relations and
treating it as a multi-classification task. To adapt to
our tasks and minimize the limitation of incomplete
knowledge, we filter and expand the training data
(detailed in Section 4.1). Using the same training
data, we also train a relation discriminator to ensure
the predicated edges further.

3.4 Knowledge Path Search

Subsequently, we connect a pair of phrases from the
source and target sentence using multi-hop paths.
Specifically, assuming the source and target consist
of m and n key phrases, we take any of the m ∗ n
pairs of key phrases as the start and the destina-
tion to find paths within three hops in the dynamic
graph obtained in 3.3. Finally, we use the top paths
with low perplexity and high diversity scores for
the transition response generation. This way, se-
lected paths contain less irrelevant and redundant
information while ensuring diversity and logicality.

3.5 Training the CRG model

Inspired by (Gupta et al., 2022), we send the
final path in 3.4 to the Commonsense Re-
sponse Generator (CRG) model together with
the sentence pair to generate a transition re-
sponse. The CRG model (GPT-2 based) is trained
as a conditional model with the following in-
put sequence: “[context]source sentence[target]
target sentence [knowledge] knowledge path
[response] transition response ”. We train the
CRG model by minimizing the log-likelihood loss
of the transition response.

3.6 Novel Evaluation of Transition Path

A good transition path should take into account
the semantics of both the source and the target sen-
tence and contains as little redundant information
as possible. However, there is no annotated golden
path in the corpus, and multiple reasonable paths
may exist. We propose an automatic metric without
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Source: I do not like to cook.

Dialog Response:
I actually love to cook, but
sharing the kitchen with three
roommates makes it difficult.

Target: I want to get my own place.
Positive Source→Response cook uses kitchen
Path Fragment Response→Target kitchen is a place
Negative Source→Random cook motivated by goal create
Path Fragment Random→Target landmark at location a place

Table 1: Cases for training PATH-COHERENCE metric.
We use the sentence-path fragment pair extracted from
the corpus as positive samples and construct the same
number of negative samples

golden references. Our primary hypothesis is that
the semantics of the context and target sentence
should entail the information of the start and the
end fragment of the path, respectively. The pro-
posed metric PATH-COHERENCE is based on a
classification model trained to classify a sentence-
path fragment pair are logically coherent or irrele-
vant. Formally, for a sentence s, a path fragment pf ,
letting confclass (s, pf ) represent the model’s prob-
ability mass assigned to the predicted NLI class
after softmax(This is similar to the UNLI concept
proposed in (Chen et al., 2020), i.e. we do not
directly use classification labels), the function is
defined as NLIscore (s, pf ) =

{
1 ∗ confentailment (s, pf ) if coherent

0 if irrelevant
(4)

For a complete path, we define the first triplet
of the path as its start fragment pf−s and the
last triplet as its end fragment pf−t. Then the
PATH-COHERENCE of a path can be calculated as
NLIscore

(
ss, pf−s

)
+NLIscore

(
st, pf−t

)
,where

ss and st represent the source sentence and the
target sentence respectively.

We use the transition paths from the golden
responses to create positive samples for training.
We identify its knowledge path through a hard-
matching process with context c, target t, and re-
sponse y (Table 1). Specifically, this process first
identifies the key phrases in the sentence. If the key
phrases of two adjacent sentences are directly con-
nected in ConceptNet, the sentence and path frag-
ment pair is regarded as a positive training sample.
For the negative sample, we use the concepts in the
"phrases bag" (mentioned in 3.2.1) of the sentence
as the head or tail to randomly select the triples
with different relationships in KG from the positive
sample. The negative sample constructed in this

way has a weak correlation with the dialogue, so it
can better guarantee the model’s discrimination.

