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Abstract

Societal biases are reflected in large pre-trained
language models and their fine-tuned versions
on downstream tasks. Common in-processing
bias mitigation approaches, such as adversar-
ial training and mutual information removal,
introduce additional optimization criteria, and
update the model to reach a new debiased state.
However, in practice, end-users and practition-
ers might prefer to switch back to the origi-
nal model, or apply debiasing only on a spe-
cific subset of protected attributes. To enable
this, we propose a novel modular bias mitiga-
tion approach, consisting of stand-alone highly
sparse debiasing subnetworks, where each de-
biasing module can be integrated into the core
model on-demand at inference time. Our ap-
proach draws from the concept of diff pruning,
and proposes a novel training regime adaptable
to various representation disentanglement op-
timizations. We conduct experiments on three
classification tasks with gender, race, and age
as protected attributes. The results show that
our modular approach, while maintaining task
performance, improves (or at least remains on-
par with) the effectiveness of bias mitigation in
comparison with baseline finetuning. Particu-
larly on a two-attribute dataset, our approach
with separately learned debiasing subnetworks
shows effective utilization of either or both the
subnetworks for selective bias mitigation.

1 Introduction

A large body of research evidences the existence of
societal biases and stereotypes in pre-trained lan-
guage models (PLMs) (Zhao et al., 2019; Sheng
et al., 2019; Rekabsaz et al., 2021), and their poten-
tial harms when used in down-stream tasks (Blod-
gett et al., 2020; De-Arteaga et al., 2019; Rek-
absaz and Schedl, 2020; Stanovsky et al., 2019).
Common in-processing approaches to bias mitiga-
tion update a model’s (typically all) parameters to
satisfy specific attribute erasure criteria through
optimization methods such as adversarial train-

ing (Elazar and Goldberg, 2018; Rekabsaz et al.,
2021), and mutual information reduction (Colombo
et al., 2021). These methods are shown to be effec-
tive in reducing the footprint of protected attributes
(e.g., gender, race, etc.) in the resulting model.

However when using such debiasing models in
practice and in specific use-cases, system designers
or end-users might still prefer to instead use the
original model, or a debiased variation in respect
to a particular subset of protected attributes. This
can be due to various reasons such as the nature of
a given input, preference of an individual end-user,
or fairness-utility trade-off considerations. For in-
stance, while a bias-aware model should indeed be
agnostic to genders when the input is about gender-
neutral occupations (such as nurse or CEO), certain
topics like pregnancy may specifically require gen-
der information for a correct model decision.1 Also
as shown in previous studies (Zerveas et al., 2022;
Biega et al., 2018; Rekabsaz et al., 2021), since im-
proving fairness on specific tasks may come with
the cost of performance degradation, it is neces-
sary to provide on-demand control over whether
to impose fairness/debiasing criteria. Using exist-
ing approaches, this would require maintaining and
deploying multiple large parallel models for every
protected attribute, resulting in overly complex and
resource-heavy pipelines and increased latency.

To address this, we introduce a novel modu-
lar bias mitigation approach using sparse weight-
difference networks. In our approach, the required
changes in a model’s parameters for erasing a bias
attribute are stored in a decoupled subnetwork,
trained simultaneously by a debiasing and a sparsi-
fication objective. At inference time, adding each
debiasing module to the core model results in de-
livering debiasing qualities to a model’s predic-
tion in respect to the corresponding protected at-
tribute. Our approach extends the principle idea

1See also the discussion in Krieg et al. (2023) about the
need to separate bias-sensitive queries from “normal” ones.
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of diff pruning (Guo et al., 2021) introduced for
parameter-efficient task training to bias mitigation,
by viewing the objective of erasing a protected at-
tribute as a stand-alone diff module. This module
replaces fine-tuning by training only a small set
of parameters added to the corresponding PLM’s
parameters, to deliver bias mitigation of a specific
protected attribute. We further propose a novel
procedure to train such debiasing subnetworks sep-
arately, and to selectively add an arbitrary set of
them to the core model at inference time (§3).

Our approach can be applied to any debiasing
and representation disentanglement method, pro-
vided that its objective has separate learning signals
for the task and each protected attribute. In com-
parison with adapter networks (Rebuffi et al., 2017;
Houlsby et al., 2019), as shown by Guo et al. (2021)
and also evidenced in our experiments, even more
parameter-efficiency can be provided. Additionally,
since our approach extends the base model with diff
subnetworks, the resulting model is expected to per-
form (at least) as good as the fine-tuning variation,
avoiding possible performance degradations. The
modularity of our approach supports separating the
process of developing debiasing solutions for a task
from using them, such that stand-alone debiasing
modules can be created and shared, and later be
utilized in a final system on-demand.

