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Abstract
Approaches for unsupervised opinion summa-
rization are generally based on the reconstruc-
tion model and generate a summary by decod-
ing the aggregated representation of inputs. Re-
cent work has shown that aggregating via sim-
ple average leads to vector degeneration, gen-
erating the generic summary. To tackle the
challenge, some approaches select the inputs
before aggregating. However, we argue that the
selection is too coarse as not all information in
each input is equally essential for the summary.
For example, the content information such as
“great coffee maker, easy to set up” is more
valuable than the pattern such as “this is a great
product”. Therefore, we propose a novel frame-
work for unsupervised opinion summarization
based on text representation disentanglement
with counter-template. In specific, a disentan-
gling module is added to the encoder-decoder
architecture which decouples the input text rep-
resentation into two parts: content and pattern.
To capture the pattern information, a counter-
template is utilized as supervision, which is
automatically generated based on contrastive
learning. Experimental results on two bench-
mark datasets show that the proposed approach
outperforms the state-of-the-art baselines on
both quality and stability.

1 Introduction

With the unprecedented development of online in-
teractive platforms, opinion summarization has re-
ceived significant interest in natural language pro-
cessing communities. Unlike other summarization
tasks for news, Wikipedia, and medical treatment
records, opinion summarization pays more atten-
tion to user opinions in product reviews, blog jour-
nals, and social media texts. Opinion summariza-
tion has great potential in many application scenar-
ios.

Due to the lack of large-scale annotated data,
opinion summarization is generally formalized as
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an unsupervised learning framework. A series of re-
construction models have been developed (Bražin-
skas et al., 2020a; Amplayo and Lapata, 2020; El-
sahar et al., 2021; Amplayo et al., 2021a). The
training goal is to reconstruct input text through an
encoder-decoder architecture such as autoencoders
(AE), variational autoencoders (VAE). As shown
in the upper part of Figure 1, when generating sum-
maries, the encoder is employed to aggregate the
text representations from a set of texts via aver-
aging (the ‘Mean’ module in Figure 1) to obtain
a summary representation. The representation is
used to generate the summary by the decoder.

Recently, it has been demonstrated in Iso et al.
(2021) that simply averaging tends to generate
generic summaries, as shown in the upper part of
Figure 1. To tackle the challenge, a ‘Select’ mod-
ule is incorporated in Coop (Iso et al., 2021) to
strictly select input text. However, we argue that
it has such a limitation: coarse-grained selection.
There might be some information hidden in the
abandoned reviews which is important for summa-
rization. Moreover, the kept reviews might contain
some redundant information, leading to generic
or incorrect sentences, as shown in the middle of
Figure 1.

In this paper, instead of treating text vectors as a
whole, we assume that the text representation con-
sists of content and pattern information. The con-
tent information is summary-relevant and related
to specific product characteristics, such as aspects,
emotions, and opinions illustrated as the orange
part of texts in Figure 1. The pattern information
marked in blue describes some common patterns
that occur frequently in the corpus and can be used
to describe most products. Both are valuable for
reconstruction training. However, when text rep-
resentations are aggregated to obtain a summary
representation, the repeated pattern information is
more conspicuous, which squeezes valuable con-
tent information and results in the generation of
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Figure 1: The processes of generating summaries in the approach using simple average (top), Coop (middle), and
our proposed framework TRACE (bottom). The generated summaries are for the same product, a coffee maker.

overly generic summaries.
To separate the content information from the pat-

tern information, the text representation needs to be
disentangled. Recently, Qin et al. (2020) projects
feature into orthogonal space to disentangle repre-
sentation. However, it is not straightforward to dis-
entangle in the same way as no supervision labels
are available for the pattern information. To create
supervision signals of the pattern information, we
elaborately design a text template to capture the
common semantic patterns shared in the corpus. It
is called counter-template since the extracted pat-
tern representation works as a negative guidance
against the content information.

