
Findings of the Association for Computational Linguistics: ACL 2023, pages 6330–6343
July 9-14, 2023 ©2023 Association for Computational Linguistics

PTCSpell: Pre-trained Corrector Based on Character Shape and Pinyin for
Chinese Spelling Correction

Xiao Wei1∗, Jianbao Huang1∗, Hang Yu1†, Qian Liu2

1Shanghai University
2Nanyang Technological University, Singapore

{xwei,845514379,yuhang}@shu.edu.cn, liu.qian@ntu.edu.sg

Abstract

Chinese spelling correction (CSC) is a chal-
lenging task with the goal of correcting each
wrong character in Chinese texts. Incorrect
characters in a Chinese text are mainly due to
the similar shape and similar pronunciation of
Chinese characters. Recently, the paradigm of
pre-training and fine-tuning has achieved re-
markable success in natural language process-
ing. However, the pre-training objectives in
existing methods are not tailored for the CSC
task since they neglect the visual and phonetic
properties of characters, resulting in suboptimal
spelling correction. In this work, we propose
to pre-train a new corrector named PTCSpell
for the CSC task under the detector-corrector
architecture. The corrector we propose has the
following two improvements. First, we design
two novel pre-training objectives to capture pro-
nunciation and shape information in Chinese
characters. Second, we propose a new strategy
to tackle the issue that the detector’s prediction
results mislead the corrector by balancing the
loss of wrong characters and correct charac-
ters. Experiments on three benchmarks (i.e.,
SIGHAN 2013, 2014, and 2015) show that our
model achieves an average of 5.8% F1 improve-
ments at the correction level over state-of-the-
art methods, verifying its effectiveness.

1 Introduction

Chinese spelling correction (CSC) is a task which
detects incorrect characters in Chinese text and cor-
rects them. CSC is often used as post-processing
to ensure the quality of a search engine query text
(Gao et al., 2010; Duan et al., 2018) and academic
papers (Pollock and Zamora, 1984). CSC plays
an important role in correcting recognition errors
due to similar pronunciation and character shape
(Park et al., 2021; Nguyen et al., 2021), which is a
common issue with automatic speech recognition

*Xiao Wei and Jianbao Huang contributed equally.
†Hang Yu is the corresponding author.

Type Sentence Correction
Phono- 今天教师(shi1)里面很热。 室(shi4)
logical Trans.: It’s very hot in the teacher today. classroom

Visual
操场上有一于(yu2)个人。 千(qian1)
Trans.: There are a at people in the gym. thousand

Table 1: Examples of incorrect character recognition
due to similar pronunciation and shape.

(ASR) and optical character recognition (OCR) sys-
tems.

Compared with other languages, Chinese has
distinct characteristics, such as its unique pronun-
ciation system (usually represented as pinyin) and
writing norms, which often lead to the two prob-
lems, namely the same pronunciation may corre-
spond to multiple characters and different charac-
ters have similar shapes. According to Liu et al.
(2010), around 83% and 48% of errors in Chinese
texts can be attributed to phonological and visual
similarity respectively. The first sentence in Table 1
is an example of a character with a similar pronun-
ciation, where "室" is misspelled as "师", and the
second sentence is an example of a character with
a similar shape, where "千" is misspelled as "于".

Chinese spelling correction is challenging be-
cause different people have different writing habits,
resulting in a variety of mistakes for each charac-
ter. As such, it is difficult for previous rule-based
methods to address these issues effectively. Most
of the recent works based on large pre-trained lan-
guage models (Zhang et al., 2020; Zheng et al.,
2021) perform well in the CSC task. For example,
Guo et al. (2021); Liu et al. (2021) used artificially
constructed confusion sets to pre-train language
models for the CSC task. However, pre-training
objectives tailored for CSC have not yet been ex-
plored. The visual and phonetic properties of char-
acters are not fully considered in the pre-training
process. Moreover, most works are based on the
architecture of the detector-corrector (Zhang et al.,
2020; Li et al., 2021; Zhu et al., 2022). However,

6330



Sentence Correction
我的录影(ying3)机在哪？
Where is my video recorder?

音(yin1)
tape

晚上的花园很安(an1)静。
The garden is very quiet at night.

宁(ning2)
peaceful

Table 2: Examples of correct characters being incor-
rectly corrected.

an inherent problem occurs if the detector predicts
a correct character as being wrong, in which case
the corrector may change the correct character to
another one which is also a reasonable response.
For example, in Table 2, the correct character "影"
is replaced by "音", and the correct character "安"
is replaced by "宁". It can be seen that the modified
sentence changes the semantics of the original text.

To solve these problems, we propose a pre-
trained corrector based on the visual and pronunci-
ation features of characters for the CSC task. By
doing so, the corrector can capture the phonetic
similarity and visual similarity between characters,
and such a pre-training strategy is more tailored
to the CSC task. To address the problem of the
detector’s prediction results misleading the correc-
tor, our basic idea is to strengthen the ability of the
corrector to recognize correct characters to ease the
errors caused by detector.

In this work, we propose a two-stage pre-trained
corrector. In the first stage of pre-training, the vi-
sual and phonological features of characters are
taken into account, and the pre-training strategies
matching CSC are designed, respectively from sim-
ilar vision to character and from similar pinyin to
character. The pre-trained models are denoted as
similar character shape BERT (SCSBERT) and sim-
ilar pinyin BERT (SPBERT). In the second stage
of pre-training, three different pre-trained models,
SCSBERT, BERT, and SPBERT are fully fused.
In addition, we propose a novel loss function to
fine-tune the corrector. We calculate the loss of a
small number of correct characters and the loss of
all the wrong characters in the original text, so that
it not only corrects the wrong characters, it also pre-
vents the correct characters from being corrected
by mistake.

To verify the effectiveness of our method,
we conduct experiments with our model on the
SIGHAN 2013, 2014 and 2015 test set using the
official SIGHAN testing tool, which achieve an
average improvement in F1 of 5.2% and 5.8% at
the detection-level and correction-level compared

to the latest works, MDCSpell (Zhu et al., 2022)
and REALISE (Xu et al., 2021).

