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Abstract

The task of fact-checking deals with assessing
the veracity of factual claims based on credi-
ble evidence and background knowledge. In
particular, scientific fact-checking is the varia-
tion of the task concerned with verifying claims
rooted in scientific knowledge. This task has
received significant attention due to the grow-
ing importance of scientific and health discus-
sions on online platforms. Automated scientific
fact-checking methods based on NLP can help
combat the spread of misinformation, assist
researchers in knowledge discovery, and help
individuals understand new scientific break-
throughs. In this paper, we present a com-
prehensive survey of existing research in this
emerging field and its related tasks. We provide
a task description, discuss the construction pro-
cess of existing datasets, and analyze proposed
models and approaches. Based on our findings,
we identify intriguing challenges and outline
potential future directions to advance the field.

1 Introduction

In today’s digital age, vast amounts of data are gen-
erated and new scientific breakthroughs achieved
at a rapid pace. With millions of scientific articles
being published annually, it has become increas-
ingly challenging for researchers and the general
public to stay informed about the latest develop-
ments and discoveries across various fields. On
top of that, an especially challenging task for re-
searchers is finding appropriate evidence for sci-
entific claims and research hypotheses they are
currently investigating. Exploring large academic
databases and thoroughly examining scientific pub-
lications in them in order to verify specific facts is
a time-consuming process. Automating the process
of fact-checking scientific claims using methods
based on Natural Language Processing (NLP) for
knowledge exploration and evidence mining can
greatly aid researchers in these efforts.

One way how the Internet has benefited society
is by making scientific knowledge easily accessi-
ble, transferable, and searchable in a matter of sec-
onds. Inevitably, this has introduced new risks and
challenges – it has become difficult to discern reli-
able sources from dubious content. Many scientific
claims found in online articles, social media posts,
or news reports are not always trustworthy and
backed by reliable evidence. Furthermore, not only
are humans prone to creating inaccurate informa-
tion – modern generative language models can also
produce misleading text that sounds convincing.
All of these factors, combined with the quick pace
at which content is proliferated online, contribute
to the spread of misinformation, which has nega-
tive societal consequences (West and Bergstrom,
2021).

Fact-checking is the task of assessing the verac-
ity of factual claims appearing in written or spoken
sources. It is traditionally performed manually by
experts in journalism and dedicated applied fields.
Automated fact-checking appeared as an approach
where methods of Natural Language Processing
(NLP) and Machine Learning (ML) are used to as-
sist experts in making these decisions or completely
automating the whole process (Nakov et al., 2021).
Fact-checking becomes especially relevant during
major political events like elections or referendums
because of a sharp increase in deceptive and propa-
gandist content. Most recently, the COVID-19 pan-
demic has brought the scientific discourse and the
misinformation that comes with it into the spotlight.
Medical misinformation is especially dangerous be-
cause it has influenced people to try unproven cures
and treatments and make harmful health-related de-
cisions. (Roozenbeek et al., 2020; Pennycook et al.,
2020).

We define scientific fact-checking as a subset of
the fact-checking task concerned with verifying the
veracity of claims related to scientific knowledge.
While the primary role of general fact-checking is
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to help detect misinformation and curb its spread,
scientific fact-checking additionally aids scientists
in testing their hypotheses and helps wider audi-
ences contextualize new scientific findings. The
most popular scientific domain in scientific NLP
research is the biomedical domain (Rajpurkar et al.,
2022), but insights learned from it can be gener-
alized to other scientific domains. Scientific fact-
checking can be performed both over the highly
structured and complex language of science found
in research publications and over the more easily
understandable language found in news articles and
online postings meant for lay audiences. Many sci-
entists have decried the misinterpretation of their
work when presented in the news press (Yavchitz
et al., 2012), which makes scientific fact-checking
even more relevant in bridging the gap between
these two registers by performing an evidence-
based assessment of scientific discoveries.

Considering the constantly increasing amount of
misinformation in the digital era and the expanding
number of scientific publications, the interest in
developing automated fact-checking solutions and
efficient resources for it is on the rise. We present
this survey to systematize the existing work in this
area. To the best of our knowledge, this is the first
survey on fact-checking with a specific focus on
the scientific domain. Our three main contributions
are:

1. We describe existing datasets for scientific
fact-checking, including their construction
process and main characteristics.