Therefore, we propose a novel framework based
on Text Representation disentAnglement with
Counter-templatE for unsupervised opinion sum-
marization (TRACE). A disentangling module is
added to the encoder-decoder architecture which
orthogonally decouples the text representation into
two parts: content and pattern. The content rep-
resentation is used to reconstruct the input text
and the pattern representation is supervised by
the counter-template. Moreover, to construct the
counter-template automatically, a novel approach
based on contrastive learning and average strat-
egy is proposed. A counter-template generator is
trained to not only preserve the general generation
constraints in VAE but also make all text repre-
sentations in the same batch similar to each other
using contrastive learning. The counter-template
is obtained by decoding the average of several text
representations.

The main contributions of this paper are summa-
rized as follows:

• A novel framework based on Text

Representation disentAnglement with
Counter-templatE for unsupervised opinion
summarization, TRACE, is proposed. A
disentangling module is added in the encoder-
decoder architecture which decouples the text
representation into two parts: content and
pattern.

• A novel approach based on contrastive learn-
ing is proposed to construct the counter-
template automatically, which provides super-
vision for disentanglement.

• Experimental results on two benchmark
datasets show that the proposed framework
outperforms the state-of-the-art baselines on
generation quality and stability.

2 Related Work

Opinion summarization generally focuses on short
and numerous product reviews. According to
whether summaries are extracted from original
texts, they can be divided into extractive ap-
proaches and abstractive approaches.

Extractive approaches (Hu and Liu, 2004, 2006;
Angelidis and Lapata, 2018; Zhao and Chaturvedi,
2020) capture the opinion of product reviews
through emotional polarity or aspect information.
Some methods attempt to obtain more flexible sen-
tences through graphs (Ganesan et al., 2010) or
decision theory (Di Fabbrizio et al., 2014; Carenini
et al., 2013). Recently, Angelidis et al. (2021)
leverage vector quantization (Van Den Oord et al.,
2017) to capture a semantic sense. On this basis,
SemAE (Chowdhury et al., 2022) uses dictionary
learning to capture fine-grained and diverse seman-
tics.
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Figure 2: The overall architecture of TRACE. The disentanglement module M consists of the feature extractor fϕ
and the orthogonal disentangled component f⊥.

As text generation technology continues to
evolve, a series of end-to-end abstractive methods
have been developed for opinion summarization
(Bražinskas et al., 2020a; Amplayo and Lapata,
2020; Iso et al., 2021). They use the encoder-
decoder architecture and employ the average rep-
resentation of inputs for summarization. Another
type of method (Elsahar et al., 2021; Amplayo
et al., 2021a; Suhara et al., 2020) focuses on model-
ing aspects and emotional information. Suhara et al.
(2020) use a two-stage approach that first identifies
opinion phrases and then uses the phrases to gener-
ate smooth sentences. Other works use aspect seed
words (Elsahar et al., 2021; Amplayo et al., 2021a)
or implicit aspect code (Amplayo et al., 2021b),
making the summary generation more controllable.

Recently, Iso et al. (2021) show that averag-
ing text representations simply tends to generate
overly generic summaries. Then they use word
overlapping to search for a better subset of input
texts when inferring a summary. After that, Was-
sos (Song et al., 2022) optimizes the process of
summary inference by approximating the Wasser-
stein barycenter to construct a better summary dis-
tribution. Although both Wassos and the proposed
TRACE conduct text representation decoupling,
TRACE differs from Wassos in the following two
aspects: (1) different purposes. TRACE aims to
tackle the coarse-grained selection problem in opin-

ion summarization while Wassos employs text dis-
entanglement for the better generation. (2) differ-
ent ways. TRACE designs a novel way to separate
the content and pattern information via the special
design counter-template while Wassos employs a
general way to disentangle syntactic and semantic
spaces via the linearized parse tree sequence and
the bag-of-words distribution (Bao et al., 2019).

3 Methodology

In this section, we describe TRACE, a novel disen-
tangled framework with counter-template guidance
for unsupervised opinion summarization. We first
present the overview of the summarization model.
Then, we introduce the counter-template generation
approach based on a contrastive learning model and
average inference strategy. Finally, we describe the
detailed components of TRACE and explain how
to train the model.

3.1 Overview of the Summarization Model
Figure 2 shows the overall architecture of TRACE.
It contains four components, an encoder pθ, a fea-
ture extractor fϕ, an orthogonal disentangled com-
ponent f⊥, and a decoder qφ. fϕ and f⊥ form the
disentanglement module M.