Our main contributions are summarized as fol-
lows: (i) We propose a pre-trained corrector which
is tailored for the CSC task; (ii) We design two
pre-training objectives based on vision and pronun-
ciation to enable the corrector to capture the shape
and pinyin similarity between characters; (iii) we
propose a new strategy to solve the problem where
the prediction results of the detector mislead the
corrector by balancing the loss of incorrect charac-
ters and correct characters.

2 Related Work

CSC is the task of detecting and correcting wrong
characters in Chinese sentences. The previous
works were mainly based on the n-gram language
model, rule-based method and confusion set for
character error detection and correction (Yeh et al.,
2013; Chang et al., 2015; Chu and Lin, 2015). Af-
ter this, the CSC task is usually transformed into a
sequence tagging task. Some machine learning and
deep learning methods such as CRF and Bi-LSTM
have been used to classify each character in a text
(Chang et al., 2015; Wang et al., 2018). These
methods detect characters and select a character
with the highest probability of being correct.

Large pre-trained language models (PTMs)
based on Transformer (Vaswani et al., 2017), such
as BERT (Devlin et al., 2019), XLNET (Yang et al.,
2019) and SpanBERT (Joshi et al., 2020) have been
proposed and are being increasingly used for CSC
tasks. In Soft-masked BERT (Zhang et al., 2020),
BERT is used as a corrector to correct wrong po-
sitions predicted by the gate recurrent unit (GRU).
Hong et al. (2019) set different masking schemes to
fine-tune BERT, and selected the optimal candidate
results as the error correction results. In addition to
using BERT as a corrector, ELECTRA’s discrim-
inator (Clark et al., 2020) is also used to detect
errors (Zheng et al., 2021). Although BERT can be
used in CSC tasks and achieves good results, the
similarity between the target character and original
character is not easy to learn. Therefore, a confu-
sion set (LEEa et al., 2019) is used to pre-train the
BERT-like model to solve the above problem. Guo
et al. (2021) used artificially constructed confusion
sets to pre-train BERT, which makes BERT more
capable of correcting phonologically and visually
similar characters. Liu et al. (2021) set different
proportions to select phonologically and visually

6331



similar characters in the process of using a confu-
sion set for training.

Chinese spelling errors are mainly caused by
characters which are similar in shape and pronun-
ciation. Recent works focus on how to make full
use of visual and phonetic features to improve the
correction of these two types of errors. To correct
errors due to characters having a similar shape, the
Chinese characters are encoded into images or split
into strokes. To correct errors due to characters
having a similar pronunciation, the original text
is converted into pinyin or speech features (Wang
et al., 2018; Xu et al., 2021; Liu et al., 2021).

Although prior research has achieved good re-
sults on the CSC task, the following two problems
remain unresolved. First, the visual and phonetic
features of similar Chinese characters cannot be
directly fused into BERT for pre-training. Second,
in relation to the detector-corrector architecture,
the corrector cannot effectively alleviate the error
caused by detector. To solve these problems, we
propose a pre-trained language model based on vi-
sual features and pinyin features and a special loss
function for the corrector.

3 Methodology

In this section, we briefly introduce the preliminar-
ies of the our method, then we detail the proposed
PTCSpell.

3.1 Preliminaries

Task Definition The CSC task is defined as
follows. Given a piece of Chinese text X =
(x1, x2, x3, . . . , xn) which may contain some er-
rors, the target is to transform it to a corrected text
Y = (y1, y2, y3, . . . , yn). This task is generally
formed as a mapping of the original sequence X
to the corrected sequence Y , i.e., f(X) = Y . The
particularity lies in that there are usually only a
small number of wrong characters and the wrong
character xi ∈ X has some similarity to its correct
character yi ∈ Y .

Architecture The mainstream paradigm for the
CSC task is based on the detector-corrector archi-
tecture (Zhang et al., 2020; Li et al., 2021). The
detector identifies whether each character is correct
or wrong, and the corrector generates corrections
for the detected errors. Our method is designed
based on this architecture. We briefly introduce
the basic detector and corrector networks used in

Figure 1: The architecture of the detection network.

our method, and our motivation for designing our
PTCSpell method.

Detector The detection network used in our
model is based on the ELECTRA discrimina-
tor (Clark et al., 2020), as shown in Figure 1. Fol-
lowing Zheng et al. (2021); Li et al. (2021), error
detection is defined as a character-level binary clas-
sification task. We employ the pre-trained Chinese
ELECTRA* to initialize the parameters of the dis-
criminator. The input sequence X is represented as
character-level tokens, and then ELECTRA’s dis-
criminator encodes them to Hd. The classification
layer can be expressed as follows:

H1 = GELU(W1H
d + b1) (1)

H2 = LayerNorm(H1) (2)

H3 = W2H2 + b2 (3)

where GELU is an activation function proposed by
Hendrycks and Gimpel (2016), LayerNorm is the
layer normalization proposed by Ba et al. (2016),
W1 ∈ Rd×d and W2 ∈ R1×d (d is the size of
the hidden states from ELECTRA’s discriminator)
are trainable parameters, b1 and b2 are bias vec-
tors. H3 = {h1,h2, . . . ,hn} is the classification
layer’s output representation of each character. The
probability that each character may be wrong can
be defined as:

P d(gi = 1|X) = sigmoid(hi) (4)

where sigmoid is the activation function, P d(gi =
1|X) is a conditional probability indicating the
probability that xi is an error character.

Corrector The correction network is usually de-
fined as a multi-class classification task at the token
level, which is used to correct the characters at the
location where the detection network output is "1",
as shown in Figure 1. The correction network in
some recent works is based on BERT with masked

*We use the released chinese-electra-180g-base-
discriminator on Hugging Face https://huggingface.co/
hfl/chinese-electra-180g-base-discriminator.

6332

https://huggingface.co/hfl/chinese-electra-180g-base-discriminator
https://huggingface.co/hfl/chinese-electra-180g-base-discriminator


language model (MLM) task (Hong et al., 2019;
Zhang et al., 2020). That is, each wrong character
in the original text X detected by the detector is
replaced with the [MASK] token, then the model
predicts the most likely correct character to replace
the [MASK] token.

