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Abstract
The multimodal emotion recognition in conver-
sation task aims to predict the emotion label
for a given utterance with its context and mul-
tiple modalities. Existing approaches achieve
good results but also suffer from the following
two limitations: 1) lacking modeling of diverse
dependency ranges, i.e., long, short, and in-
dependent context-specific representations and
without consideration of the different recogni-
tion difficulty for each utterance; 2) consistent
treatment of the contribution for various modal-
ities. To address the above challenges, we
propose the Self-adaptive Context and Modal-
interaction Modeling (SCMM) framework. We
first design the context representation module,
which consists of three submodules to model
multiple contextual representations. Thereafter,
we propose the modal-interaction module, in-
cluding three interaction submodules to make
full use of each modality. Finally, we come up
with a self-adaptive path selection module to
select an appropriate path in each module and
integrate the features to obtain the final repre-
sentation. Extensive experiments under four
settings on three multimodal datasets, includ-
ing IEMOCAP, MELD, and MOSEI, demon-
strate that our proposed method outperforms
the state-of-the-art approaches.

1 Introduction

Emotion is a crucial part of human conversation.
The emotion recognition in conversation task is
to analyze each utterance in a conversation and
give the corresponding emotion. This task has
recently received more and more attention from
researchers in both NLP and multimodal fields be-
cause of its potential applications, such as human-
computer interaction and opinion mining in social
media (Chatterjee et al., 2019; Majumder et al.,
2020). Traditional emotion recognition in conver-
sation paradigms is either based on unrelated ut-
terances in a dialogue or a single modality, such
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Figure 1: Motivation of the proposed method. This is an
example from the IEMOCAP dataset that contains three
different kinds of context dependencies, including long,
short, and independent dependency, which is marked by
red arrow, green arrow, and blue square, respectively.
Besides, the primary modality for the final prediction
varies for different samples.

as text. However, in many cases, people’s emo-
tions are elusive and cannot be delivered well by
just one utterance or a single modality. As multi-
modality is closer to real-world application sce-
narios, multimodal emotion recognition in conver-
sation is gaining increasing research attention in
recent years. To identify emotions more accurately,
DialogueRNN (Majumder et al., 2019) first de-
signs an RNN-based model which includes four
GRUs to model both intra- and inter-speaker re-
lations. DialogueGCN (Ghosal et al., 2019) then
uses a graph neural network to model conversa-
tions. Later, MMGCN (Hu et al., 2021) proposes
a graph-based method under the additional multi-
modal setting.

Although pioneer research studies have achieved
promising progress, they mainly ignore the vary-
ing difficulty of each utterance for the model to
recognize and multimodal interaction in conversa-
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tion, which leads to the following two limitations.
First, existing methods treat all samples equally
without considering their specific characteristic or
difficulty for recognition. For example, they lack
detailed modeling of diverse dependency ranges,
i.e., long, short, and independent context-specific
representations for each utterance. As illustrated
in Figure 1, some utterances in a conversation re-
quire a long-range dependency, while others only
require a short-range dependency or can determine
the emotion on their own. Existing methods do
not consider respectively modeling these varying
dependency ranges.

Second, current approaches regard the contribu-
tion of each modality equally and simply concate-
nate the features of different modalities. However,
the contribution of each modality varies and it is of
great importance to investigate the correlation and
interaction among different modalities. In particu-
lar, Figure 1 illustrates the different contributions
among modalities for different utterances, where
the primary modality for recognition varies from
case to case. We argue the necessity to explore the
modality-specific contributions.

Towards the above issues, we propose the Self-
adaptive Context and Modal-interaction Model-
ing (SCMM) method for multimodal emotion
recognition. First, to model different ranges of con-
text dependency, we design the context representa-
tion module, which consists of three submodules,
including global, local, and direct mapping. Sec-
ond, towards the different contributions of various
modalities, we propose the modal-interaction mod-
ule, which also contains three submodules, includ-
ing full, partial, and biased interaction, to investi-
gate the correlation among them. Thereafter, faced
with multiple outputs from each module, we come
up with the self-adaptive path selection strategy to
adaptively select an appropriate path to obtain the
final representation for each utterance. We also put
forward a contrastive learning loss to learn more
discriminative representations. Finally, we conduct
extensive experiments to validate the effectiveness
of our approach.

Our main contributions are four-fold:

• We propose a novel SCMM framework for
multimodal emotion recognition in conversa-
tion. A new contextual representation module
is designed to model different kinds of rela-
tion dependency, including long, short, and
independent dependency.

• To capture the specific contribution of each
modality, we design the modal-interaction
module, which consists of three submodules,
including full, partial, and biased interactions,
to full investigate the correlation among dif-
ferent modalities.

• We come up with the self-adaptive path selec-
tion strategy to adaptively select an appropri-
ate path based on module outputs. Moreover,
we present a cross-modal contrastive learning
loss for discriminative feature learning.