Given a set of texts T = {t1, · · · , tN}, where N
is the number of texts. In the beginning, a counter-
template temp containing the pattern information
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is automatically generated. In the training stage,
each input text ti is passed to the encoder pθ(zi | ti)
to get a text representation zi. Then zi is disentan-
gled to content representation ci and common pat-
tern representation pi by the disentanglement mod-
ule M. pi is used to predict the counter-template
text temp by decoder qφ(temp | pi). ci is used
to reconstruct the input text ti through the same
decoder qφ(ti | ci).

After training, each set of input texts T is passed
to the encoder pθ(zi | ti) and the disentanglement
structure M to obtain a content representation set
C = {c1, · · · , cN}. Then the summary represen-
tation c is computed following Iso et al. (2021).
The summary s is inferred from c by the decoder
qφ(s | c).

3.2 Counter-Template Construction

To automatically generate the counter-template,
a generator based on contrastive learning is con-
structed. Then the counter-template is inferred via
average strategy. The counter-template generator
includes an encoderEs and a decoderDs. To avoid
the performance gap between counter-template gen-
erating and summary generating, we use bidirec-
tional long short-term memory (Bi-LSTM) and a
mean pooling layer as the encoder, LSTM as the
decoder in the counter-template generator, same
with the summary generator.
Generator Training To train the generator, the
reconstruction loss and Kullback–Leibler (KL) reg-
ularization of VAE are employed to ensure the flu-
ency of generation. Moreover, the contrastive loss
is employed to make each latent vector zsi more
similar. Contrastive learning (Chen et al., 2020)
aims to shorten the distance between positive sam-
ples and extend the distance between negative sam-
ples. Here we design two ways of selecting positive
samples: text-level and summary-level contrastive
learning. The distance of the negative samples is
set to a constant because of no negative samples.

For text-level contrastive learning, all input texts
within the batch are treated as positive samples of
each other. Given a set of texts T = {t1, · · · , tN},
where N is the number of texts, the latent vec-
tor zsi can be computed by encoding text ti via
Es. Following Chen et al. (2020), the normalized
temperature-scaled cross-entropy loss is adopted
as the contrastive objective:

Ltext =

− [
n∑

i=1

log

∑n
j=1 1[j ̸=i] exp

(
sim

(
zsi , z

s
j

)
/τ

)

exp (C/τ)
]/n,

(1)

Figure 3: The procedure of counter-template generation.

where sim(·) indicates the cosine similarity func-
tion, n is the batch size in training, τ controls the
temperature, 1 is the indicator and C is set to the
maximum value of cosine similarity which is 1.0.

For summary-level contrastive learning, sev-
eral sets of texts belonging to different objects
(here, products or business) are input into the
model. For the i-th object, there is a set of text
Ti = {ti1, · · · , tiNi}, where Ni is the number of
texts in Ti. After encoded by Es, the summary rep-
resentation zsi of i-th object is averaged from the
latent vector set Zsi = {zsi1, · · · , zsiNi

}. For each
summary representation, its corresponding latent
vector zsij and other summary representations form
the positive samples. The loss function is similar
to that of text-level contrastive learning:

Lsum =

− [
n∑

i=1

log

∑n
j=1 1[j ̸=i] exp

(
sim

(
zsi , z

s
j

)
/τ

)

exp (C/τ)
]/n

− [
n∑

i=1

log

∑Ni
k=1 exp (sim (zsi , z

s
ik) /τ)

exp (C/τ)
]/n,

(2)

The overall loss function is defined as:

L(γ, ψ) = Lrec + LKL + Lcon

Lrec(γ, ψ) =
N∑

i=1

E
pγ(zsi |ti)

[log qψ(ti | zsi )]

LKL(γ) = DKL(pγ(zsi | ti)||p(zsi ))

(3)

where γ and ψ are the parameters of the encoder
Es and decoder Ds. Lcon is the contrastive loss.
For the text-level contrastive learning, Lcon =
Ltext. For the summary-level contrastive learning,
Lcon = Lsum. We choose the standard Gaussian
distribution as the prior distribution p(zsi ).
Counter-Template Inference When generating
the counter-template, the average strategy is em-
ployed. As shown in Figure 3, there are three steps:
encoding, aggregating, and decoding. Firstly, sev-
eral sets of texts belonging to different objects are
used as input to the encoder Es. Then, an average
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of the text representations is obtained as counter-
template representation ztemp. Thus, ztemp con-
tains a wide variety of information from different
products or businesses. And the common pattern
information dominates in ztemp compared with the
content information. Finally, ztemp is used to gen-
erate the counter-template via the trained decoder
Ds.