However, it is important to observe the wrong
characters in the original text for the corrector. For
example, if people can read wrong characters in
context, then it will be more conducive to correct
them from a similar shape or similar pronunciation.
As such, the disadvantage of the previous works is
that the original text is lost when correcting, which
may lead to deviation from the semantics of the
original text.

Motivations The contribution of this work is
mainly in relation to the correction network, which
includes the following two aspects as follows.
Firstly, we pre-train the correction network using
similar character shape and similar pinyin. Sec-
ondly, we fine-tune the correction network under a
special strategy which balances the loss of correct
characters and wrong characters.

To solve the problem in the correction network
caused by masked text, Zhu et al. (2022) use orig-
inal text as input instead of masked text, which is
also used in our architecture. In addition, we pre-
train the correction network from similar character
shape and similar pinyin. These pre-training ob-
jectives reduce the gap between pre-training and
fine-tuning, and make the error correction process
more targeted to two common types of spelling
errors.

Another inherent problem caused by the archi-
tecture of the detector-corrector is that the detector
may predict a correct character as the wrong char-
acter, which misleads the corrector. To alleviate the
detector prediction error, we not only calculate the
loss of wrong characters, but also correct characters
during the fine-tuning of the corrector.

3.2 PTCSpell

We propose a pre-trained corrector based on charac-
ter shape and pinyin for Chinese spelling correction,
named PTCSpell. The architecture of the correc-
tion network is shown in Figure 2. It consists of
three modules, i.e., Similar Character Shape BERT
(SCSBERT), BERT and Similar Pinyin BERT (SP-
BERT), where SCSBERT and SPBERT are new
designs. As suggested by the name of SCSBERT
and SPBERT, the architecture of these two modules

is exactly the same as BERT, both of which com-
prise 12 transformer blocks and 12 self-attention
heads. The main difference between them is the
pre-training objectives, i.e., SCSBERT and SP-
BERT are pre-trained by our designed pre-training
objectives from scratch, while BERT is simply ini-
tialized by Chinese BERT with whole word mask-
ing† (Cui et al., 2021). More specifically, our pro-
posed pre-training strategies are that SCSBERT is
pre-trained by the visual features of characters and
SPBERT is pre-trained by the phonetic features of
characters (more details are given in Section 3.3).

The input of SCSBERT and BERT is the original
text, while SPBERT is pinyin, which is converted
from the original text using the pypinyin tool‡. For-
mally, given input X , SCSBERT, BERT and SP-
BERT encode it as Hc, Hb and Hp, respectively.

Then we consider how to fuse them to generate
a unified representation for X . Since the charac-
ter and pinyin at each position correspond to each
other, it is felicitous to use the concatenation op-
erator to fuse different features. In addition, the
operator is conducive to preserving all information
about the character and pinyin, thus it is expressed
as follows:

Hfused = Concat(Hc,Hb,Hp) (5)

where Hc, Hb, Hp are the last hidden state
of SCSBERT, BERT and SPBERT, respectively,
Hc ∈ Rb×m×d, Hb ∈ Rb×m×d, Hp ∈ Rb×m×d,
Hfused ∈ Rb×m×3d. b is the batch size, m is the
maximum length of the text in the batch. d is the
size of hidden states of BERT.

After this, we feed Hfused to the classification
layer. The formula expression of the classification
layer is the same as (1), (2) and (3), except for
the dimension of W , i.e., W1 ∈ R3d×3d, W2 ∈
Rv×3d, where v is the size of the vocabulary. The
final output of the classification layer is h

′
j , where

j is the position of the character to be corrected.

P c(yj |X) = softmax(h
′
j) (6)

where softmax is the activate function, and
P c(yj |X) indicates the probability that xj is cor-
rected to yj .

†We use the released chinese-bert-wwm-ext
on Hugging Face https://huggingface.co/hfl/
chinese-bert-wwm-ext

‡We use the released pypinyin to convert Chinese text to
pinyin https://github.com/mozillazg/python-pinyin.

6333

https://huggingface.co/hfl/chinese-bert-wwm-ext
https://huggingface.co/hfl/chinese-bert-wwm-ext
https://github.com/mozillazg/python-pinyin


Figure 2: The architecture of the correction network. The correction network consists of three modules, all of
which are pre-trained. SCSBERT is pre-trained in the way of vision to character (the left side), while SPBERT is
pre-trained in the way of pinyin to character (the right side). The red and blue characters indicate that the detection
network’s prediction result of these are the wrong characters, while the red characters are true wrong characters
and the blue characters are false wrong characters in the input text. The green and purple characters indicate two
pre-training strategies (Section 3.3) in the first stage of pre-training.

3.3 Pre-training

There are two stages of pre-training in the training
correction network: the first stage is pre-training
SCSBERT and SPBERT from scratch, the second
stage is pre-training the whole correction network.
The purpose of the first stage of pre-training is
to ensure SCSBERT and SPBERT have the abil-
ity to correct characters with similar shape and
pronunciation, respectively. The second stage of
pre-training can fully fuse the features extracted by
SCSBERT, BERT and SPBERT.

SCSBERT To obtain the shape similarity of char-
acters visually, we employ the SIFT (Lowe, 2004)
image matching algorithm to calculate the visual
similarity between two characters. Then, the char-
acters with higher visual similarity are selected to
replace the correct characters in the corpus to con-
struct samples which have a similar character shape.
As shown in Figure 2 (SCSBERT Pre-training),
we use samples which have a similar character
shape and the original text of the corpus as the
pre-training dataset for SCSBERT.

SPBERT SPBERT Pre-training is illustrated in
Figure 2. Firstly, we convert the prepared corpus
text to pinyin, and then randomly replace some
pinyin tokens with similar pronunciation ones. The
sequence with the replaced pinyin is the input text
X , and the original corpus data is the corrected

text. The pre-training process of SPBERT converts
a similar pinyin to a correct character.

Both the first stage of pre-training and the sec-
ond stage of pre-training use the following two
strategies: (i) randomly replace 10% of tokens of
the text with similar characters or similar pinyin
(the purple characters as shown in Figure 2); (ii)
randomly select 4% of tokens of the text each time,
and leave them unchanged (the green characters as
shown in Figure 2).