4 Experiment

4.1 Dataset

For the relation predictor training, we use the CN-
100k benchmark dataset (Li et al., 2016), based
on the OMCS subpart of ConceptNet. The dataset
comprises 37 relation types, 100k relation triples
in the train set, and 1200 triples in the develop-
ment and the test set, respectively. We extract a
subset including 15 relationships that are most suit-
able for topic transition (detailed in the appendix).
Intuitively, the knowledge triplets implied in the
dialogue corpus that does not exist in the relation
prediction training data, especially those with high
frequency, actually reflect the commonsense logic
of people in the real dialogue. With this idea, we
filtered the concept pairs whose frequency of oc-
currence in two adjacent sentences is higher than
a threshold in the OTTers corpus and defined their
relationship as "DialogAct" to form new knowl-
edge triplets. Finally, the dataset covers 102178
triples for training, 1236 triples for development,
and 1245 triples for testing.

We use two datasets to test the transition re-
sponse generation: 1) Otters (Sevegnani et al.,
2021) contains instances with context-target-
transition response triplets. It consists of two sets
of splits. The Out-Of-Domain (OOD) split ensures
that none of the context-target pairs in the test set
are present in the train set. In the In-Domain (ID)
split, one of either the context or the target in each
pair in the test set is allowed to appear in the train
set. 2) Augmentation-DailyDialog is similar to OT-
Ters, which is constructed by (Gupta et al., 2022)
from DailyDialog (Li et al., 2017). This data is
noisier because of too many turns, sentence frag-
mentation, and serious overlap between transition
response and target sentences.

To build a more challenging task, we also ex-
tracted a sub-dataset from OTTers, called “Discrete-
OTTers”1, which contains difficult cases for topic
transition where the three golden transition re-
sponses corresponding to the dialog cannot match
a connected path in ConceptNet.

1This dataset and code will be published in
https://github.com/tanyue2019/ACL-Pro
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4.2 Baselines

We compare our model with three groups of base-
lines: General generating model without addi-
tional knowledge (GPT-2), concept-guided mod-
els (Concept-Predict, MultiGen), and path-guided
models (Static, CODA, TBS-Path). Implementa-
tion details of baselines are in Appendix A.

GPT-2 (Radford et al., 2019), a pre-trained
GPT–small language model fine-tuned on Otters
data. Conditions on the context and target sen-
tences to generate the transition response.

Concept-Predict leverages concept prediction
strategy in(Zhong et al., 2021a). The predicted con-
cepts are filtered based on closeness to the target.

MultiGen (Ji et al., 2020b) combines the vo-
cabulary distribution generated by the underlying
GPT-2 model with a concept distribution from a
commonsense knowledge base (ConceptNet).

Static uses ConceptNet to extract paths between
concepts from sentence pairs and generate a re-
sponse using a generation model.

CODA (Gupta et al., 2022) proposes a method
to generate multi-hop bridging paths for target-
oriented response generation.

TBS-Path first externalizes implicit common-
sense knowledge based on the dialog context like
Zhou et al. (2022) and uses the knowledge to gen-
erate responses.

Ablation models:
StaticRelation variant that uses the multi-hop

connection in ConceptNet to replace the edge pre-
dicted by the relationship prediction model in test
paths. If no connections are within 4 hops, use
“[SEP]” to connect.

RandomConcept variant that randomly selects
top-K2 neighbor nodes within two hops in the
knowledge map of context concepts to construct
the dynamic graph.

FewerHops variant that uses a shorter path for
transition response generation.

4.3 Evaluation Metrics

4.3.1 Paths Evaluations
Automatic Evaluation Perplexity (PPL) measures
the smoothness of the path, and our designed PATH-
COHERENCE (Section 3.6) measures the correla-
tion and coherence between the path and sentence.

Human Evaluation For randomly selected 100
generated paths and their corresponding sentence
pair, we ask annotators to judge 1) Relevance: Is
this path relevant and coherent to the context of

Source Topic: I enjoy staring up at the sky
Response: I love watching the sky while walking my dog.

Target Topic:
I like to spend a lot of my free time
with my pet.

Manual Path:
sky -LocatedAt-> outside -RelatedTo-> nature
<-RelatedTo- animals <-IsA- dog -IsA-> pet

Source Topic:
i really love learning different languages and
have been studying them for years.