3.3 Model Components
The Encoder pθ Iso et al. (2021) show that large
pre-training language models such as BERT (Ken-
ton and Toutanova, 2019) and GPT-2 (Radford
et al.) do not necessarily lead to performance
improvement in unsupervised opinion summariza-
tion. Therefore, we employ the BIMEANVAE
model (Iso et al., 2021) which uses BiLSTM as
encoder pθ(zi | ti) and applies a mean pooling
layer to the BiLSTM layer to obtain the primitive
text representation zi.
The Feature Extractor fϕ The common pattern
representation pi is extracted from zi by the feature
extractor fϕ(pi | zi). Because the pattern infor-
mation occurs in zi naturally, a linear projection
network is used as the feature extractor fϕ to com-
pute the common pattern representation pi:

pi =W T
P zi + bP

where WP and bP are the parameters. Due to the
supervision of the invariant counter-template, pi
contains sample-independent pattern information.
The Orthogonal Disentangled Component f⊥
Similar to Qin et al. (2020), the content representa-
tion ci is disentangled from zi by projecting zi onto
the orthogonal direction of the common pattern
representation pi in the orthogonal disentangled
component f⊥.

We first project zi onto pi to get pi:

pi = Proj(zi, pi) (4)

where Proj is a projection function.

Proj(x, y) =
x · y
| y |

y

| y | (5)

where x, y are vectors.
Then the content representation ci is obtained in

the orthogonal direction of pi:

ci = Proj(zi, (zi − pi)) (6)

The Decoder qφ Following Iso et al. (2021), LSTM
is employed as the decoder qφ with two functions.

Firstly, the distribution qφ(ti | ci) is computed by
the reconstruction of the input ti from the content
representation ci. And qφ(temp | pi) is obtained
by the prediction of the counter-template temp via
pi.

3.4 Model Training
The reconstruction loss, the template loss, and the
KL loss are employed for model training.

The content representation ci is used as the input
of the decoder to reconstruct the input text ti. And
the reconstruction loss is defined as:

Lrecon(θ, ϕ, φ) =
N∑

i=1

E
pθ(zi|ti)

[log qφ(ti | ci)f⊥(ci | p, zi)fϕ(p | zi)]

(7)
The reconstruction loss improves the quality of

the decoded text and forces the text representation
zi and content representation ci to store content
information.

The common pattern representation pi is used
to predict the counter-template temp. The loss is
imposed by minimizing:

Ltemp(θ, ϕ, φ) =
N∑

i=1

E
pθ(zi|ti)

[log qφ(temp | p)fϕ(p | zi)],
(8)

The template loss ensures the common pattern
representation pi contains common pattern infor-
mation of the dataset.

Finally, following the typical VAE and vari-
ational inference, we add the regularizers LKL
which controls the amount of information in zi
by penalizing KL divergence of the estimated pos-
teriors pθ(zi | ti) from the corresponding priors.
We choose the standard Gaussian distribution as
the prior distribution p(zi). The final loss function
is defined as:

L(θ, ϕ, φ) = Ltemp + Lrecon + LKL
LKL = DKL(pθ(zi | ti)||p(zi))

(9)

where θ, ϕ,and φ are the parameters of the model.

4 Experiments

To investigate the effectiveness of the proposed
method, the best and the average results were per-
formed on two datasets. In addition to the best per-
formance, the mean and standard deviation were
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Dataset Category Number PCT

Amazon

Electronics 922957 59.80%
Health 181017 11.73%
Home 296053 19.18%
Clothing 143474 9.30%

Yelp
Catering 3493385 74.98%
Other 1165583 25.02%

Table 1: The number of reviews in different categories
in Yelp and Amazon after preprocessing.

reported to evaluate the stability of the model. Be-
sides, two analysis experiments were conducted for
the counter-template.