3.4 Fine-tuning
Detection and correction tasks are defined as char-
acter classification. The difference is that the detec-
tion task is a binary classification task, while the
correction task is a multi-classification task, where
the number of classes is the size of the vocabu-
lary. The loss function of the detection network is
defined as:

Ld = −
n∑

i=1

logP d(gi|X) (7)

The correction network loss includes two parts,
i.e., the loss of correct characters (the blue char-
acters in Figure 2) and the loss of wrong charac-
ters (the red characters in Figure 2) in the orig-
inal text. Given X = {x1, x2, . . . , xn}, Y =
{y1, y2, . . . , yn}, we denote a target set T1 consist-
ing of correct characters in the original text. More
specifically, we select characters from Y that are

6334



equal to the characters in X .

T1 = {yi|xi = yi, 1 ≤ i ≤ n, i ∈ N∗}
= {t1, t2, . . . , tm1}

(8)

where m1 is the size of T1.
Characters of α proportion selected from T1 are

denoted as T2. The set size is m2 = αm1, where
α is a pre-defined the hyper-parameters.

T2 = {ti|ti ∈ T1, 1 ≤ i ≤ m2, i ∈ N∗}
=

{
t′1, t

′
2, . . . , t

′
m2

} (9)

To obtain the corrected characters corresponding
to the wrong characters in the original text, we
denote F as a set with size m3:

F = {yi|xi ̸= yi, 1 ≤ i ≤ n, i ∈ N∗}
= {f1, f2, . . . , fm3}

(10)

Therefore, the loss of the correction network can
be expressed as:

Lc=−
m2∑

i=1

logP c(t′i|X)−
m3∑

i=1

logP c(fi|X) (11)

We train the detection network and correction
network by minimizing Ld and Lc.

4 Experiments

4.1 Datasets and Metrics
To make a fair comparison with previous works,
we use SIGHAN training data (Wu et al., 2013; Yu
et al., 2014; Tseng et al., 2015) and the generated
pseudo data (Wang et al., 2018) as the datasets for
pre-training and fine-tuning. We use the official
SIGHAN2015 testing tool to evaluate the perfor-
mance of our method in the three SIGHAN test sets.
Following previous works, we use sentence-level
precision, recall, and F1 as the metrics.

Our data preprocessing methods include convert-
ing traditional characters to simplified characters in
the whole dataset using OpenCC tool§ and remov-
ing a few mislabeled data in the SIGHAN2014 and
SIGHAN2015 training sets. The SIGHAN dataset
is repeated 5 times and joined with the Wang271K
dataset as the final training set. The results are
shown in Table 3.

4.2 Implementation Details
We fine-tune the detection network with 10 epochs,
in which the learning rate is 1.5e-5 and the batch

§https://github.com/BYVoid/OpenCC

Training Set #Sent Avg.Length #Errors
SIGHAN2013 700 41.8 343
SIGHAN2014 3434 49.6 5140
SIGHAN2015 2337 31.3 3046

Wang217K 271329 42.6 391962
Total 303684 42.5 424607

Test Set #Sent Avg.Length #Errors
SIGHAN2013 1000 74.3 1224
SIGHAN2014 1062 50.0 771
SIGHAN2015 1100 30.6 703

Total 3162 50.9 2698

Table 3: Statistics of Datasets. Column #Errors repre-
sents the number of character-level errors in this dataset.
The total training set is SIGHAN repeated 5 times and
joined with Wang271K.

size is 8. The learning process of the correction net-
work consists of two stages of pre-training and one
stage of fine-tuning. We train the correction net-
work with 10 epochs in the three stages, in which
the learning rate is 2e-5 and the batch size is 8. The
optimizer for the detection network and the correc-
tion network is AdamW (Loshchilov and Hutter,
2018). We use a warm-up (He et al., 2016) strategy
to adjust the learning rate. Specifically, the learning
rate increases linearly in the first quarter of itera-
tions, but decreases linearly in the next three quar-
ters of iterations. Following previous works (Xu
et al., 2021), "的", "地" and "得" in SIGHAN2013
are not considered during evaluating because they
are mixed in the dataset.

4.3 Baselines

We compare our model with the following meth-
ods:

• SpellGCN (Cheng et al., 2020): Graph con-
volutional networks are used to incorporate
phonological and visual similarity knowledge
into BERT.

• GAD (Guo et al., 2021): This method captures
rich global context information to reduce the
impact of local error context information.

• DCN (Wang et al., 2021): The candidate Chi-
nese characters are generated by pinyin and
then an attention-based network is used to
model the dependencies between two adjacent
characters.

• REALISE (Xu et al., 2021): This method se-
lectively mixes the semantic, phonetic and
graphic information of Chinese characters.

6335

https://github.com/BYVoid/OpenCC


Dataset Method
Detection Level Correction Level

Prec. Rec. F1. Prec. Rec. F1.

SIGHAN2013

SpellGCN (Cheng et al., 2020) 80.1 74.4 77.2 78.3 72.7 75.4
GAD (Guo et al., 2021) 85.7 79.5 82.5 84.9 78.7 81.6

DCN (Wang et al., 2021) 86.8 79.6 83.0 84.7 77.7 81.0
REALISE⋆(Xu et al., 2021) 88.6 82.5 85.4 87.2 81.2 84.1
MDCSpell (Zhu et al., 2022) 89.1 78.3 83.4 87.5 76.8 81.8

ELECTRA+BERT⋆ (baseline) 99.3 75.6 85.8 99.3 76.0 86.1
PTCSpell (ours)⋆ 99.7 80.6 89.1 99.7 79.2 88.3

SIGHAN2014

SpellGCN (Cheng et al., 2020) 65.1 69.5 67.2 63.1 67.2 65.3
GAD (Guo et al., 2021) 66.6 71.8 69.1 65.0 70.1 67.5

DCN (Wang et al., 2021) 67.4 70.4 68.9 65.8 68.7 67.2
REALISE(Xu et al., 2021) 67.8 71.5 69.6 66.3 70.0 68.1