2. We analyze the developed approaches and
models for solving the task of scientific fact-
checking, focusing on their components and
design choices.

3. We outline general findings, identify chal-
lenges, and highlight promising future direc-
tions for this emergent task.

2 Task Definition

2.1 General Fact-checking

In general, fact-checking can be defined as the task
of assessing whether a factual claim is valid based
on evidence. It is a time-consuming task that is still
usually performed manually by journalists. Auto-
mated approaches based on NLP have emerged to
help assist humans in parts of the fact-checking
process. Popular datasets used for benchmarking

this task in NLP contain rewritten Wikipedia sen-
tences as claims and annotated articles as evidence
(Thorne et al., 2018; Jiang et al., 2020). For real-
world settings, datasets were constructed by col-
lecting claims and expert-written verdicts from ded-
icated fact-checking websites, such as PolitiFact
(Vlachos and Riedel, 2014), Snopes (Hanselowski
et al., 2019), or MultiFC (Augenstein et al., 2019)
which draws from 26 fact-checking portals. This
type of datasets usually contains claims currently
trending in society, related to topics from world
news, politics, media, or online rumors and hoaxes.

2.2 Scientific Fact-checking
We define scientific fact-checking as a variation
of the fact-checking task that deals with assessing
claims rooted in scientific knowledge. The dom-
inant purpose of general fact-checking is to com-
bat the spread of misinformation, while scientific
fact-checking has the additional motive of helping
scientists verify their research hypotheses, discover
evidence, and facilitate scientific work. Scientific
fact-checking comes with specific challenges not
always present in general fact-checking, such as:

• Claims: Facts to be checked can be re-
search hypotheses that scientists want to ver-
ify, claims made by everyday social media
users, or queries posed to search engines
dealing with scientific concepts (e.g., health-
related concerns).

• Evidence: Scientific knowledge is constantly
evolving when new research is conducted,
which can make previous evidence obsolete
and invalid. Moreover, different studies can
come to diverging conclusions which com-
plicates the final assessment of a claim. In
clinical settings, this obstacle is facilitated by
systematic reviews, which provide levels of
evidence and strength of recommendations for
any decision.

• Domain: The scientific language used in re-
search publications is highly complex and
contains domain-specific terminology, which
presents a challenge for a general-purpose lan-
guage model. This requires adapting the NLP
systems to the scientific domain. On top of
that, scientific text often contains relations be-
tween concepts spanning multiple sentences,
which makes representation of the full context
and long-text modeling an essential aspect.
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• Structure: The highly structured nature of
scientific knowledge makes it convenient to
model it with structured representations like
knowledge graphs, which can aid the fact-
checking process. On the other hand, sci-
entific publications commonly include differ-
ent visualization techniques like tables, charts,
and figures, all of which introduce additional
multimodal challenges to verification.

These characteristics and other challenges with
scientific fact-checking will be discussed in more
detail in the following sections, especially in the
Discussion section.

3 Related Tasks

In this section, we present tasks related to scientific
fact-checking. We group them into three categories:
(1) tasks related to misinformation detection; (2)
retrieval of claims, arguments, and evidence from
text; and (3) NLP tasks in the scientific domain.

3.1 Misinformation Detection
Since the principal function of fact-checking is to
curb the spread of misinformation, it naturally be-
longs to a group of NLP tasks concerned with mis-
information detection. Related tasks in this domain
include fake news detection (Zhou and Zafarani,
2020), propaganda detection (Da San Martino et al.,
2021), rumor detection (Bian et al., 2020), or stance
detection (Hardalov et al., 2022). While most of
these tasks deal with misinformation related to
politics and society, recently, there has been an
increase in scientific and health-related misinfor-
mation detection, especially pertaining to content
related to the COVID-19 pandemic (Shahi and Nan-
dini, 2020; Hossain et al., 2020; Antypas et al.,
2021).