• Extensive experiments on three multimodal
emotion recognition datasets, including
IEMOCAP, MELD, and MOSEI, demonstrate
the superiority of our method. Specifically, on
the IEMOCAP dataset under both two differ-
ent settings, the absolute improvement over
state-of-the-art methods is higher than 4.0%.

2 Related Work

2.1 Emotion Recognition in Conversation
Recent years have witnessed growing research
interest in Emotion Recognition in Conversa-
tion (ERC) due to its wide range of potential ap-
plications (Sebe et al., 2005; Yalamanchili et al.,
2021). With the development of streaming services,
many ERC datasets such as IEMOCAP (Busso
et al., 2008), MELD (Poria et al., 2019), and MO-
SEI (Bagher Zadeh et al., 2018) provide a new
platform for ERC researchers.

To tackle the ERC task, DialogueRNN (Ma-
jumder et al., 2019) first proposes an RNN-based
model which consists of four GRUs: Global,
Speaker, Party, and Emotion, to keep track of
the individual and global contextual states in
the conversation simultaneously. Following that,
DialogueGCN (Ghosal et al., 2019) presents a
graph-based model that uses a context window
to capture local contextual information. Later,
DAGERC (Shen et al., 2021b) applies GNN to
construct directed acyclic graphs in conversations
and RNN to model local contextual representa-
tions. Moreover, COGMEN (Joshi et al., 2022)
and MMGCN (Hu et al., 2021) adopt graph-based
methods in the same period to model local and
global contextual representations, respectively.

Previous work in ERC can be roughly di-
vided into unimodal (Yu et al., 2019; Shen et al.,
2021a; Wang et al., 2020) and multimodal ap-
proaches (Datcu and Rothkrantz, 2015; Wöllmer
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et al., 2010). The former uses a single textual
modality in experiments, whereas the latter con-
siders acoustic, textual, and visual modalities at the
same time. We focus on the multimodal setting.

2.2 Multimodal Fusion

Multimodal fusion aims to make full use of the
information in various modalities to improve the
recognition results (Atrey et al., 2010; Bramon
et al., 2011). This strategy is simple and effective,
which has drawn many researchers’ attention. For
example, in ERC scenarios, DialogueRNN (Ma-
jumder et al., 2019) first conducts experiments with
single text modality settings but also concatenates
multimodal features as an additional experiment.
Furthermore, COGMEN (Joshi et al., 2022) fol-
lows the setting of concatenating modality in Di-
alogueRNN and designs a GNN model based on
this setting. Moreover, MMGCN (Hu et al., 2021)
and EmoCaps (Li et al., 2022) concatenate each
modality together after passing it through a simple
LSTM or linear layer.

However, the multimodal interactions of the ex-
isting efforts are still very simple and inevitably
lead to suboptimal performance. For example,
COGMEN and MMGCN simply concatenate the
features of different modalities. We argue that
the contribution of different modalities varies and
should be treated separately. It is of vital impor-
tance to exploit the modal-interaction.

3 Method

3.1 Problem Formulation

In ERC, a conversation is defined as a sequence of
utterances C = {u1, u2, . . . , un}, where n is the
number of utterances. Each utterance ui can be
labeled by a discrete value yi, where yi ∈ S and S
is the emotion labels set. This task aims to predict
the emotion label yi for a given query utterance
ut based on the dialogue context u1 to un and the
corresponding speaker identity. Each conversation
dataset D contains N dialogues and can be denoted
as D = {Cj |j = 1, . . . , N}.

In a general multimodal setting, each utterance
ui consists of three modalities, including audio,
text, and video, so ui can be further expressed
as ui = {uai , uti, uvi }, where uai , u

t
i, u

v
i denote the

acoustic, textual, and visual features of the i-th
utterance with dimension da, dt, dv, respectively.
The whole conversation feature of each modality
can be denoted as Ua, U t, Uv.

3.2 Overview of the Proposed SCMM

As illustrated in Section 1, existing methods do not
consider the specific characteristic of diverse depen-
dency ranges for different samples and simply con-
catenate multimodal features, leading to undesir-
able results. Therefore, we propose Self-adaptive
Context and Modal-interaction Modeling (SCMM)
for Multimodal Emotion Recognition. As shown
in Figure 2(a), our model first takes the features of
each modality as input and obtains the context rep-
resentation of each modality after passing through
the context representation module. Then, each
context-represented modality feature will fully in-
teract and complement the information from each
other in the modal-interaction module, after which
we use self-adaptive path selection module to select
appropriate features to get the multimodal repre-
sentation for final classification.