4.1 Experimental Datasets
The experiments were conducted on two publicly
available datasets, Amazon product reviews (He
and McAuley, 2016) and Yelp business reviews
(Chu and Liu, 2019). More details can be found in
Appendix.

After preprocessing, we encountered a differ-
ence between Amazon and Yelp. Amazon has cat-
egory labels for each product. However, there is
only some meta information about categories on
Yelp. Through data analysis in Table 1, we dis-
covered the proportion of reviews from different
businesses on Yelp is highly imbalanced with about
75% of reviews related to food and beverage. An
overwhelming number of catering reviews affects
our counter-template generation, leading to tem-
plates with obvious catering information. There-
fore, we only keep reviews of food-related cate-
gories in training, validation, and test sets of Yelp
to form Yelp-Res.

4.2 Baselines
Following prior work (Iso et al., 2021; Song et al.,
2022), we compare TRACE with TextVAE (Gane-
san et al., 2010), Opinosis (Ganesan et al., 2010),
MeanSum (Chu and Liu, 2019), Copycat (Bražin-
skas et al., 2020b), Coop (Iso et al., 2021) and
Wassos (Song et al., 2022). The detailed introduc-
tion is in Appendix.

4.3 Implementation Setting
We used Adam optimizer (Kingma and Ba, 2015)
with a linear scheduler, whose initial learning rate
is set to 10−3. To mitigate the KL vanishing issue,
we also applied KL annealing (Kingma et al., 2016;
Li et al., 2019; Iso et al., 2021). For beam search
in the generation, the beam size is set to 4. To

generate summary-like texts, we employed the first-
person pronoun blocking (Iso et al., 2021), which
prohibits generating first-person pronouns (e.g. I,
my, me) during summary generation. The ROUGE-
1/2/L scores based on F1 (Lin and Hovy, 2002) are
reported for automatic evaluation. For each model,
we ran 4 times and reported the best, the mean,
and standard deviation in Table 2. All experiments
were conducted on NVIDIA GeForce RTX 3090.
The training time of our model is about 6.5 hours,
with 8 epochs on Amazon and 6 on Yelp-res.

Besides, we also reported the results of the
human design counter-template (TRACE-h). In
particular, we train a VAE summarization model
and use simple averaging to generate several sum-
maries. Then we clip and combine the generic
sentences without content information in the gener-
ated summaries. In the process of combination, we
also try to place the selected sentences in the same
position as they originally had in the summary and
control the length of the counter-template to about
half of the average length of the golden summaries.

4.4 Results

As shown in the upper of Table 2, The Max part
reports the best performance of models. Our
framework (TRACE) significantly obtains the new
state-of-the-art performance on both benchmark
datasets with counter-templates whether the auto-
mated (TRACE-a) or the human design (TRACE-
h). On Yelp-Res, the model with human-designed
counter-templates (TRACE-a) is better than the
auto-generated ones. But on Amazon, the situation
is reversed. Probably because we tested 12 differ-
ent counter-templates on Amazon than 4 on Yelp,
due to the analysis experiments. The more auto-
generated counter-templates are tested, the more
likely to find a better one, which can even exceed
the human design in performance.

As shown in the lower of Table 2, the Mean
part reports the mean and standard deviation of the
model performance, which represent the stability
of the model. In this perspective, TRACE signifi-
cantly outperforms all competing models on both
Amazon and Yelp-Res.

In general, the performance of TRACE-h is bet-
ter than TRACE-a both in the Max and the Mean.
We consider that this is because the human design
process eliminates all the unidentified content in-
formation in the counter-templates and ensures the
purity of the pattern information.
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Amazon Yelp-Res
R1 R2 RL R1 R2 RL

Max
TextVAE‡ 22.87 2.75 14.46 25.42 3.11 15.04

Opinosis‡ 28.42 4.57 15.50 24.88 2.78 14.09

MeanSum 28.32 3.28 16.19 28.27 3.54 16.00

Copycat 31.17 6.49 19.71 28.31 5.38 17.72

Coop 36.93 7.05 21.34 34.21 6.49 19.19

Wassos(T) 30.80 6.38 19.45 27.43 6.03 18.38

Wassos(0) 33.24 7.25 21.31 25.50 4.84 17.78

TRACE-a 37.90 7.53 22.48 34.39 7.07 19.90
TRACE-h 37.34 7.51 21.49 34.80 7.81 20.10

Mean
MeanSum 27.63± 0.72 3.05± 0.22 15.87± 0.51 28.00± 0.34 3.53± 0.19 15.80± 0.14