3.2 Claim Detection and Evidence Mining
A crucial prerequisite for automated fact-checking
is devising methods that detect claims in the open
domain. To achieve this, Yuan and Yu (2019) used a
rule-based system to identify health claims in news
headlines, while Wührl and Klinger (2021) develop
a BERT-based model to detect biomedical claims
in social media posts. After the claims are detected,
an important next step is determining whether a
claim is check-worthy since all claims are deemed
relevant or interesting enough to be fact-checked.
Check-worthiness for scientific claims was studied
in the shared task CLEF-CheckThat! (Nakov et al.,

2022) and by Zuo et al. (2022), where annotators
helped construct a dataset of health-related claims
from news articles.

Automatic gathering of evidence for scientific
claims constitutes another line of research. There is
work in this area focusing on humanities and social
sciences (Stahlhut, 2021), although the majority
of work we found is once again in life sciences.
Numerous tools have been developed for searching
PubMed, the largest database of biomedical pub-
lications (Lu, 2011), such as PubTator (Wei et al.,
2019), Textpresso (Müller et al., 2018), LitSense
(Allot et al., 2019), and EvidenceMiner (Wang
et al., 2020). These methods usually look at the
posed query (claim) and detect named entities, key-
words, or metadata patterns to retrieve relevant re-
sults from the database. The end goal of this pro-
cess is to help scientists gather evidence for their
research, while in fact-checking, evidence retrieval
is just one component of the whole process.

3.3 Scientific NLP Tasks

Scientific fact-checking belongs to a group of NLP
tasks dealing with scientific text understanding.
These tasks share a common challenge: working
with highly complex scientific language and spe-
cific terminology. This has become even more
apparent with the underwhelming performance of
large language models, pre-trained on vast amounts
of news data and web content, on NLP tasks in the
scientific domain. Domain adaption is an essential
cornerstone of modern NLP models working with
specialized domains.

The task of Natural Language Inference (NLI),
commonly equated with Recognizing Textual En-
tailment (RTE), is the task of inferring whether a
premise entails or contradicts a given hypothesis.
This task is a crucial component of automated fact-
checking since predicting the final veracity of the
claim is modeled entailment recognition between
a claim and found evidence. For the scientific do-
main, datasets like MedNLI, which features medi-
cal claims rooted in the medical history of patients
(Romanov and Shivade, 2018); SciNLI, which has
claims from the domain of computational linguis-
tics (Sadat and Caragea, 2022); and NLI4CT, with
claims and evidence that originate from clinical
trials reports of breast cancer patients (Vladika and
Matthes, 2023).

Another knowledge-intensive NLP task related
to fact-checking is question answering. In par-
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Dataset # Claims Claim Origin Evidence Source Domain

SCIFACT (Wadden et al., 2020) 1,409 Researchers Research papers Biomedical

PUBHEALTH (Kotonya and Toni, 2020b) 11,832 Fact-checkers Fact-checking sites Public health

CLIMATE-FEVER (Diggelmann et al., 2020) 1,535 News articles Wikipedia articles Climate change

HEALTHVER (Sarrouti et al., 2021) 1,855 Search queries Research papers Health

COVID-FACT (Saakyan et al., 2021) 4,086 Reddit posts Research, news COVID-19

COVERT (Mohr et al., 2022) 300 Twitter posts Research, news Biomedical

Table 1: Datasets for the task of scientific fact-checking and claim verification

ticular, open-domain question answering aims to
find answers to given questions in unstructured
textual corpora (Karpukhin et al., 2020), reminis-
cent of the process of finding relevant evidence for
given claims in fact-checking. Popular datasets
for biomedical QA are BioASQ (Tsatsaronis et al.,
2015) and PubMedQA (Jin et al., 2019). Another
important benchmark is BLURB (Biomedical Lan-
guage Understanding and Reasoning Benchmark),
introduced by Gu et al. (2022) to measure the per-
formance of models in six different natural lan-
guage understanding tasks over biomedical text.
Finally, automated evidence synthesis is a task that
aims to automate the process of creating systematic
reviews for clinical trials (Brassey et al., 2021).

3.4 Related Surveys

There are already existing surveys that cover gen-
eral automated fact-checking (Thorne and Vlachos,
2018; Zeng et al., 2021; Guo et al., 2022) by formal-
izing the task, outlining the most important datasets
and proposed solutions, and discussing challenges.
The survey by Kotonya and Toni (2020a) focuses
on explainability methods in existing fact-checking
approaches and present the most important explain-
ability aspects these systems should satisfy. The
survey by Bekoulis et al. (2021) focuses on ap-
proaches for tackling FEVER, the most popular
dataset for fact verification (Thorne et al., 2018).