In the context representation module, we develop
three submodules to obtain context representation
for utterances with different dependency ranges.
First, with the help of the attention mechanism,
each utterance can attend to the information of
other utterances, so we use a Transformer struc-
ture to extract global context representation for a
long dependency range. Besides, the GRU struc-
ture contains a gate mechanism that can filter out
information from long-distance utterances, so we
use this unit to obtain the local contextual represen-
tation of the utterance for a short dependency range.
Finally, for utterances that do not need the assis-
tance of contextual information, we use a linear
layer to extract the information. The arrows within
each submodule of the context representation mod-
ule illustrated in left of Figure 2(a) indicate the
afflux type of contextual information during the
representation process.

For multimodal features, we also consider the
difficulty of each utterance for the model to recog-
nize and model it by three modality interaction sub-
modules. For simple utterances, e.g., sentences that
contain emotional words, we directly concatenate
all modality features together and pass through the
linear layer. For slightly complex utterances, we
use diverse combinations and interactions among
modalities. For more difficult utterances, we take
the text modality as the primary modality and oth-
ers as the auxiliary modalities for interaction. An
additional Transformer with a local attention mask
is applied to leverage more modality information
from adjacent utterances in this phase.
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Figure 2: The overview of our proposed SCMM. (a): The overall framework. After feature extraction, the multimodal
features go through context representation, modal-interaction, and self-adaptive path selection modules in turn and
finally get predictions by the classifier. (b): The internal structure of the self-adaptive path selection module drawn
in (a). (c): The diagram of the local attention mask.

3.3 Context Representation Module

Integrating contextual information into the features
of utterances is essential, but the demands to es-
tablish dependencies between different utterances
vary. These dependencies can be summarized into
three basic types: long, short, and independent de-
pendency. Based on these different requirements,
we design three submodules to consider each case
separately.
Global Context Representation: People may dis-
cuss several topics in a conversation, and different
topics may have different emotional vibes. The
current utterance’s emotion may be based on an-
other topic raised a relatively long time ago, which
is a long-distance emotional dependency relation-
ship. We design the global context representation
submodule to model this scenario. With the com-
monly used attention mechanism, each utterance
can attend to other utterances without considering
the distance, which ensures effectiveness during
long-distance context representation. We use the
following multi-head self-attention mechanism to
capture global contextual information:

MultiHead(Q,K, V ) =

Concat(h1, h2, . . . , hn)W
K ,

(1)

where Q,K, and V are feature matrices, and
Q,K, V ∈ Rn×d. For the self-attention mecha-
nism, Q,K and V are derived from input features
with separate linear layers. They will be equally
divided into k heads along the feature dimension,
the i-th head can be denoted as Qi,Ki, Vi ∈ Rn× d

k .

hi = Attn(Qi,Ki, Vi), and Attn is calculated by
Eq. (2) for each head:

Attn(Qi,Ki, Vi) = σ(
QiK

T
i√

k
Vi), (2)

where σ denotes the softmax operation.
For dialogue features Ux of different modality,

where x ∈ {a, t, v} and Ux ∈ Rn×dx , the inter-
mediate representation obtained by MultiHead is
then passed through the commonly used residual
concatenation, LayerNorm, and feed-forward lay-
ers to obtain the final output Ux

g of this submodule,
i.e., Ua

g , U
t
g, and Uv

g .
Local Context Representation: In multi-turn con-
versations, the emotion of a speaker’s utterance
may be influenced by adjacent utterances, which is
a short-distance emotional dependency that occurs
at a local scale. To handle this scenario, we de-
sign the local context representation module. The
Gated Recurrent Units (GRU) update mechanism
ensures that each utterance will integrate contextual
information from closer utterances while forgetting
information about farther utterances. Therefore, we
use a bidirectional GRU network to obtain the local
context representation of each utterance. For any
modality input Ux, the local context representation
feature Ux

l is computed by:

Ux
l = Concat([

−−−→
GRU(Ux),

←−−−
GRU(Ux)]). (3)

We denote the features of each modality obtained
by this submodule as Ua

l , U
t
l , and Uv

l , respectively.
Direct Mapping: For the utterances that contain
enough information on their own, the process of
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context representation may introduce additional
noise. Therefore, we design the direct mapping
submodule to directly extract information for each
utterance through a linear layer as follows:

Ux
d = UxWd + bd. (4)

In this submodule, the output features of each
modality are Ua

d , U t
d, and Uv

d , respectively.

3.4 Modal-interaction Module
Given multimodal features Ua, U t, and Uv, a multi-
modal interaction module takes these three features
as input and outputs a multimodal feature Uatv. By
effectively exploiting the potential complementar-
ity of information among these modalities, the mul-
timodal features can be more discriminative, allow-
ing the model to perform better than unimodal mod-
els. Considering the different difficulties among
utterances, we design different interaction submod-
ules to handle simple, more complex, and difficult
scenarios, respectively.
Full Interaction: For simple utterances and ideal
cases where the three modalities Ua, U t and Uv

complement each other, and each modality contains
relatively equal information, we design the full
interaction submodule, which concatenates three
multimodal features directly and uses a linear layer
to extract multimodal feature. We denote it as Uatv

f

by linear layer and formulate it as follows:

Uatv
f = Concat(Ua, U t, Uv)Wf + bf . (5)

Partial Interaction: For slightly complex ut-
terances, the contribution of different modalities
varies due to the lack of key information or the
mixing of noise. In this regard, we design the par-
tial interaction submodule to alleviate this problem
through diversified modality interactions. Specif-
ically, we combines Ua, Uv and U t in pairs to
obtain Uat, Uvt and Uav features. For example,

Uat = Concat(Ua, U t)Wat + bat. (6)

Finally, we concatenate all paired features and re-
duce the dimension by a linear layer. We denote
this feature as Uatv

p .
Biased Interaction: For more difficult utterances,
we design the biased interaction submodule. In
previous work, many experiments have shown that
textual modality features are critical to the perfor-
mance of the final model in predicting emotions,
which indicates that the textual modality contains

the primary information in most cases. Therefore,
in this interaction process, we first take the text
as the primary modality and others as auxiliary
modalities to alleviate the information loss of text.
Second, we use a small Transformer with a local
attention mask to further leverage more modality
information from adjacent utterances.

Specifically, the biased interaction submodule
first concatenates U t together with Ua and Uv re-
spectively to obtain Uat

b and Uvt
b . These two fea-

tures will be concatenated after passing through
their respective linear layers. Later, a Transformer
with a local attention mask is applied to incorpo-
rate multimodal information from locally scaled
multimodal features.

Take Q,K from the self-attention mechanism,
the attention mask can be a binary matrix of di-
mension Rn×n. Mi,j = 1 means Qi can attend
to Kj during the attention process. Otherwise, it
means not. The operation of masked attention can
be formulated as follows:

Attn(Q,K, V,M) =
[

M ⊙ exp
(
QKT /

√
dk
)

∑
iM ⊙ exp

(
QKT

i /
√
dk
)
]
V,

(7)

where ⊙ represents element-wise multiplication.
For the local attention mask of this part, we de-

fine the parameters wp, wf for length of the depen-
dency context and the binary vector Mi ∈ Rn, with
the value of the j-th element in Mi being:

Mi,j =

{
1, j − i > wf or i− j > wp,
0, otherwise.

(8)

Eventually, we obtain the local attention mask
M = [M1,M2, ...,Mn], where M ∈ Rn×n. The
final multimodal feature Uatv

b is obtained after the
Transformer with the local attention mask M .

3.5 Self-Adaptive Path Selection

To best take advantage of the outputs of submod-
ules obtained in Sections 3.3 and 3.4, we design
the self-adaptive path selection module to adap-
tively select the most appropriate route and inte-
grate them by groups for the next stage. The path
selection process is done in a soft way, like an atten-
tion mechanism. As illustrated in Figure 2(b), for a
given feature X1, X2, X3 with the same dimension,
we first calculate the similarity with these features
through a trainable parameter Qp to get the score
of each feature. Then, the normalized score is used
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as the weight of each feature. We use the softmax
operation as the normalized function. Finally, we
take the weighted average of these features as the
final output, which can be formulated as follows:

Select(X1, X2, X3) =

σ(
Qp[X1, X2, X3]

T

√
dx

)[X1, X2, X3]
T ,

(9)

where [·, ·] is the feature concatenation operation.
In the context representation module, we denote

the output of each modality’s context representa-
tion modality through self-adaptive path selection
as Ua

c , U
t
c , U

v
c . In the modal-interaction module,

we obtain the feature Uatv
all as the final multimodal

feature by Select(Uatv
f , Uatv

p , Uatv
b ).

3.6 Cross-modal Contrastive Learning
We obtain the final prediction by passing Uatv

all

through a linear layer, and the final emotion la-
bel Ŷ of the input dialogue U can be calculated by
softmax (denoted by σ) and argmax operations:

P = σ(Uatv
all W2 + b2),

Ŷ = argmax(P ).
(10)

We first define the following classification loss:

Lcls = −
1

∑N
s=1 c(s)

N∑

i=1

c(i)∑

j=1

log pi,j [yi,j ] , (11)

where N is the number of dialogues, c(i) is the
number of utterances in the i-th dialogue, pi,j is
the probability distribution of utterance j in the
i-th dialogue, and yi,j is the expected class label of
utterance j in the i-th dialogue.