MDCSpell (Zhu et al., 2022) 70.2 68.8 69.5 69.0 67.7 68.3
ELECTRA+BERT (baseline) 65.4 68.1 66.7 64.0 64.0 64.0

PTCSpell (ours) 84.1 71.2 77.1 83.8 69.4 75.9

SIGHAN2015

SpellGCN (Cheng et al., 2020) 74.8 80.7 77.7 72.1 77.7 75.9
GAD (Guo et al., 2021) 75.6 80.4 77.9 73.2 77.8 75.4

DCN (Wang et al., 2021) 77.1 80.9 79.0 74.5 78.2 76.3
REALISE(Xu et al., 2021) 77.3 81.3 79.3 75.9 79.9 77.8

MDCSpell (Zhu et al., 2022) 80.8 80.6 80.7 78.4 78.2 78.3
ELECTRA+BERT (baseline) 75.5 83.0 79.1 74.6 79.0 76.7

PTCSpell (ours) 89.6 81.2 85.2 89.4 79.0 83.8

Table 4: The performance of our model and the baselines. The symbol ⋆ means that we have removed the "的",
"地" and "得" characters when evaluating SIGHAN2013.

• MDCSpell (Zhu et al., 2022): This method
designs a multi-task framework, where BERT
is used as a corrector to capture the visual and
phonological features of the characters and
integrated the hidden states of the detector to
reduce the impact of error.

4.4 Results

As shown in Table 4, we observe that our PTC-
Spell achieves significant performance gain over
the other baselines. It can be seen that the per-
formance of our PTCSpell greatly exceeds that of
ELECTRA+BERT. Specifically, at the correction
level, our PTCSpell outperforms it in terms of F1
by 2.2%, 11.9% and 7.1% on the three SIGHAN
test sets, respectively.

Then, we compare our PTCSpell with the most
competitive works, such as MDCSpell and RE-
ALISE. At the correction level, our PTCSpell out-
performs both of these in terms of F1 by 4.2%,
7.6% and 5.5%, respectively, and in terms of pre-
cision by 12.2%, 14.8% and 11% on the three
SIGHAN test sets, respectively.

The main reasons are two-fold. First, PTCSpell
learns the similarity between characters, thus the
corrector selects characters which are similar to
the original text in the correction process. Second,

the novel loss function proposed on the corrector
alleviates the problem of the detector predicting
correct characters as errors. Although PTCSpell
has made great improvements in precision and F1,
recall is not improved compared with the baselines.
A possible reason is that the detector fails to detect
all errors, leading to a bottleneck in the corrector.

4.5 Ablation Study

We explore the influence of parameter α in the
loss function on model performance and the con-
tribution of the SCSBERT and SPBERT modules
to the PTCSpell model. We evaluate our model
at the sentence-level on the 2013, 2014 and 2015
SIGHAN test sets. The average F1 performance of
the three test sets is shown in Table 5 and Table 6
(the detailed results are provided in Appendix A.1).

Table 5 shows the influence of different param-
eter α in the loss function on the performance of
the PTCSpell model. We test the performance of
our model by varying α in range of [0, 0.1] and
[0.92, 1] with a step of 0.02. We find that a smaller
α is better than a larger α. When α is 0, the model
loses the ability to retain the original text seman-
tics, so the model does not perform well. When
α is 1, this means that all characters participate in
the calculation of loss. It is observed that when α

6336



α Det. F1 Cor. F1
0 78.0 76.4

0.04 83.8 82.7
0.02-0.1 83.3 82.1
0.92-1 82.9 81.9

1 83.1 81.9

Table 5: Impact of different α in the loss function. (0.02-
0.1) denotes the average F1 score of our model when
alpha goes from 0.02 to 0.1 and the step size is 0.02.
(0.92-1) denotes the average F1 score of our model when
alpha goes from 0.92 to 1 and the step size is 0.02.

Model α Det. F1 Cor. F1
PTCSpell 0.04 83.8 82.7

PTCSpell(-PT) 0.04 83.3 82.2
SCSBERT+BERT(-PT) 0.04 83.1 82.0
BERT+SPBERT(-PT) 0.04 82.6 81.3

BERT(-PT) 0.04 82.3 81.2

Table 6: Results of the ablation experiment on PTCSpell.
(-PT) denotes that the second stage of pre-training is
removed.

is 0.04, the model achieves the best performance.
Interestingly, according to our statistics, we find
that wrong characters accounted for 3.3% of all
characters in the training set. We infer that when α
is set at 0.04, the number of correct characters and
wrong characters is balanced, which is helpful to
train the model.

Table 6 analyses the second stage of pre-training,
SCSBERT and SPBERT for our PTCSpell. To
verify the effectiveness of the pre-training in the
second stage, we conduct experiments PTCSpell
and PTCSpell(-PT). We find that the second stage
of pre-training greatly improves the performance
of the model. To verify the effectiveness of SCS-
BERT and SPBERT, we conduct experiments PTC-
Spell (-PT), SCSBERT + BERT (-PT), BERT +
SPBERT (-PT) and BERT (-PT), where SCSBERT
and SPBERT are pre-trained by character shape
and pinyin, respectively. We find that SCSBERT
and SPBERT both improve the performance of the
model. Through these experiments, The effective-
ness of SCSBERT, SPBERT and the second stage
of pre-training are verified.

4.6 Case Study
Table 7 provides details on two cases of Chinese
spelling correction. Given an input sentence, we
compare the error correction effect of the baseline
(ELECTRA + BERT) and PTCSpell. The detec-
tor (ELECTRA) detects character errors, where

Input 乍么才能让孩子对绘画蝉声兴趣呢？
Detector 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0
Baseline 什么才能让孩子对绘画蚊身兴趣呢？
PTCSpell 怎么才能让孩子对绘画产生兴趣呢？

Trans. How to get children interested in painting?
Input 我们学校购买了十台录影机。

Detector 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0
Baseline 我们学校购买了十台录音机。
PTCSpell 我们学校购买了十台录影机。

Trans. Our school has purchased ten video recorders.

Table 7: Two cases of Chinese spelling correction. The
green characters indicate the true wrong characters and
the detector predicts it to be "1". The blue characters
indicate the true correct characters but the detector pre-
dicts it to be "1". The red character indicates the cor-
rected character.