Response: I want to work as a UN translator.
Target Topic: i hate my old job.

Manual Path:
language -RelatedTo-> English -RelatedTo->
translation -RelatedTo-> translator -IsA->
worker -RelatedTo-> job

Source Topic: i tell jokes on stage.

Response:
Being a comedian has opened up a lot of dating
opportunities for me.

Target Topic: i date a lot of girls.

Manual Path:

jokes <-RelatedTo- comedian -RelatedTo->
comedy <-HasPrerequisite- entertaining someone
<-UsedFor- going to a film -UsedFor -> dating
-RelatedTo-> date

Table 2: Examples of Discontinuous Paths in the Knowl-
edge Graph Reflected in Dialogue Logic

Model PPL PC Relevance Makes Sense

Static 8.79 16.51 1.06 1.10
TBS-Path(Zhou et al., 2022) 7.44 28.72 1.56 1.45
CODA(Gupta et al., 2022) 9.15 29.91 1.78 1.69
Ours 7.59 40.87 2.28 2.15
kappa
(The agreement among the annotators.) 0.51 0.55

Table 3: Evaluation for path quality. Our path has signif-
icant advantages in PC results. The consistency between
PC metric and human evaluation also proves the ratio-
nality of this metric design.

the sentence pair? 2) Makes sense: Does the path
makes sense? Four annotators with an NLP back-
ground score the paths in 1, 2, 3, higher is better.

4.3.2 Response Evaluations
Automatic Evaluation We report standard
automated metrics such as BLEU(Papineni
et al., 2002)2 , METEOR(Banerjee and Lavie,
2005),ROUGE-L(Lin, 2004) and BertScore(Zhang
et al., 2019). Word-overlap metrics do not corre-
late well with human judgements(Liu et al., 2016).
So we also adopted the metric TARGET COHER-
ENCE designed by(Gupta et al., 2022), which does
not require human references but evaluates the co-
herence of replies based on a trained classification
model.

Human Evaluation Annotators are requested
to evaluate the transition response on the follow-

2SacreBLEU (Post, 2018) provides hassle-free computa-
tion of shareable, comparable, and reproducible BLEU scores.
The calculation is carried out using multiple references from
the dataset
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OTTer-ID OTTer-OOD

BLEU METEOR ROUGE-L BS-f1 TC BLEU METEOR ROUGE-L BS-f1 TC
GPT2(Radford et al., 2019) 10.44 16.93 17.79 76.91 41.39 10.06 17.71 19.06 77.65 41.79
Concept-Predict(Zhong et al., 2021a) 14.91 15.89 19.60 77.67 35.46 12.89 15.69 19.80 78.13 38.77
MultiGen(Ji et al., 2020b) 18.45 17.46 19.82 78.15 47.87 13.94 17.73 20.91 78.02 45.89
Static 11.93 18.13 17.49 76.82 41.27 13.19 19.87 20.08 78.02 48.70
CODA(Gupta et al., 2022) 16.05 16.61 19.83 77.60 46.84 14.76 16.64 20.76 77.97 49.82
TBS-Path(Zhou et al., 2022) 13.98 17.95 19.31 78.01 49.05 14.63 18.02 20.53 78.41 46.67
Ours 20.14∗ 18.11 21.12∗ 78.01 52.98∗ 18.08 18.78 22.18 78.67 51.44∗

Ours-StaticRelation 18.45 18.47 20.35 78.06 49.41 15.83 18.49 21.76 78.41 48.72
Ours-RandomConcept 19.49 18.08 20.41 77.61 49.23 17.61 18.80 21.78 78.52 50.41
Ours-2hop 19.17 18.04 20.75 77.91 49.25 18.05 19.18 22.53 78.79 50.87

Table 4: Automatic evaluation on OTTers. We also present results for our model’s ablations. The results of our
model on most reference-based metrics and model-based metrics exceed the baselines. (t-test with p-value < 0.05)