Copycat 29.46± 1.50 5.18± 0.44 19.06± 0.67 27.21± 0.92 4.98± 0.52 17.74± 0.28

Coop 35.00± 1.11 5.85± 0.77 19.56± 0.99 33.24± 0.58 6.57± 0.23 19.18± 0.14

Wassos(T) 27.90± 2.42 5.65± 0.74 18.48± 1.10 27.95± 1.40 5.82± 0.26 18.28± 0.06

Wassos(0) 30.78± 3.84 6.75± 1.07 19.09± 1.45 24.65± 1.46 4.35± 0.25 16.30± 0.73

TRACE-a 36.33± 0.29 7.01± 0.32 21.30± 0.42 34.11 ± 0.26 6.74± 0.16 19.41± 0.29

TRACE-h 36.52 ± 0.41 7.16 ± 0.23 21.32 ± 0.01 34.08± 0.45 6.86 ± 0.47 19.56 ± 0.34

Table 2: Experimental results on Amazon and Yelp-Res. The bold and underlined scores denote the best and
second-best scores respectively. The a and h of TRACE represent the automatic generation and human design.
‡means the results are from (Bražinskas et al., 2020b).

R1 R2 RL
w/o con 36.51 ± 0.62 6.95± 0.31 21.28± 0.48

w/ sum-b 36.33± 0.29 7.01 ± 0.32 21.30 ± 0.42

w/ sum-l 35.50± 0.60 6.57± 0.31 20.98± 0.44

w/ text-b 36.29± 0.34 6.82± 0.21 21.14± 0.33

w/ text-l 35.84± 0.74 6.52± 0.50 21.09± 0.51

human 36.52 ± 0.41 7.16 ± 0.23 21.32 ± 0.10

Table 3: Results of the different counter-template gen-
erators. The w/o con is without contrastive learning.
The sum and text are summary-level and text-level con-
trastive learning. b and l is the best checkpoint in Rouge
scores or the last.

4.5 Counter-Template Analysis

For the proposed counter-template generation
method, we separately conducted two experiments
on different contrastive learning methods in Table
3 and different generation inputs in Table 4. Some
examples of counter-templates are shown in Table
5.

Because using golden validation and test sets
for counter-template generation might leak some
information, they are only used for analysis. Be-
sides, we randomly sampled some products from
the training set and grouped their reviews as set 1.

Repeating this procedure yielded set 2. Then, they
were mixed to obtain the third set, labeled as 1+2.
For each model, we test three counter-templates
generated from set 1, set 2, and set 1+2. Of the
three results, the result with the highest mean value
will be broadcasted with the standard deviation.
The best results are in Table 7 inside the appendix.

As shown in Table 3, the performance of the
model is slightly affected by the ablation of con-
trastive learning (w/o con), which means our aver-
age generation strategy plays a major role. In gen-
eral, summary-level contrastive learning is more
effective than text-level. The first possibility is that
the training batch size of the text-level counter-
template generator has to be a quarter of the
summary-level model because of the time com-
plexity. Besides, We suspect that summary-level
contrastive learning will not only make the text
representations more similar to each other but also
make them more similar to generic summary repre-
sentations.

In addition, We test the performance of summa-
rization on the golden validation and test sets dur-
ing the training of the counter template generator.
Choosing the checkpoint that performs best on the

6350



R1 R2 RL Number
Coop 35.00± 1.11 5.85± 0.77 19.56± 0.99 -

1 36.03± 0.26 6.35± 0.17 20.93± 0.27 294
2 35.42± 0.25 6.97± 0.28 20.52± 0.11 221
1+2 36.33 ± 0.29 7.01 ± 0.32 21.30 ± 0.42 515

1-large 36.12± 0.42 6.72± 0.42 20.97± 0.64 490
2-large 36.00± 0.19 6.49± 0.16 20.81± 0.30 475
1-l+2-l 35.68± 0.72 6.61± 0.20 20.66± 0.44 965

Val 35.65± 0.49 6.75± 0.11 20.78± 0.17 224
Test 36.28± 0.58 6.70± 0.34 20.99± 0.36 256

Table 4: Results of counter-template generation via different input sets on Amazon. Number is the number of text
to generate a counter-template. ‘Val’ and ‘Test’ represent the golden validation and test sets. The others are the
extracted text sets from the train data randomly.