In order to improve the discriminability of mul-
timodal features we introduce supervised cross-
modal contrastive loss in the modal-interaction
module. In this stage, all dialogues within the batch
are flattened into utterance feature sequences. For
any two features of the same dimension X1, X2 ∈
RC×d, where C denoting the number of utterances
in the current batch, the supervised cross-modal
contrastive loss is calculated as:

li = −
1

|Mi|
log

∑C
j,yj=yi

exp(sim(x1,i, x2,j/)τ)
∑C

k,yk ̸=yi
exp(sim(x1,i, x2,k)/τ)

,

(12)
where |Mi| denotes the number of samples which
have the same emotion label as the i-th sample, τ
denotes the temperature defined in the original con-
trastive loss, and sim(x1,i, x2,i) is used to calculate

Dataset Number of dialogues(utterances)
train valid test

IMOECAP-4 120(3600) 31(943)
IEMOCAP-6 120(5810) 31(1623)

MELD 1152(11098) 280(2610)
MOSEI 2247(16261) 300(1868) 675(4640)

Table 1: Statistics of three datasets under four settings.

the cosine similarity of the two vectors. The cross-
modal contrastive loss Lcc between two feature set
X1, X2 is calculated by:

Lcc(X1, X2) =

∑C
i li
C

. (13)

We set text as the primary modality and assign
the cross-modal contrastive loss to these three in-
teraction submodules to get the following six parts:

Lcc =Lcc(U
a, U t) + Lcc(U

v, U t)+

Lcc(U
av, Uvt) + Lcc(U

av, Uat)+

Lcc(U
vt
b , Uat

b ) + Lcc(U
at
b , Uvt

b ).

(14)

Then we get the overall training objective:

min
θ
L = Lcls + βLcc, (15)

where β is a constant to control the loss weight.

4 Experiments and Results

4.1 Experimental Settings

Dataset

We evaluated our method on three benchmark
datasets, including IEMOCAP (Busso et al.,
2008), MELD (Poria et al., 2019), and MO-
SEI (Bagher Zadeh et al., 2018), all of which are
multimodal datasets with aligned acoustic, textual,
and visual information for each utterance in a con-
versation. In literature, two IEMOCAP settings
are used, one with four emotions (IEMOCAP-4)
and one with six emotions (IEMOCAP-6), so there
are four benchmarks to be compared. For the
train/validation/test splits of the dataset, following
previous work, we split IEMOCAP and MOSEI
according to the setting in (Joshi et al., 2022), and
MELD according to the setting in (Hu et al., 2021).
Statistics for these three datasets are summarized
in Table 1. For more information, please refer to
Appendix A.1.
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IEMOCAP MELD MOSEI

Acoustic 100 300 300
Visual 100 600 74
Textual 512 342 35

Table 2: Feature dimensions of each dataset.

Feature Extraction
We extracted uniform features to ensure a fair com-
parison. For IEMOCAP, audio and video features
are obtained in the same way as COGMEN (Joshi
et al., 2022), and text features are re-extracted by
sBERT. For MELD, audio features (size 300) are
extracted by OpenSmile toolkit with IS10 configu-
ration (Schuller et al., 2011), video features (size
600) are extracted by DenseNet (Huang et al., 2017)
in the same way as MMGCN (Hu et al., 2021), text
features are extracted by sBERT. For MOSEI, au-
dio features (size 640) are extracted using librosa 1

with 640 filter banks, video features (size 35) are
extracted by Facets, and text features are extracted
by sBERT. We presented the dimensions of the
final extracted features for each dataset in Table 2.

Compared Baselines
We compared both unimodal and multimodal meth-
ods proposed in the emotion recognition field to
verify the effectiveness of our model. For unimodal
methods, our model was compared with three
baselines, including DialogueRNN (Majumder
et al., 2019), DialogueGCN (Ghosal et al., 2019)
and DAG-ERC (Shen et al., 2021b). For multi-
modal baselines, our model was compared with
MMGCN (Hu et al., 2021), COGMEN (Joshi et al.,
2022) and EMOCAPs (Li et al., 2022). We reim-
plemented all these methods under the same exper-
imental settings for fair comparison. The BERT
structure in the transformers (Wolf et al., 2020) li-
brary is adopted as the Transformer structure used
in SCMM, and scipy (Virtanen et al., 2020) is used
to calculate the F1-score value. For more informa-
tion, please refer to Appendix A.2.

Implement Details
Our architecture trained on the IEMOCAP dataset
has 304 million parameters and takes around 3
minutes to train for 55 epochs on one 2080Ti GPU.
We fixed the random seed for all experiments to
ensure the reproducibility of our experiments.

1https://librosa.org/doc/latest/index.html

We trained our network using the Adam Opti-
mizer with a learning rate of 1e-4. The length of
the dependency context wf and wp are set to 5 for
IEMOCAP and 2 for MELD and MOSEI. In the bi-
ased interaction submodule, the Transformer layers
used for IEMOCAP, MELD, and MOSEI are 6, 2,
and 2, respectively. β is set to 0.2 for MOSEI, and
1 for other datasets. The above optimal parameters
are learned based on the grid-search strategy.

Following previous work (Hazarika et al., 2018;
Majumder et al., 2019; Ghosal et al., 2019), we
used weighted average F1-score for evaluation.