BLEU METEOR ROUGE-L BS-f1 TC

GPT2(Radford et al., 2019) 8.20 19.78 21.74 75.06 74.37
Concept-Predict(Zhong et al., 2021a) 6.09 17.69 18.19 74.85 71.83
MultiGen(Ji et al., 2020b) 2.83 14.75 14.60 73.13 76.53
Static 9.87 21.09 21.89 74.99 74.74
CODA(Gupta et al., 2022) 8.24 19.09 19.53 74.08 75.84
TBS-Path(Zhou et al., 2022) 9.92 21.78 21.93 74.73 77.21
Ours 12.61∗ 23.84∗ 24.49∗ 75.58∗ 77.46∗

Table 5: Automatic evaluation on Augmentation-
DailyDialog

ing criteria: (1) Smooth: rate whether the response
serves as a smooth transition between the dialogue
context and target. (2) Sensible: whether the transi-
tion response makes sense in itself, i.e., it is gram-
matical and logically coherent. (3) Informative:
how much informative content a transition response
carries. Four annotators with an NLP background
compare transition responses from two models.

4.4 Preliminary Experiment

The preliminary experiment examines the model’s
ability to use discontinuous paths in the KG fully.
We extracted such cases from the dataset: the
key phrases in their source sentences, transition
response sentences, and target sentences are not di-
rectly connected in the KG. We manually check the
KG to annotate a reasonable transfer path for these
cases. As shown in Table 2, the logical connection
in dialogue is probably just a few discontinuous
hops in the long path of the graph. If additional
edges connect these discontinuous nodes, the tran-
sition path will be more efficient.

4.5 Results

4.5.1 Paths Evaluations
In Table 3, the PPL results indicate that our paths
have good fluency, which means they can be better
accepted by the language model to generate transi-
tion responses. The significant advantage of the PC

BLEU METEOR ROUGE-L BS-f1 TC

Static 9.93 20.49 17.68 75.34 43.90
CODA(Gupta et al., 2022) 11.45 16.77 19.67 76.33 43.08
TBS-Path(Zhou et al., 2022) 10.49 16.54 18.82 73.09 45.15
Ours 14.08∗ 20.03∗ 20.10∗ 77.94∗ 54.11∗

Table 6: Automatic evaluation of path-based methods
on Discrete-OTTers. The performance of our model
on this difficult data subset is still significantly better
than that of other path-based models, which shows the
effectiveness of our path-acquisition method.

Model Coherent Sensible Informative

Ours vs. GPT-2 64% 60% 59%
Ours vs. Static 55% 57% 49%
Ours vs. MultiGen 56% 55% 59%
Ours vs. Concept-Predict 65% 63% 62%
Ours vs. CODA 57% 60% 50%
Ours vs. TBS-Path 62% 61% 56%

Table 7: Human evaluation through pairwise compari-
son between our model and baselines (using sign test,
p<0.05). Our model is preferred in coherence and sensi-
ble criteria while being comparably informative.

metric proves that our method is effective in obtain-
ing context-related paths. The results of the manual
evaluation are similar to those of PC, which shows
that the automatic evaluation metric we designed
is largely consistent with human judgments.

4.5.2 Response Evaluations
Automatic Evaluation As shown in Tables 4 and
5. on two datasets, the results of our model on most
reference-based metrics and model-based metrics
exceed the baselines. This indicates the advantage
that the path we input to the model is semantically
connected with less context-independent informa-
tion. In Table 6, we provide the evaluation results
of our model and three path-based baselines on
the discrete OTTers we extracted. As mentioned
earlier, this dataset is challenging because it is dif-
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Source: i work in a library;
Target: i had cows as pets growing up

Source: my job helpe me teach kids;
Target: education is a passion of mine.

Static
Response:My cat jumps on my good book.
Path: library causes read related to eyes
is a part of cat is used for pet

Static
Response: I teach kids for patience
Path: job related to patience related to patient
related to passion

CODA
Response: I grew up in a library.
textbfPath:library is the location which has books
not capable of grow.