Test This is a great product. It’s very easy to use and clean. The only thing that would be
better is the size of this one, but it’s not a big deal for the money.

1 This is a great product. It’s very easy to use and clean. The only problem is that it
doesn’t take up much room in the kitchen, and has a nice feel to it.

1+2 This is a great product. It’s very easy to use and it works well. The only drawback is
that the blue light is a little weak, but it does not have to be in the way.

1-large This is a great product. It’s very easy to use and clean. The only drawback is that it
has to be a little bit more expensive than the brand but it works.

1-l+2-l This is a great product. It’s very easy to use and it works well. The only drawback is
that the blue light is a little weak, but you can’t get it to work with.

Table 5: Generated counter-template examples on Amazon via the input set in Table 4.

summarization test (b) achieves better results than
the last (l). It may be because the counter-template
generation model with better Rouge performance
in the summary generation is more likely to learn
pattern information which the corresponding sum-
marization model will learn.

Since using summary-level contrastive learning
and selecting the model with the best rouge (sum-
b) perform best, we build on this to conduct the
analysis experiment using different inputs for the
counter-template generation. The set labeled as
1-large is obtained by randomly selecting products
from the training set based on 1, and 2-large the
same.

As shown in Table 4, although all the results
outperform the SOTA baseline, different counter-
templates lead to obviously different results. As the
examples shown in Table 5, the counter-templates
are very similar to each other. There is no obvious
relationship between the number of input reviews
and the generated counter-templates or the perfor-

mance of the model. In general, the advantage of
automatic generation is continuously generating
different counter-templates by extracting different
input sets to achieve higher performance. But at
present, only experiments can determine the impact
of the template on the model, which consumes time
and computing resources.

5 Conclusion

To avoid generating generic summaries, we pro-
pose TRACE, a novel framework for unsupervised
opinion summarization based on text representation
disentanglement with counter-template. The addi-
tional disentanglement module inside the encoder-
decoder architecture decouples the pattern and con-
tent information in the text representation under the
guidance of the special counter-template. Experi-
mental results on Amazon and Yelp-Res show the
proposed approach outperforms the state-of-the-art
baselines on both quality and stability.
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6 Limitations

As shown in Table 1, an overwhelming number
of catering reviews on Yelp makes the counter-
templates with obvious catering information. For
example, “This is a great place for a quick bite
to eat. The food is delicious and the staff is very
friendly. They have a good selection of beer and
wine. The place is always busy, but it’s worth the
wait.” In this case, the pattern information in the
text is not consistent with other businesses irrele-
vant to catering. As shown in Table 6, although our
method has a slight improvement over the previous
methods in the mean and standard deviation, it is
only comparable to the SOTA at the best perfor-
mance. Since the counter-template is exactly the
same text for the whole data set, the performance
of the model is affected perhaps when the pattern
information from different texts in the data set has
large differences. When we extract the restaurant-
related parts of the dataset as Yelp-Res that have
more similar pattern information, our model per-
forms better.
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Following the similar pre-processing way (Bražin-
skas et al., 2020b; Chu and Liu, 2019; Iso et al.,
2021), only products with a minimum of 10 reviews
were used within the maximum of 128 tokens each
respectively. Besides reviews used for training,
these two datasets also contain gold-standard sum-
maries for 200 and 60 sampled objects, respectively.
In Amazon, each product is with 3 human-created
summaries, released by (Bražinskas et al., 2020b).
And only 1 human-created summary for each busi-
ness in Yelp, released by (Chu and Liu, 2019). For
both datasets, the summaries are manually created
from 8 input reviews. We used the same dev/test
split, 100/100 for Yelp and 28/32 for Amazon, re-
leased by their authors for our experiments.