4 Datasets

In this section, we outline the existing datasets for
scientific fact-checking that we found in the liter-
ature. The discovery process started with query-
ing the well-known databases ACL Anthology,1

1https://aclanthology.org/

IEEE Explore,2 and ACM Digital Library3 with
the search string ("scientific" OR "biomedical")
AND ("fact checking" OR "fact verification" OR
"claim verification"). Retrieved articles were col-
lected and the list was further expanded with any
cited or citing paper from the initial batch of arti-
cles, according to Semantic Scholar.4 In order for
a dataset to be considered a fact-checking dataset,
we stipulate it needs to provide claims, evidence
(either documents or sentences), and final verac-
ity labels. Such a dataset enables both the task of
evidence retrieval and verdict prediction. This is
important because the end goal of many automated
fact-checking systems is to emulate the work of
experts, where both seeking the evidence and mak-
ing conclusions based on them constitute the pro-
cess. This requirement narrowed the final list to the
datasets summarized in Table 1. In the remainder
of the section, we will describe the process and
challenges related to constructing datasets.

4.1 Claim Creation

The starting point in the dataset construction pro-
cess is collecting the claims that will later be fact-
cheked. Claims in fact-checking are usually di-
vided into synthetic, referring to claims written
by annotators (e.g., by modifying sentences from
Wikipedia), and natural, which are those claims
crawled from real-world sources like fact-checking
sites or social media posts. The first type of claims
end up being fluent, atomic, and decontextualized,
which is very appropriate for processing by NLP
models (Wright et al., 2022b). Other authors focus
on more organic and noisy claims found in online

2https://ieeexplore.ieee.org/
3https://dl.acm.org/
4https://www.semanticscholar.org//
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posts since such claims are usually relevant and
interesting to be fact-checked automatically (Mohr
et al., 2022).

One common approach is to take original sen-
tences from an appropriate source and have anno-
tators reformulate them to a cleaner form. The
dataset SCIFACT features biomedical claims that
originate from human-written citation sentences in
research articles but with the final form rewritten
by annotators to make them more atomic and easily
processed. Similarly, claims in HEALTHVER origi-
nate from Bing snippets of the most-searched user
queries related to health and COVID-19, eventu-
ally reformulated by annotators. In the same vein,
CLIMATE-FEVER contains sentences related to
climate change extracted from online blogs and
news websites, rewritten by annotators.

The remaining datasets from Table 1 relied on
completely automatically retrieving claims. PUB-
HEALTH used news titles from fact-checking ar-
ticles related to public health as its claims. This
assumption works in many cases where titles are
indeed factual claims, but some examples in the
final dataset are generic titles with no relevance for
fact-checking. COVID-FACT scraped claims from
posts of a highly moderated subreddit r/COVID19,
where users were already required to make atomic
claims in their post titles. They also automatically
constructed all of their negative (refuted) claims
with word in-filling from masked language models,
which ended with some unusable examples. Fi-
nally, COVERT is the only dataset in the list that
features completely organic claims found in Twit-
ter posts. They used a biomedical claim detection
model Wührl and Klinger (2021) to extract claims
that feature a causative relation and also included
mentions of any biomedical entities.

4.2 Evidence Set Construction

Once the claims are collected, the next step is pair-
ing them with appropriate evidence that addresses
their veracity. The evidence source are often sci-
entific publications, featuring highly complex and
structured scientific language, or more easily under-
standable sources like news articles and Wikipedia
articles. While working with text from scientific
publications is more challenging both for humans
and NLP models alike, they provide more rigor-
ous scientific evidence. On the other hand, the
general-purpose text provides evidence in a more
explainable and intuitive form to a wider audience.

The SCIFACT dataset pairs the claims with ab-
stracts of those scientific publications where they
originated from, adding distractor abstracts to
make detecting appropriate evidence more chal-
lenging. Likewise, claims in HEALTHVER are also
mapped to appropriate scientific publications found
by the annotators. Datasets COVID-FACT and
COVERT feature a combination of both scientific
publications and news articles as their evidence
source, while PUBHEALTH uses solely the web
articles from fact-checking websites where their
claims originated from. In the same way as the
original FEVER dataset, CLIMATE-FEVER uses
Wikipedia articles as its evidence source.