CODA
Response:I want to have some sweet.
Path:kid desires candy is a dependency of tasting sweet
causes passion

TBS-Path
Response:I love to work for a dog.
Path: work has prequisite not work is a subevent of
have dog motivated by goal grow

TBS-Path
Response:I love teaching
Path: teach kids has a context education

Ours
Response: My school is located in a rural area.
Path: library is at location school dialog act area
is used for pets growing

Ours
Response: I teach children how to learn.
Path: teach kids is used for children dialog act learn
is used for education.

Table 8: Case study on OTTers. Our method generates better transition responses with better knowledge paths,
which have stronger contextual relevance and logical rationality.

ficult to transfer the topic of the dialogs in it. The
results show that our method has good robustness
for such difficult situations. This is because we can
use the knowledge outside the knowledge graph
to connect two sentences with far semantics and
ensure contextual relevance.

Human Evaluation We collect 100 randomly
selected data points from the test outputs on OT-
Ters. The score in Table 7 is the percentage of
times that our model is chosen as the better in pair-
wise comparison with its competitor. The results
demonstrate that our outputs are preferred over the
baselines, especially on “Smooth” and “Sensible”.

4.5.3 Ablation Studies
Ablation results are shown in Table 4.

Can relation prediction effectively use discon-
tinuous paths in the KG?

As shown in Table 4 that after replacing the rela-
tion in our test paths with the relation or multi-hop
path in the KG, all metrics decrease significantly.
We analyze the results and find that the length of
the replaced path has increased by seven hops on
average, and the path contains a lot of ambiguous
relations, such as "related to". This verifies that we
can efficiently connect nodes in the dynamic graph
through relation prediction.

Can concepts filtering reduce redundant in-
formation in the path? After using the random
top-K2 concepts within two hops as the nodes in
the dynamic graph, the results are reduced, but the
decline is not significant. We analyzed the test
paths obtained by this method. We found that the
relation prediction and discriminator in the model
largely ensured that the final test path contained
less redundant information. Specifically, due to
random selection, most of the nodes in the dynamic
graph are uncorrelated, so our relation discrimina-

tor mostly negates the results of relation prediction
at this time. These irrelevant nodes are not con-
nected in the dynamic graph.

How much path information do we need? We
explore whether 3-hop paths provide more redun-
dant information than 2-hop paths. In Table 3
(Ours-2hop), we can see little difference between
the word-overlap metrics using the two-hop path
and the three-hop path. Still, the TC result has de-
creased, which proves that it is difficult to achieve
a smooth transition by relying on an intermediate
word. Therefore, we finally used the 3-hop paths
as the test data.

4.5.4 Case Study
We compare our method with the other three path-
based methods(Table 8). It can be seen from two
examples that the path obtained by the Static con-
tains many fuzzy relations and irrelevant concepts.
Thanks to the training on the path data related to
the response, the path obtained by CODA is better
than the former. However, it still exists in the infor-
mation irrelevant to the dialogue context. The path
obtained from the TBS-Path contains more infor-
mation duplicated with the conversation statement.
The above problems lead to poor responses to these
models, and there are some unreasonable points
in the topic transfer logic. The path semantics ob-
tained by our model is clear and logical, resulting
in better responses. It is noted that the "DialogAct"
relation we added also played a good role.

5 Conclusion

For effectively guiding the dialog to a target sen-
tence, we propose to make full use of discontinuous
or even non-existent paths in the knowledge graph.
We combine knowledge retrieval and relationship
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prediction by building a dynamic KG, which helps
to obtain a path closer to the implicit logic in the
speaker’s utterances when transferring topics to
the target sentence. In addition, we also designed
an automatic metric to evaluate the quality of the
knowledge path for semantic transfer. Both auto-
matic and human evaluation verify the superiority
of the proposed method in searching knowledge
paths and subsequently generating transition re-
sponses compared with SOTA baselines, benefiting
from the better logic and contextual relevance of
the paths from the dynamic graph. In the future,
we will explore the application of our method to
multi-turn target-oriented dialogue.