"0" means the current character is correct and "1"
means the current character is wrong. If the output
of the detector in the current position is "1", the
character is corrected by the corrector. In the first
case, "乍" is correctly predicted to be the wrong
character, but the baseline corrects it to "什" and
forms a phrase with the following "么", which fails
to capture the character shape of "乍". Our PTC-
Spell corrects "乍" to "怎", because it captures the
character shape successfully. For the other two
wrong characters "蝉声", it is difficult for baseline
to correct consecutive wrong characters, causing
"蝉" to be corrected to "蚊" due to its similar shape.
In contrast, our PTCSpell corrects them to "生产"
based on similar pronunciations and is not affected
by consecutive errors. The first case shows that
PTCSpell achieves good performance in both simi-
lar shape and pronunciation errors. In the second
case, "影" is a correct character but the detector
predicts it to be a wrong character. We can see
that the baseline does not handle this well, so it
is replaced with "音", while PTCSpell leaves this
character unchanged. The second case shows that
PTCSpell is not misled by the detector because it
learns whether the current character is really wrong
and tries its best to maintain the semantics of the
original sentence during error correction.

5 Conclusion

We propose a pre-trained corrector, which is a part
of the detector-corrector architecture, for modeling
similar shape and pronunciation errors in the CSC
task. Our main contribution is to enhance the abil-
ity of the corrector. The architecture of PTCSpell
is based on BERT, but is pre-trained from scratch
based on similar character shapes and pinyin re-

6337



spectively. In addition, we propose a special loss
function that enhances the ability of the corrector to
retain the correct characters in the original text. Fi-
nally, the experimental results show that our model
is effective. In the future, we will design a better
detector to further improve the recall score for the
whole detector-corrector model.

Limitations

Our model achieves outstanding performance in
relation to Chinese spelling correction. However,
it has several potential limitations: (i) Errors of
missing and redundant characters cannot be cor-
rected by our model. The PTCSpell model only
focuses on spelling errors, and requires that the
input text has no grammatical or semantic errors.
(ii) The error-correcting language is targeted at
Chinese. The pre-trained model based on similar
pinyin cannot adapt to other languages, while pre-
trained model based on similar character shape can
adapt to other languages well, because the pinyin
input method is unique to Chinese, but character er-
ror due to a similar shape is a common problem in
many languages. Nevertheless, we put forward the
idea of matching the pre-trained model with error
correction tasks, which is suitable for all languages.

Acknowledgments

This rescarch was supported by the Shanghai Sci-
ence and Technology Young Talents Sailing Pro-
gram (22YF1413600). We thank Maoxin Shen for
helpful discussions, and the anonymous reviewers
for their insightful comments.

References
Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-

ton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450.

Tao-Hsing Chang, Hsueh-Chih Chen, and Cheng-Han
Yang. 2015. Introduction to a proofreading tool for
chinese spelling check task of sighan-8. In Proceed-
ings of the Eighth SIGHAN Workshop on Chinese
Language Processing, pages 50–55.

Xingyi Cheng, Weidi Xu, Kunlong Chen, Shaohua
Jiang, Feng Wang, Taifeng Wang, Wei Chu, and
Yuan Qi. 2020. SpellGCN: Incorporating phonologi-
cal and visual similarities into language models for
Chinese spelling check. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 871–881, Online. Association for
Computational Linguistics.

Wei-Cheng Chu and Chuan-Jie Lin. 2015. NTOU Chi-
nese spelling check system in sighan-8 bake-off. In
Proceedings of the Eighth SIGHAN Workshop on Chi-
nese Language Processing, pages 137–143, Beijing,
China. Association for Computational Linguistics.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. Electra: Pre-training
text encoders as discriminators rather than generators.
In International Conference on Learning Representa-
tions.

Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, and
Ziqing Yang. 2021. Pre-training with whole word
masking for chinese bert. IEEE/ACM Transac-
tions on Audio, Speech, and Language Processing,
29:3504–3514.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Jianyong Duan, Tianxiao Ji, and Hao Wang. 2018. Er-
ror correction for search engine by mining bad case.
IEICE Transactions on Information and Systems,
E101.D(7):1938–1945.

Jianfeng Gao, Xiaolong Li, Daniel Micol, Chris Quirk,
and Xu Sun. 2010. A large scale ranker-based system
for search query spelling correction. In Proceedings
of the 23rd International Conference on Computa-
tional Linguistics (Coling 2010), pages 358–366, Bei-
jing, China. Coling 2010 Organizing Committee.

Zhao Guo, Yuan Ni, Keqiang Wang, Wei Zhu, and
Guotong Xie. 2021. Global attention decoder for
Chinese spelling error correction. In Findings of
the Association for Computational Linguistics: ACL-
IJCNLP 2021, pages 1419–1428, Online. Association
for Computational Linguistics.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–
778.

Dan Hendrycks and Kevin Gimpel. 2016. Gaus-
sian error linear units (gelus). arXiv preprint
arXiv:1606.08415.

Yuzhong Hong, Xianguo Yu, Neng He, Nan Liu, and
Junhui Liu. 2019. FASPell: A fast, adaptable, sim-
ple, powerful Chinese spell checker based on DAE-
decoder paradigm. In Proceedings of the 5th Work-
shop on Noisy User-generated Text (W-NUT 2019),
pages 160–169, Hong Kong, China. Association for
Computational Linguistics.

6338

https://doi.org/10.18653/v1/2020.acl-main.81
https://doi.org/10.18653/v1/2020.acl-main.81
https://doi.org/10.18653/v1/2020.acl-main.81
https://doi.org/10.18653/v1/W15-3121
https://doi.org/10.18653/v1/W15-3121
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1587/transinf.2017EDP7284
https://doi.org/10.1587/transinf.2017EDP7284
https://aclanthology.org/C10-1041
https://aclanthology.org/C10-1041
https://doi.org/10.18653/v1/2021.findings-acl.122
https://doi.org/10.18653/v1/2021.findings-acl.122
https://doi.org/10.18653/v1/D19-5522
https://doi.org/10.18653/v1/D19-5522
https://doi.org/10.18653/v1/D19-5522


Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S. Weld,
Luke Zettlemoyer, and Omer Levy. 2020. Span-
BERT: Improving pre-training by representing and
predicting spans. Transactions of the Association for
Computational Linguistics, 8:64–77.