4.3 Class Labels

Another integral component of dataset construction
is labeling the claims with appropriate veracity la-
bels. Following the tradition set by the FEVER
dataset (Thorne et al., 2018), most of the datasets
include three labels: SUPPORTED, REFUTED, and
NOT ENOUGH INFORMATION (NEI). The defini-
tion of the NEI label has a different meaning in
different datasets. In SCIFACT , this label refers
to those claims for which none of the candidate
abstracts contain suitable evidence to make a deci-
sion. In other datasets, it refers to the case where
relevant evidence itself implies or states that there
is currently not enough information to make a re-
liable and informed conclusion about the claim’s
veracity. Additionally, the dataset PUBHEALTH

is the only one to feature a MIXED label, a label
denoting a claim that consists of multiple factual
statements with opposite veracity labels.

5 Approaches

In this section, we describe different modeling
approaches devised for the task of scientific fact-
checking. The standard framework usually consists
of three major components that can all be mod-
eled as well-established NLP tasks: document re-
trieval, evidence (rationale) selection, and verdict
prediction (Zeng et al., 2021). This framework is
visualized in Figure 1.

Table 2 summarizes the models we found in
the literature, developed for the scientific fact-
checking datasets from the previous chapter, with
three framework components in each of them high-
lighted. While the most common approach is build-
ing separate models for each element and applying
them in a pipeline, the best-performing systems
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Figure 1: The standard three components of the frame-
work for automated scientific fact-checking

jointly learn the rationale selection and verdict pre-
diction with a shared representation. The dataset
SCIFACT has the most models developed for it,
partly owing to the shared task SCIVER (Wadden
and Lo, 2021). For some of the datasets, we did
not find dedicated models other than baselines pro-
vided in their originating papers. We analyze each
part of the framework in more detail.

5.1 Document Retrieval

Given a corpus of documents that serve as the
knowledge source, document retrieval is concerned
with retrieving the relevant documents that might
contain evidence related to the claim. It is usually
solved with approaches typical for Information Re-
trieval. These can be separated into sparse retrieval
and dense retrieval approaches. Sparse retrieval
uses ranking functions such as TF-IDF and BM25,
which match exact keywords in a query with an
inverted index of all words from the corpus. Con-
versely, dense retrieval deploys dense vector repre-
sentations of queries, which consider the semantic
meaning of the query and can catch synonyms and
related concepts (Karpukhin et al., 2020).

For SCIFACT, the document retrieval task fo-
cuses on retrieving relevant abstracts from a cor-
pus of around 5 thousand given scientific abstracts.
The baseline model VeriSci uses the simple TF-IDF
metric to retrieve top k relevant abstracts. The mod-
els VerT5erini and later MultiVerS use the approach
of first retrieving top k relevant abstracts using the
BM25 metric and then adjusting the rankings using
a T5 (Raffel et al., 2020) neural pointwise re-ranker
based on (Nogueira et al., 2020), which is trained

on the MS MARCO passage dataset used for ma-
chine reading comprehension (Nguyen et al., 2016).
On the other hand, ParagraphJoint and ARSJoint
used the dense vector representation BioSentVec
(Chen et al., 2019), which was trained from 30
million biomedical publications and clinical notes.

Searching for evidence in a small corpus of doc-
uments (5k in SCIFACT ) is useful for experimen-
tal settings but not realistic for real-world settings
where large databases with millions of scientific
publications have to potentially be queried to find
appropriate evidence. When expanding document
retrieval for SCIFACT to 500k documents in (Wad-
den et al., 2022a) and using the same BM25 + T5
re-ranking approach, the authors noticed perfor-
mance drops of at least 15 points in the final F1
score of veracity prediction. This shows the need
for a more precise semantic search of evidence doc-
uments. The authors of COVID-FACT tackle this
by using snippets of the top 10 results returned by
Google Search API for a given claim. This mimics
how humans would approach fact-checking, but
usually, additional verification of source quality
and trustworthiness is needed in such an approach.