Limitations

The current dialogue system still has some limi-
tations. For example, although the current CRG
model can make the output contain the key concept
words in the knowledge path, due to the large scale
of the pre-training model, the output semantics of
the current method are still not very interpretable
and controllable. A feasible way is to explore new
fine-tuning methods to approach high-level seman-
tic style control.

In addition, our current dialogue system lacks hu-
man qualities such as empathy, factual correctness
judgment, and moral common sense representation.
A key breakthrough is to explore a goal-oriented
dialogue dataset with richer dimensions.

Ethics Statement

A target-oriented dialogue system may have the risk
of misusing it to guide users to malicious topics
actively. Since the proposed system tries to ensure
relevance with the dialogue context in the applica-
tion deployment, the possibility of the above mis-
use is small on the premise of checking the training
corpus.

All models in this paper are trained on the public
corpus. The used datasets do not contain personal
information or unethical language. We also ensure
the anonymization of the human evaluation.
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A Appendix

A.1 Implementation Details
Model training: The pre-trained models we used
are from Huggingface library3. To construct the
dynamic graph process, we set K1=100, K2=20,
and use GloVe embedding of size 300 (Pennington
et al., 2014) during node selection. When training
the relation prediction model and the relation dis-
crimination model, we finetune DistilBERT for ten
epochs with batch size=64, learning rate=1 ∗ 10−5,
and accumulate grad batches=4.

The CRG model is based on GPT-2 small archi-
tecture. We use a batch size of 16 and accumulate
grad batches=2 for GPT-2 models. We use AdamW
optimizer with an initial learning rate of 2 ∗ 10−5.

Finally, our PATH-COHERENCE model is also
based on DistilBERT. We set the batch size=64
and use AdamW optimizer with an initial learning
rate of 2 ∗ 10−5. The accuracy of our classification
model for this metric has reached over 90%

3https://huggingface.co/
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Relation prediction dataset: When inherit-
ing the edges in the static knowledge graph and
filtering the training data of the relation predic-
tion model, we removed some very unusual re-
lationships, merged the relationships with sim-
ilar semantics, and finally retained AtLocation,
CapableOf, Causes, MotivatedByGoal, Desires,
HasProperty, HasSubevent, HasPrerequisite, IsA,
MadeOf, NotCapableOf, PartOf, UsedFor, Re-
ceivesAction, HasA.

Discrete-OTTers dataset: We use the key
phrase in the source sentence as the start and the
key phrase in the target sentence as the end to find
two hop paths in the static ConceptNet. If all paths
do not include the key phrase in the bridge sentence
in the corpus, we consider this conversation to be a
separate case.

A.2 Training Details of Baselines
Training Concept-Predict leverages concept pre-
diction strategy in(Zhong et al., 2021a). Following
(Gupta et al., 2022) The input to the model is the
context and target, and it predicts a single concept
based on closeness to the target. The concept is
then fed as input to a CRG model along with the
context and target sentences.

Training Static It is a commonly used method to
obtain paths from a fixed knowledge graph. Specif-
ically, for a sentence pair, we start with the key-
words in the source sentence and end with the key-
words in the target sentence to find paths in the
ConceptNet. To ensure that all test cases can find
paths in this way, we set the maximum path length
to be no more than 4. Finally, we also filter the
path into a final Commonsense Response Genera-
tor based on PPL and diversity.

Training TBS-Path leverages the idea of gen-
erating implicit knowledge based on the context
in (Zhou et al., 2022). Specifically, we use the
path training data provided by(Gupta et al., 2022)
because they all adopt the method of directly gen-
erating the path and use the pre-trained GPT2 to
train the path generation model. The input to the
model is the combination of source sentence and
target sentence and the output of the model is the
corresponding path. Finally, like our model, the
path is sent to a Commonsense Response Generator
for reply generation.

For MultiGen and CODA, we adopted the train-
ing methods provided in Sevegnani et al. (2021)
and Gupta et al. (2022) respectively.
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