B Baselines

The following approaches are chosen as baselines:
TextVAE (Ganesan et al., 2010): A vanilla text
VAE model that has a unidirectional LSTM layer
and uses the last hidden state to calculate the poste-
rior distribution. Opinosis (Ganesan et al., 2010):
A graph-based summarization framework that gen-
erates concise abstractive summaries with highly
redundant opinions. MeanSum (Chu and Liu,
2019): An unsupervised multi-document summa-
rization model that minimizes the auto-encoder re-
construction loss and the similarity loss. Copy-
cat (Bražinskas et al., 2020b): An unsupervised
multi-document summarization model that cap-
tures the dependency relationship between the prod-
uct and reviews by defining a hierarchical VAE.
Coop (Iso et al., 2021): An unsupervised multi-
document summarization framework that searches
input combinations for the summary aggregation
using the input-output word overlapping. Was-
sos (Song et al., 2022): An unsupervised multi-
document summarization framework that uses the
Wasserstein barycenter of the semantic and syntac-
tic distributions to obtain the summary.
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Yelp Yelp-Res
R1 R2 RL R1 R2 RL

Max
Coop 34.36 7.12 19.96 34.21 6.49 19.19
TRACE-a 34.24 7.00 19.68 34.39 7.07 19.90
TRACE-h 34.66 7.05 19.70 34.80 7.81 20.10

Mean
Coop 33.92± 0.35 6.52± 0.35 19.13± 0.42 33.23± 0.58 6.57± 0.23 19.18± 0.13
TRACE-a 33.90± 0.57 6.60± 0.22 19.29± 0.27 34.11 ± 0.26 6.67± 0.16 19.41± 0.29
TRACE-h 34.13 ± 0.58 6.64 ± 0.25 19.44 ± 0.32 34.08± 0.45 6.86 ± 0.47 19.56 ± 0.34

Table 6: Results on Yelp and Yelp-Res. The bold and underlined scores denote the best and second-best scores
respectively.

R1 R2 RL
w/o con 37.90 7.53 22.48
w/ sum-b 36.92 7.13 21.84
w/ sum-l 37.41 7.00 21.75
w/ text-b 36.60 7.21 21.79
w/ text-l 37.32 7.65 21.97

human 37.34 7.51 21.49

Table 7: The maximum of Results using the different counter-template generators. The w/o con means without
contrastive learning. The sum and rev are summary-level and text-level contrastive learning. And b and l is the best
checkpoint in Rouge or the last.

R1 R2 RL Number
Val 36.18 6.80 21.02 224
Test 37.61 7.10 21.63 256

1 36.32 6.66 21.47 294
2 36.73 6.74 21.21 221
1+2 36.58 7.29 21.69 515

1-large 36.54 7.10 21.64 490
2-large 36.04 6.52 20.83 475
1-l+2-l 36.80 6.70 21.69 965

Table 8: Best results of counter-templates generated via different inputs on Amazon. number is the number of
input text to generate a counter-template. The bold and underlined scores denote the best and second-best scores
respectively.
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Val This is a great product. It’s very easy to use and it holds up well. The only problem is
that the cord is a little weak, but it doesn’t seem to be as good for the price.

Test This is a great product. It’s very easy to use and clean. The only thing that would be
better is the size of this one, but it’s not a big deal for the money.

1 This is a great product. It’s very easy to use and clean. The only problem is that it
doesn’t take up much room in the kitchen, and has a nice feel to it.

2 This is a great product. It’s very easy to use and it works well. The only drawback is
that the blue light is a little weak, but you can’t get it to work for the price.

1+2 This is a great product. It’s very easy to use and it works well. The only drawback is
that the blue light is a little weak, but it does not have to be in the way.

1-large This is a great product. It’s very easy to use and clean. The only drawback is that it
has to be a little bit more expensive than the brand but it works.

2-large This is a great product for the price. It’s very comfortable and looks good. The only
problem is that it doesn’t hold up to the side of the screen, but it is a nice size.

1-l+2-l This is a great product. It’s very easy to use and it works well. The only drawback is
that the blue light is a little weak, but you can’t get it to work with.

Table 9: Generated counter-template via the inputs in Table 4.
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