5.2 Evidence Selection

Evidence selection is the task of selecting relevant
rationale sentences from the previously retrieved
documents to be used as evidence for claim veracity
prediction in the next step. Even though this step
can be modeled as a span detection task, evidence
is usually modeled at a sentence level. It can then
be taken as a binary classification task of predicting
whether a sentence is relevant or irrelevant. Most
commonly, top k sentences are selected, similarly
to the document retrieval step.

A common approach to evidence selection is
to deploy models for sentence similarity and take
those sentences that are the most similar to the
claim being checked. The baselines for PUB-
HEALTH and COVID-FACT both use the Sentence-
BERT model (Reimers and Gurevych, 2019) to
retrieve the top 5 most similar sentences. Sentence-
BERT is a model based on siamese networks and
provides semantically rich sentence embeddings
that can easily be compared using cosine-similarity.
VerT5erini uses a T5 model fine-tuned on MS
MARCO (same as in the previous step) for this
task.

While using sentence similarity for evidence se-
lection is a straightforward and intuitive approach,
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Dataset Model
Document
Retrieval

Rationale
Selection

Verdict
Prediction Result

(F1)

SCIFACT

VeriSci (Wadden
et al., 2020)

TF-IDF BERT BERT 0.395

ParagraphJoint (Li
et al., 2021)

BioSentVec BERT + MLP /
BERT + KGAT

BERT + MLP 0.609

VerT5erini
(Pradeep et al.,
2021)

BM25 + T5 re-
ranker (tuned on
MS MARCO)

T5 (tuned on
MS MARCO)

T5 (no fine-
tuning)

0.634

ARSJoint (Zhang
et al., 2021)

BioSentVec BioBERT, MLP BioBERT, MLP 0.655

MultiVerS (Wad-
den et al., 2022b)

BM25 + T5 re-
ranker

Longformer (bi-
nary head)

Longformer
(ternary head)

0.672

COVERT Zero-shot Mul-
tiVerS (Wührl and
Klinger, 2022)

BM25 + T5 re-
ranker

Longformer (bi-
nary head)

Longformer
(ternary head)

0.620

PUBHEALTH Baseline (Kotonya
and Toni, 2020b)

provided Sentence-BERT SciBERT 0.705

CLIMATE-
FEVER

ClimateBERT (We-
bersinke et al., 2021)

provided provided ClimateBERT 0.757

HEALTHVER Baseline (Sarrouti
et al., 2021)

provided provided T5-base 0.796

COVID-
FACT

Baseline (Saakyan
et al., 2021)

Google Search Sentence-BERT RoBERTa (fine-
tuned on GLUE)

0.820

Table 2: Models developed for scientific fact-checking with three pipeline components and verdict prediction
performance on their respective dataset

it can fall short because evidence sentences could
be paraphrased or use rather different wording from
the original claim. Consequently, Wright et al.
(2022a) improve the performance of evidence selec-
tion on COVERT and COVID-FACT datasets by
fine-tuning sentence similarity models on pairs of
sentences about scientific findings from scientific
articles matched with paraphrased sentences from
news and social media reporting on these findings.

In all mentioned approaches, evidence selection
and verdict prediction are made with two separate
models, which means that the final claim veracity
predictor might not have knowledge of the full con-
text of evidence. ParagraphJoint, ARSJoint, and
MultiVerS are so-called joint models because they
all use multi-task learning to jointly learn the tasks
of rationale selection and verdict prediction. For
this purpose, they use a shared representation of
the claim and the abstract obtained by concatenat-
ing the claim with the full abstract of a candidate
document and converting it to a dense representa-
tion. This alleviates the problem of missing context

during final label prediction. ParagraphJoint uses
BERT (Devlin et al., 2019) as the encoder model,
while ARSJoint uses the domain-specific BioBERT
model (Lee et al., 2020), pre-trained on the text of
biomedical research publications. Evidence selec-
tion is performed by passing the representation of
each candidate sentence (extracted from the full
abstract representation) to a multi-layer perceptron
(MLP) classifier. Likewise, MultiVerS obtains the
joint claim-abstract representations and perform ra-
tionale selection with the Longformer model (Belt-
agy et al., 2020), a transformer model for long
documents that takes up to 4096 tokens.