4.2 Main Results

Table 3 shows the results of our model compared
with other models on several multimodal emotion
conversation datasets. We have the following ob-
servations. On the one hand, our method achieves
significant improvement over existing state-of-the-
art methods. Specifically, our results are 6.84%,
4.44%, 2.36%, and 1.25% absolutely higher than
the second best result on IEMOCAP-6, IEMOCAP-
4, MELD, and MOSEI, respectively, demonstrating
the superiority of our method SCMM.

On the other hand, by comparing the results of
last two lines, we can see that the cross-modal
contrastive learning loss can bring consistent im-
provement on all these datasets, where the average
improvement is about 0.8%. The reason is that
the proposed contrastive loss can benefit the learn-
ing of discriminative features and make the margin
between different classes more clear.

4.3 Ablation Study and Analysis

Effect of Submodules
We compared the effects of different context repre-
sentation submodules and modal-interaction sub-
modules. We divided these submodules into three
parts based on their complexity, including the di-
rect mapping with the full interaction, the local
context representation with the partial interaction,
and the global context representation with the bi-
ased interaction. We then tested the effectiveness of
these three parts. The results are shown in Table 4,
where the absence of different modules (w/o Ux

d

and Uavt
f , w/o Ux

l and Uavt
p and w/o Ux

g and Uavt
b )

exhibits some performance loss on these datasets.
Among them, the absence of the global context rep-
resentation with the biased interaction submodule
causes the largest performance loss on all compared
datasets. Moreover, we can see that by removing
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Models
IEMOCAP-6

IEMOCAP-4 MELD MOSEI
Happy Sad Neutral Angry Excited Frustrated Average

DialogueRNN 36.43 67.34 49.62 59.55 63.93 49.35 54.74 74.11 52.44 48.40
DialogueGCN 56.85 72.17 48.47 54.17 74.16 50.86 58.68 75.15 57.08 48.40

DAGERC 50.17 73.25 56.55 56.41 66.28 58.27 60.69 73.38 51.01 48.45
MMGCN 33.18 66.96 56.03 63.90 68.14 58.51 59.29 74.81 56.30 59.92
COGMEN 52.31 73.39 53.55 58.97 71.48 53.85 60.38 77.62 55.43 50.50
EmoCaps 22.22 67.27 46.27 56.99 67.86 56.37 54.78 75.14 55.92 48.40

SCMM (w/o Lcc) 53.23 79.42 63.63 66.84 75.17 60.11 66.73 80.82 58.79 60.70
SCMM (ours) 45.37 78.76 63.54 66.05 76.70 66.18 67.53 82.06 59.44 61.17

Table 3: F1-score comparison on IEMOCAP, MELD, MOSEI datasets. Lcc is the cross-modal contrastive loss.

Methods IEMOCAP-6 IEMOCAP-4 MOSEI

w/o U t 48.90 69.48 54.47
w/o Ua 64.29 77.64 61.09
w/o Uv 66.08 80.39 60.09
w/o Ua and U t 39.49 48.91 53.63
w/o Uv and U t 50.84 66.37 48.48
w/o Ua and Uv 64.83 77.28 59.82

w/o Ux
d and Uavt

f 64.76 80.28 60.83
w/o Ux

l and Uavt
p 66.14 79.75 59.93

w/o Ux
g and Uavt

b 55.49 72.72 59.86

Ours(w/o Lcc) 66.73 80.82 60.70
Ours 67.53 82.06 61.17

Table 4: Ablation study of our method.

one or two modalities except Uv, especially U t,
the performance will decrease significantly. Above
results can also verify that the text is the primary
modality for this task.

Effect of Self-adaptive Path Selection

The self-adaptive path selection is designed for
the integration of features in different modules. To
demonstrate that this module plays a key role in our
model, we replaced it with an alternative implemen-
tation, where the input features are directly concate-
nated and then reduced in dimension by a linear
layer, which we call the linear selection module.
Table 5 shows that replacing our self-adaptive path
selection module with the linear selection module
leads to performance losses on all datasets, suggest-
ing that the self-adaptive path selection can yield
better features.

We also illustrated the weights of each path from
several samples to gain deep insights. As shown
in Figure 3, in the context representation module,
the global context representation submodule is the
most important one. In the modal-interaction mod-
ule, all the cases show that the biased and par-

Methods IEMOCAP-6 IEMOCAP-4 MOSEI

linear selection 65.66 81.39 61.14
self-adaptive path selection 67.53 82.06 61.17

Table 5: Comparison of experimental results using the
self-adaptive path selection module and the linear selec-
tion module.

Figure 3: Illustration of weights computed by self-
adaptive path selection module for two utterances.

tial interaction submodules are the most important,
which implies that the modal-interaction requires
more diverse interaction strategies rather than di-
rectly concatenating multimodal features.