Lung-Hao LEEa, Wun-Syuan WUb, Jian-Hong LIa, Yu-
Chi LINc, and Yuen-Hsien TSENG. 2019. Building
a confused character set for chinese spell checking.
In 27th International Conference on Computers in
Education, ICCE 2019, pages 703–705. Asia-Pacific
Society for Computers in Education.

Jing Li, Gaosheng Wu, Dafei Yin, Haozhao Wang, and
Yonggang Wang. 2021. Dcspell: A detector-corrector
framework for chinese spelling error correction. In
Proceedings of the 44th International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, pages 1870–1874.

Chao-Lin Liu, Min-Hua Lai, Yi-Hsuan Chuang, and
Chia-Ying Lee. 2010. Visually and phonologically
similar characters in incorrect simplified Chinese
words. In Coling 2010: Posters, pages 739–747,
Beijing, China. Coling 2010 Organizing Committee.

Shulin Liu, Tao Yang, Tianchi Yue, Feng Zhang, and
Di Wang. 2021. PLOME: Pre-training with mis-
spelled knowledge for Chinese spelling correction.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
2991–3000, Online. Association for Computational
Linguistics.

Ilya Loshchilov and Frank Hutter. 2018. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

David G Lowe. 2004. Distinctive image features from
scale-invariant keypoints. International journal of
computer vision, 60(2):91–110.

Thi Tuyet Hai Nguyen, Adam Jatowt, Mickael Cous-
taty, and Antoine Doucet. 2021. Survey of post-ocr
processing approaches. ACM Comput. Surv., 54(6).

Seongmin Park, Dongchan Shin, Sangyoun Paik, Sub-
ong Choi, Alena Kazakova, and Jihwa Lee. 2021.
Improving distinction between asr errors and speech
disfluencies with feature space interpolation. arXiv
preprint arXiv:2108.01812.

Joseph J. Pollock and Antonio Zamora. 1984. Auto-
matic spelling correction in scientific and scholarly
text. Commun. ACM, 27(4):358368.

Yuen-Hsien Tseng, Lung-Hao Lee, Li-Ping Chang, and
Hsin-Hsi Chen. 2015. Introduction to SIGHAN 2015
bake-off for Chinese spelling check. In Proceed-
ings of the Eighth SIGHAN Workshop on Chinese
Language Processing, pages 32–37, Beijing, China.
Association for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Baoxin Wang, Wanxiang Che, Dayong Wu, Shijin
Wang, Guoping Hu, and Ting Liu. 2021. Dynamic
connected networks for Chinese spelling check. In
Findings of the Association for Computational Lin-
guistics: ACL-IJCNLP 2021, pages 2437–2446, On-
line. Association for Computational Linguistics.

Dingmin Wang, Yan Song, Jing Li, Jialong Han, and
Haisong Zhang. 2018. A hybrid approach to auto-
matic corpus generation for Chinese spelling check.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2517–2527, Brussels, Belgium. Association for Com-
putational Linguistics.

Shih-Hung Wu, Chao-Lin Liu, and Lung-Hao Lee. 2013.
Chinese spelling check evaluation at SIGHAN bake-
off 2013. In Proceedings of the Seventh SIGHAN
Workshop on Chinese Language Processing, pages
35–42, Nagoya, Japan. Asian Federation of Natural
Language Processing.

Heng-Da Xu, Zhongli Li, Qingyu Zhou, Chao Li,
Zizhen Wang, Yunbo Cao, Heyan Huang, and Xian-
Ling Mao. 2021. Read, listen, and see: Leveraging
multimodal information helps Chinese spell checking.
In Findings of the Association for Computational Lin-
guistics: ACL-IJCNLP 2021, pages 716–728, Online.
Association for Computational Linguistics.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for lan-
guage understanding. Advances in neural informa-
tion processing systems, 32.

Jui-Feng Yeh, Sheng-Feng Li, Mei-Rong Wu, Wen-
Yi Chen, and Mao-Chuan Su. 2013. Chinese word
spelling correction based on n-gram ranked inverted
index list. In Proceedings of the Seventh SIGHAN
Workshop on Chinese Language Processing, pages
43–48, Nagoya, Japan. Asian Federation of Natural
Language Processing.

Liang-Chih Yu, Lung-Hao Lee, Yuen-Hsien Tseng, and
Hsin-Hsi Chen. 2014. Overview of sighan 2014 bake-
off for chinese spelling check. In Proceedings of The
Third CIPS-SIGHAN Joint Conference on Chinese
Language Processing, pages 126–132.

Shaohua Zhang, Haoran Huang, Jicong Liu, and Hang
Li. 2020. Spelling error correction with soft-masked
BERT. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
882–890, Online. Association for Computational Lin-
guistics.

Liying Zheng, Yue Deng, Weishun Song, Liang Xu,
and Jing Xiao. 2021. An alignment-agnostic model

6339

https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.1162/tacl_a_00300
https://aclanthology.org/C10-2085
https://aclanthology.org/C10-2085
https://aclanthology.org/C10-2085
https://doi.org/10.18653/v1/2021.acl-long.233
https://doi.org/10.18653/v1/2021.acl-long.233
https://doi.org/10.1145/3453476
https://doi.org/10.1145/3453476
https://doi.org/10.1145/358027.358048
https://doi.org/10.1145/358027.358048
https://doi.org/10.1145/358027.358048
https://doi.org/10.18653/v1/W15-3106
https://doi.org/10.18653/v1/W15-3106
https://doi.org/10.18653/v1/2021.findings-acl.216
https://doi.org/10.18653/v1/2021.findings-acl.216
https://doi.org/10.18653/v1/D18-1273
https://doi.org/10.18653/v1/D18-1273
https://aclanthology.org/W13-4406
https://aclanthology.org/W13-4406
https://doi.org/10.18653/v1/2021.findings-acl.64
https://doi.org/10.18653/v1/2021.findings-acl.64
https://aclanthology.org/W13-4407
https://aclanthology.org/W13-4407
https://aclanthology.org/W13-4407
https://doi.org/10.18653/v1/2020.acl-main.82
https://doi.org/10.18653/v1/2020.acl-main.82
https://doi.org/10.18653/v1/2021.findings-emnlp.30


for Chinese text error correction. In Findings of the
Association for Computational Linguistics: EMNLP
2021, pages 321–326, Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Chenxi Zhu, Ziqiang Ying, Boyu Zhang, and Feng Mao.
2022. MDCSpell: A multi-task detector-corrector
framework for Chinese spelling correction. In Find-
ings of the Association for Computational Linguis-
tics: ACL 2022, pages 1244–1253, Dublin, Ireland.
Association for Computational Linguistics.