5.3 Verdict Prediction

The final step of the fact-checking pipeline is for a
model to produce the verdict on a given claim’s
veracity. As mentioned in the datasets section,
the most common setting is to have three labels
(SUPPORTED, REFUTED, NOT ENOUGH INFOR-
MATION), although models developed for one set
of labels can be adapted to a dataset with a differ-
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ent set of labels. This component can easily be
modeled as a classification task where the classifier
learns to predict one of the three classes. All the
baselines from Table 2 perform this task by fine-
tuning large language models for label prediction
on their respective datasets. The base models used
include the general-purpose BERT or T5 and the
domain-specific BioBERT and SciBERT (Beltagy
et al., 2019) models. These models receive as their
input pairs of claims and accompanying rationale
sentences selected in the previous step and then
give the final output as output.

As described previously, the joint models devel-
oped for solving SCIFACT use multi-task learning
to learn both the evidence selection and verdict
prediction steps with a shared claim+abstract repre-
sentation. Both ParagraphJoint and ARSJoint again
use a dedicated MLP that takes the previous step’s
representation. At the same time, ParagraphJoint
also experimented with Kernel Graph Attention
Network (KGAT), which performed well for gen-
eral fact-checking datasets by learning relations
between evidence sentences using a graph struc-
ture (Liu et al., 2020). MultiVerS once again uses
the Longformer model, this time with a three-way
classification head over the encoding of the entire
claim and rationale sentences.

The MultiVerS model was also used in a zero-
shot setting by Wührl and Klinger (2022) to fact-
check the COVERT dataset. Since this dataset con-
sists of tweets and is pretty noisy when compared
to expert-written claims found in SCIFACT , the
authors transformed the tweets into atomic claims
consisting of triples (entity, cause, entity). Such
a representation significantly improved the perfor-
mance on this dataset and showed that models de-
veloped for one scientific fact-checking dataset can
provide promising results for other datasets when
the claims are represented in an appropriate form.

6 Discussion

In this chapter, we discuss the current challenges
in scientific fact-checking and provide directions
for future work and trends.

Evidence quality. A common challenge in fact-
checking is ensuring that the evidence used for mak-
ing veracity decisions is appropriate and of high
quality. Especially in scientific fact-checking, the
nature of scientific knowledge is such that it is up-
dated and readjusted as new discoveries appear, so
a claim that was once refuted by evidence could be-

come supported with more substantial, more recent
evidence. Time-aware scoring for evidence rank-
ing was explored for general fact-checking (Allein
et al., 2021). Additionally, scientific sources can
contradict one another and give differing results
for the same research hypotheses, which is related
to the ML concept of learning with label disagree-
ment (Uma et al., 2021). In the medical field, sys-
tematic reviews provide evidence-based clinical
recommendations with the level of evidence (how
much testing was performed) and the strength of
recommendation (is it just a hint or a strict medical
recommendation) (Cro et al., 2020). So far, none
of the datasets have taken into account the evidence
that is changing with time, disagreeing evidence, or
differing levels and strength of evidence. A promis-
ing research direction is constructing resources and
benchmarks that would consider these intricacies
of scientific fact-checking.

Reasoning and Explainability. Fact-checking
is one of the NLP tasks where making the mod-
els and their decision process transparent and ex-
plainable to humans is of high importance for their
wide-scale adoption (Augenstein, 2021). Modern
deep neural models for NLP tasks are generally de-
scribed as black-box models, and their inner work-
ings are still hard to grasp completely. While there
have been explainable approaches for general fact-
checking, the only explainable method in this sur-
vey was proposed by Kotonya and Toni (2020b).
It uses a combination of extractive and abstractive
text summarization of evidence source documents
to provide end users with a concise explanation of
why a certain verdict was produced. Considering
that scientists often present their thoughts with ar-
gumentative structures (Lauscher et al., 2018), a
promising research approach is learning the concep-
tual relations between multiple pieces of evidence
to come up with a conclusion. This was used by
Krishna et al. (2022) to develop a neuro-symbolic
model that learns logical relations between evi-
dence sentences for FEVER. Another promising
research avenue is using counterfactual explana-
tions, which have proven useful in many NLP tasks
(Keane et al., 2021).