Influence of Feature Extractor

For the results in Table 3, we reimplemented all
compared baseline methods and used the same ex-
tracted features to ensure a fair comparison, which
may result in different results than those reported in
the paper. To demonstrate the generalization abil-
ity of our method, we also conducted additional
experiments on IEMOCAP-6 based on the features
extracted by COGMEN (Joshi et al., 2022) and
EmoCaps (Li et al., 2022). The detailed difference
between features can be found in Appendix. The
results are shown in Table 6. We can see that our
SCMM still achieves much better performance than
them under their settings, validating our superiority
and robustness.
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Methods F1-score Methods F1-score

COGMEN 62.28 EmoCaps 71.16
SCMM (w/o Lcc) 68.50 SCMM (w/o Lcc) 73.70
SCMM 69.08 SCMM 75.18

Table 6: Results comparison under other methods’ fea-
ture extraction settings on IEMOCAP-6.

Figure 4: Influence of β for Lcc on IEMOCAP-4.

Parameter Sensitivity Analysis

According to the training objective in Eq. (15),
there is mainly one parameter β, which controls
the contribution of cross-modal contrastive learn-
ing loss. In experiments, we find the optimal value
for β by grid searching. We present the results of
our method on IEMOCAP-4 with respect to differ-
ent β in Figure 4. We can observe that our method
is relatively stable when β varies in the range of
[0.8, 1.2], which show that SCMM is insensitive to
this parameter in a certain range.

5 Conclusion

In this paper, for the task of multimodal emotion
recognition, we propose the self-adaptive contex-
tual and modal-interaction modeling method. We
first come up with the context representation mod-
ule with global, local modeling and direct mapping
to solve the issue of long, short, and independent
dependency. Then the modal-interaction consists
of full, partial, and bias interactions to fully investi-
gate the correlation and potential complementarity
among different modalities. Then we propose the
self-adaptive path selection module for better com-
bination and cross-modal contrastive learning loss
for discriminative feature learning. Extensive ex-
periments on three datasets under four settings have
demonstrated the effectiveness and superiority of
our proposed method.

6 Limitations

Our proposed method is an offline system in which
the input is a dialogue containing all utterances
rather than a single utterance input in chronological
order. An online system for emotion recognition
can be applied in real-time conference systems or
human-computer interaction, so the online system
has potential value for future research. Our method
can be built into online systems by creating buffer
systems such as history windows. However, all the
baseline methods in the past are offline systems,
such as COGMEN, DialogueRNN, etc. In addition,
the form of datasets also leads us to construct an
offline system for training and testing. On the other
hand, the offline system also has application sce-
narios such as analyzing emotions of posted videos,
opinion mining in social media, etc. Therefore,
our method only builds an offline system under the
offline experimental setting that can be compared
and evaluated.

Besides, the input of our method is feature-based.
The original text, audio, and video files will first
pass through feature extractors to obtain multi-
modal features, which may cause information loss
and hurt performance. We focus on feature-based
training methods because training based on the
original files costs a lot. For example, training
a video encoder generally requires several V100
GPUs and days of training time. Therefore, we,
including the baseline methods we compare, adapt
the feature-based training methods. When the cost
permits, training based on source files is worth ex-
ploring in future work. With feature-based training
methods, different baseline methods use feature
extractors to obtain features, leading to a lack of
fairness in method comparison. In this regard, we
reimplemented all open-source methods and com-
pared them using a unified feature file to ensure the
fairness of the experimental results. At the same
time, we also conducted evaluations with different
signature files to verify the generalization of the
method.
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A Appendix

A.1 Datasets and Feature Extraction
We summarized the statistics for these three
datasets in Table 1. All used datasets are com-
monly used for emotion recognition in the English
language. The ids of the data are anonymized by
sequential ids or random hash values.
IEMOCAP: IEMOCAP is a multimodal dataset
that contains approximately 12 hours of videos for
human emotion recognition analysis. Each video
consists of a single dyadic dialogue, and every utter-
ance in a conversation is annotated with an emotion
label from six categories: happy, sad, neutral, an-
gry, excited, and frustrated. IEMOCAP has two
settings, one for four emotion recognition tasks (an-
gry, sad, happy, neutral) and one for six emotion
recognition tasks (happy, sad, neutral, angry, ex-
cited, and frustrated). We conducted experiments
on both of these settings. The IEMOCAP dataset
uses the license written by itself, and we have ob-
tained the authorization of The Signal Analysis and
Interpretation Laboratory required for accessing
and using the IEMOCAP dataset.
MELD: MELD is a large-scale multimodal and
multi-speaker emotional dialog dataset collected
from the Friends TV series. There are more than
1.4k dialogues in the dataset, and the dialogues are
participated by multiple speakers instead of only
two. Each utterance in a conversation is annotated
with an emotion label from seven categories: anger,
disgust, sadness, joy, neutral, surprise, and fear.
It uses the GNU (General Public License) v3.0
license.
MOSEI: MOSEI is an emotional recognition
dataset made up of 23k sentence utterance video
clips taken from YouTube. Specifically, unlike
multi-speaker datasets such as IEMOCAP and
MELD, MOSEI has only one speaker in a video
clip. Each utterance is annotated with an emotion
label from six categories: happiness, sadness, dis-
gust, fear, surprise, and anger. CMU-MOSEI also
uses a license written by itself, which declaims that
the dataset is free for anyone.