A Appendix

A.1 Ablation
We show detailed results on the effect of different
alpha on model performance. After two stages of
pre-training, we set different alpha for the model
training, and record the performance of the model
on three SIGHAN test sets. The detailed results are
shown in Table 8.

At the same time, we explore the contribution
of SCSBERT and SPBERT to the whole model. In
the following experiment, SCSBERT and SPBERT
are pre-trained respectively, but the second stage
pre-training is not carried out. Then they are fine-
tuned, where the alpha in the loss function is set to
0.04. The detailed results are shown in Table 9.

6340

https://doi.org/10.18653/v1/2021.findings-emnlp.30
https://doi.org/10.18653/v1/2022.findings-acl.98
https://doi.org/10.18653/v1/2022.findings-acl.98


Dataset α
Detection Level Correction Level

Prec. Rec. F1. Prec. Rec. F1.

SIGHAN2013

0.00 99.34 78.59 87.75 99.32 76.40 86.37
0.02 99.74 79.94 88.75 99.74 78.69 87.97
0.04 99.74 80.56 89.13 99.74 79.21 88.30
0.06 99.61 79.31 88.31 99.60 78.27 87.66
0.08 99.61 79.73 88.57 99.61 78.79 87.99
0.10 99.48 79.94 88.65 99.47 78.69 87.87
0.92 99.61 79.21 88.25 99.60 78.27 87.66
0.94 99.61 79.21 88.25 99.60 78.38 87.73
0.96 99.61 79.21 88.25 99.60 78.48 87.79
0.98 99.61 78.69 87.92 99.60 77.55 87.20
1.00 99.61 79.83 88.63 99.61 78.90 88.05

SIGHAN2014

0.00 65.56 68.08 66.79 64.57 65.19 64.88
0.02 83.18 71.35 76.81 82.84 69.62 75.65
0.04 84.09 71.15 77.08 83.76 69.42 75.92
0.06 85.51 69.23 76.51 85.19 67.50 75.32
0.08 85.68 69.04 76.46 85.44 67.69 75.54
0.10 84.16 68.46 75.50 83.78 66.54 74.17
0.92 87.01 68.27 76.51 86.85 67.31 75.84
0.94 85.68 66.73 75.03 85.43 65.38 74.07
0.96 86.91 67.69 76.11 86.72 66.54 75.30
0.98 85.17 68.46 75.91 84.91 67.12 74.97
1.00 86.31 67.88 76.00 85.93 65.77 74.51

SIGHAN2015

0.00 76.40 83.03 79.58 75.74 80.07 77.85
0.02 88.76 81.55 85.00 88.36 78.41 83.09
0.04 89.61 81.18 85.19 89.35 78.97 83.84
0.06 90.23 80.07 84.85 89.91 77.31 83.13
0.08 89.02 80.81 84.72 88.70 78.23 83.14
0.10 89.67 80.07 84.60 89.47 78.41 83.58
0.92 89.94 79.15 84.20 89.61 76.38 82.47
0.94 90.97 79.89 85.07 90.73 77.68 83.70
0.96 90.27 78.78 84.14 89.98 76.20 82.52
0.98 89.96 79.34 84.31 89.70 77.12 82.94
1.00 90.72 79.34 84.65 90.43 76.75 83.03

Table 8: Impact of different α in the loss function.

Dataset Model
Detection Level Correction Level

Prec. Rec. F1. Prec. Rec. F1.

SIGHAN2013

PTCSpell(-PT) 99.48 79.73 88.52 99.47 78.59 87.80
SCSBERT+BERT(-PT) 99.74 80.46 89.07 99.74 79.21 88.30
BERT+SPBERT(-PT) 99.61 79.94 88.70 99.61 78.69 87.92

BERT(-PT) 99.61 79.42 88.37 99.60 78.27 87.66

SIGHAN2014

PTCSpell(-PT) 85.78 68.46 76.15 85.47 66.73 74.95
SCSBERT+BERT(-PT) 85.44 68.85 76.25 85.12 67.12 75.05
BERT+SPBERT(-PT) 82.83 68.65 75.08 82.34 66.35 73.48

BERT(-PT) 82.24 67.69 74.26 81.86 65.96 73.06

SIGHAN2015

PTCSpell(-PT) 89.43 81.18 85.11 89.19 79.15 83.87
SCSBERT+BERT(-PT) 88.57 80.07 84.11 88.26 77.68 82.63
BERT+SPBERT(-PT) 88.03 80.07 83.86 87.76 78.04 82.62

BERT(-PT) 89.09 79.89 84.24 88.79 77.49 82.76

Table 9: Results of ablation experiment on PTCSpell. (-PT) denotes that the second stage of pre-training is removed.

6341



ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

Limitations

�3 A2. Did you discuss any potential risks of your work?
4.5 Ablation Study; Limitations

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
Abstract

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
Left blank.

�3 B1. Did you cite the creators of artifacts you used?
Footnote 2 and 3 on the second page.

�3 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Footnote 2 and 3 on the second page.

�3 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
4 Experiments

�7 B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
We use datasets published online.

�3 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Footnote 2 and 3 on the second page.

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
4.1 Datasets and Metrics

C �3 Did you run computational experiments?
Left blank.

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
4.2 Implementation Details

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

6342

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/


�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
4.2 Implementation Details

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
4.5 Ablation Study

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
4.2 Implementation Details

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

6343