Dataset size. A common obstacle in fact-
checking for all domains and related misinfor-
mation detection tasks is the small size of exist-
ing datasets. One way to overcome this perfor-
mance hindrance is combining multiple scientific
fact-checking datasets or datasets for related NLP
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tasks that deal with seeking rationale in text. The
model MultiVerS described in the previous chap-
ter utilized this approach by combining datasets
HEALTHVER, COVID-FACT, and SCIFACT to-
gether with FEVER, PubMedQA, and EvidenceIn-
ference datasets to improve the final performance
on the fact-checking task. Other than combining
datasets for training purposes, another emerging
approach to mitigate the lack of training data is gen-
erating new scientific claims to augment the exist-
ing data. Wright et al. (2022b) apply this approach
by using the generative model BART and external
biomedical knowledge sources to construct claims
while showing promising zero-shot performance.

External knowledge. Scientific knowledge is
complex and contains lots of interconnected con-
cepts. This makes it suitable for representation
with structures like Knowledge Graphs (KGs) that
model world knowledge in the form of entities
and relations between them. KGs have been con-
structed for various scientific disciplines, while
the most well-known one for biomedical knowl-
edge is Unified Medical Language System (UMLS)
(Bodenreider, 2004), which models various inter-
actions between proteins, drugs, diseases, genes,
and other concepts. KGs have proven useful in
enhancing a wide array of NLP tasks (Schneider
et al., 2022). Enhancing BERT with infused dis-
ease knowledge from MeSH (He et al., 2020b) and
structured medical knowledge from UMLS (He
et al., 2020a) showed improved performance over
knowledge-intensive biomedical NLP tasks, as well
as for the open-domain question answering (Yu
et al., 2021). Recent work has shown that reasoning
over knowledge graphs can improve encyclopedic
fact verification (Kim et al., 2023).

Multimodality and multilinguality. Misinfor-
mation is increasingly being spread in forms other
than text, including misleading images, artificially
constructed videos, or incorrect figures (Nielsen
and McConville, 2022). Visuals were an espe-
cially popular tool for spreading misinformation
about the COVID-19 pandemic (Brennen et al.,
2020). Particularly in scientific publications, au-
thors present their data in the forms of figures, ta-
bles, and other visualizations. The FEVEROUS
shared task (Aly et al., 2021) made progress in this
direction by requiring participants to develop sys-
tems that verify claims over evidence in the struc-
tured format (tables and lists). Other than multiple
modalities, online claims are made in a multitude

of world languages, which calls for the develop-
ment of efficient multilingual models for scientific
fact-checking.

Human-centered fact-checking. Most of the
developed fact-checking systems are still limited
in practical use because their system design often
does not take into account how fact-checking is
done in the real world (Glockner et al., 2022) and
ignores the insights and needs of various stake-
holder groups core to the fact-checking process
(Juneja and Mitra, 2022). Several works started to
investigate human evaluation in fact-checking sys-
tems. Examples include effectively delivering the
misinformation detection results to users (Seo et al.,
2019) or guiding the user toward fact-checked news
(Lo et al., 2022). Making the process of NLP-based
fact-checking more human-centered is a promising
future direction that will make it more reliable,
trustworthy, and easier for wide-scale adoption.

7 Conclusion

In this survey, we reviewed and systematized exist-
ing datasets and solutions for the task of scientific
fact-checking. We introduced the task and com-
pared it to its related NLP endeavors, described
the existing datasets and their construction process,
and explained the models used for scientific fact-
checking with their pipeline components. Finally,
we provided a critical discussion of current chal-
lenges and highlighted promising future directions
for the task of scientific fact-checking.

8 Limitations

Even though we performed a rigorous literature
search to try to cover all existing work on scientific
fact-checking, there is possibly work that was left
uncovered due to different keywords, naming con-
ventions (e.g., fact-checking vs. claim verification).
Whenever possible, we tried covering all related
work and all relevant cited papers.

All approaches for automated scientific fact-
checking described in this work are still not safe for
widespread adoption in practice due to constraints
to their performance. Having deployed automated
fact-checking systems that would produce incorrect
verdicts could lead to mistrust in their usefulness
and the process of fact-checking itself, including
the work of dedicated manual fact-checkers.
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