We extracted uniform features to ensure a fair
comparison. For IEMOCAP, audio and video
features are obtained in the same way as COG-
MEN (Joshi et al., 2022), and text features are
re-extracted by sBERT. For MELD, audio features
(size 300) are extracted by OpenSmile toolkit with
IS10 configuration (Schuller et al., 2011), video fea-
tures (size 600) are extracted by DenseNet (Huang

et al., 2017) in the same way as MMGCN (Hu et al.,
2021), text features are extracted by sBERT. For
MOSEI, audio features (size 640) are extracted us-
ing librosa 2 with 640 filter banks, video features
(size 35) are extracted by Facets, and text features
are extracted by sBERT.

The distribution of the data used in our evalua-
tion may have some bias. For example, IEMOCAP
comes from the performance of some actors, and
MELD is obtained from the TV series Friends. In
real-world scenarios, conversations may be more
complex, such as the position of the camera may be
more variable, the types of emotions may be more,
the modality of the collected data may be missing,
etc. However, all baselines we compared are eval-
uated on these datasets. In the future, datasets in
the wild or collected from natural scenes can be
considered to verify the effectiveness of our algo-
rithms.

A.2 Baselines and Implementation

DialogueGCN (Ghosal et al., 2019): it leverages
self and inter-speaker dependency based on a graph
convolutional network. Each node of the graph
represents individual utterance features encoded by
bi-LSTM, and the edges between a pair of nodes
are constructed relying on the dependency between
speakers within a sliding window. Due to only
the text modality being used in DialogueGCN, we
simply concatenated the features of three modal-
ities for DialogueGCN to make it comparable to
SCMM.
DialogueRNN (Majumder et al., 2019): it employs
four gated recurrent units(GRU), global GRU, party
GRU, and emotion GRU to model the speaker, the
context, and the emotion of the preceding utter-
ances. Specifically, the global, party, and speaker
GRU update the context, party state, and speaker
state, respectively. The emotion GRU is used to
model the emotionally relevant representations.
DAG-ERC (Shen et al., 2021b): it models the con-
versation context through a directed acyclic graph
with constraints on speaker identity and positional
relations. Furthermore, DAG-ERC gathers con-
textual information for utterances in a single layer
based on a directed acyclic graph neural network.
COGMEN (Joshi et al., 2022): it leverages both
local information in a dialogue based on GNN, and
the GraphTransformers are used to fuse multiple
modalities. However, instead of exploiting the in-

2https://librosa.org/doc/latest/index.html

6278



(a) w/o (b) w/ 

Figure 5: t-SNE representation of IEMOCAP-6 before
and after appling Lcc.

trinsic connections between features of different
modalities, COGMEN simply concatenates them
and does not enhance much in multimodal settings.
MMGCN (Hu et al., 2021): it utilizes both mul-
timodal and long-distance contextual information
based on a graph convolutional network. In addi-
tion, MMGCN constructs graphs in each modal-
ity and builds edges between nodes corresponding
to the same utterance across multiple modalities.
Though good results were achieved on IEMOCAP
and MELD, it still treats different modalities in
nearly the same way, which somewhat reduces the
performance on multimodal tasks.
EmoCaps (Li et al., 2022): it designs a model
named Emoformer based on Transformer for fea-
ture extraction. After feature extraction, the three
modality features are concatenated. Finally, a
model based on bi-LSTM layers is applied for emo-
tion prediction.

We used PyTorch to reimplement all these meth-
ods and SCMM. The BERT structure in the trans-
formers (Wolf et al., 2020) library is adopted as
the Transformer structure used in SCMM, and
scipy (Virtanen et al., 2020) is used to calculate
the F1-score value. Our architecture trained on the
IEMOCAP dataset has 304 million parameters and
takes around 3 minutes to train for 55 epochs on
one 2080Ti GPU. We fixed the random seed for
all experiments to ensure the reproducibility of our
experiments.

A.3 Visualization of Contrastive Learning
Features

We adopted the t-SNE to visualize feature maps
before and after adding the cross-modal contrastive
learning loss. As shown in Figure 5, our con-
trastive learning loss widens the gap among differ-
ent classes, leading to more discriminative feature
representations.
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Figure 6: Confusion matrix for IEMOCAP-6.

A.4 Error Analysis
After analyzing the dataset, we found that the error
predictions of our model mainly came from the er-
ror identification of similar emotions. As shown in
Figure 6, where most of the error samples in happy
are classified as excited and most of the error sam-
ples in frustration are classified as anger, etc. These
problems also exist in DialogueRNN, COGMEN,
and DAGERC. Even though our final results show
some improvement compared to previous work, the
model still cannot avoid such prediction bias.
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