We evaluate our approach on three bias mitiga-
tion tasks: occupation prediction from biographies
involving gender (De-Arteaga et al., 2019), hate
speech detection with dialect-based race as sensi-
tive attribute (Founta et al., 2018); and mention
prediction in tweets with two attributes of gender
and age of the authors (Pardo et al., 2016). The last
dataset particularly enables the study of combining
independently trained debiasing modules (details in
§4). The evaluation results show that our approach,
due to learning the subnetworks specialized on the
narrow functionality of debiasing an attribute, pro-
vides on par or better debiasing performance in
comparison with strong baselines. Additionally, we
observe that on the mention detection task, learn-
ing the debiasing subnetworks post-hoc to model
training provides effective results when combin-
ing the two (independently trained) subnetworks
at inference time. Remarkably, these results are
achieved with debiasing subnetworks of maximum
1% size of the core model (BERT-Base), in some
cases (e.g., for gender attribute) even only 0.01%
(details in §5).

2 Related Work

2.1 Parameter-efficient and Modular Training
The concept of subnetworks is grounded in the lot-
tery ticket hypothesis (Frankle and Carbin, 2019),
stating that in deep neural networks, one can find
many sparse subnetworks with a capacity compara-
ble to that of the base network. Zhou et al. (2019)
show that spotting such subnetworks through bi-
nary masks can in fact be seen as a form of model
training. Zhao et al. (2020) further consider the
magnitude of the parameters for pruning and fil-
ter out the ones lower than a specific threshold.
Guo et al. (2021) use L0-regularization (Louizos
et al., 2018) to reduce the number of active neurons.
Hu et al. (2021) propose low-rank adaptation via
rank decomposition matrices. These methods are
extended by structural pruning approaches with ad-
ditional architectural constraints, commonly led to
a higher parameter-efficiency (Lagunas et al., 2021;
Jaszczur et al., 2021).

Recent studies exploit subnetworks in the con-
text of multi-task learning. Wortsman et al. (2020)
isolate the learning signal of each task in a sepa-
rate masking subnetwork, while Ben-Zaken et al.
(2021) only finetune the bias weights. Xu et al.
(2021) learn a subset of parameters via masking out
the gradients of other parameters during backward-
pass. Guo et al. (2021) suggest learning a sparse
diff subnetwork for each task, whose parameter
values are added to the corresponding parameters
of the base network. An alternative architecture
are adapter networks, first introduced in the con-
text of multi-task learning (Rebuffi et al., 2017;
Houlsby et al., 2019; Stickland and Murray, 2019),
and are then extended in respect to their parameter
efficiency (Rücklé et al., 2021; Han et al., 2021a),
architectural variations (Mahabadi et al., 2021), and
transfer learning capacity (Pfeiffer et al., 2021). As
stated by (Sung et al., 2021), adapters (in their orig-
inal form) slightly increase the inference cost of
a model in comparison with the original form or
pruning-based variations. Our proposed approach
contributes to this line of research by extending this
concept to on-demand bias mitigation.

2.2 Fairness & Bias Mitigation in NLP
Several studies explore methods for debiasing
PLMs, such as linearly projecting embeddings into
the space with minimum correlations to protected
features (Ravfogel et al., 2020; Kaneko and Bol-
legala, 2021; Bolukbasi et al., 2016), utilizing a
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Figure 1: Training procedure of MODDIFFY-PAR in one batch with adversarial bias removal for k protected
attributes. The color orange indicates the trainable parameters during each step, while blue shows the frozen ones.
The core model learns the task in Step 0, and the subnetworks — each responsible for debiasing a protected attribute
— are trained in the next steps. In MODDIFFY-POST training regime, after finetuning the core model in Step 0, the
task head parameters (together with the ones of the core model) remain frozen in the next steps.

distribution alignment loss (Guo et al., 2022), or
penalizing bias by utilizing the encoded informa-
tion in models (Schick et al., 2021). Adversar-
ial training, originally introduced in domain adap-
tation (Ganin et al., 2016; Ganin and Lempitsky,
2015) is utilized in the context of fair representa-
tion learning (Xie et al., 2017; Madras et al., 2018),
and later to erase demographic data from text clas-
sifiers (Elazar and Goldberg, 2018; Barrett et al.,
2019; Han et al., 2021b; Wang et al., 2021), in-
formation retrieval models (Rekabsaz et al., 2021),
and recommendation systems (Ganhör et al., 2022).
Mutual information removal is an alternative ap-
proach, which minimizes the approximate upper
bound of the common information between the
task and protected attributes (Cheng et al., 2020;
Colombo et al., 2021). Our work utilizes these opti-
mizations to learn a novel modular on-demand bias
mitigation approach.

Few recent studies explore parameter-efficient
training for bias mitigation. Lauscher et al. (2021)
approach debiasing PLMs using a stack of adapters.
While shown effective in practice, the adapters in
the higher levels inherently depend on the ones
in the lower levels and cannot be learned nor uti-
lized stand-alone. Zhang et al. (2021) approach
bias mitigation with binary masks applied to the
base network. More recently and in the context of
removing spurious shortcuts in natural language
understanding datasets, Meissner et al. (2022) train
sparse binary masks on a finetuned model. Our
work extends this line of research by encapsulating
concept erasure modules in separate diff subnet-
works for each protected attribute, and selectively

applying them to the base model at inference time.

3 Modular Debiasing with Diff Subnets

We start with defining the general approach to
model bias mitigation. We consider an arbitrary
PLM denoted by fθ with the set of parameters θ.
The model learns the task τ using the loss function
Lτ . The predictions of fθ might be sensitive to the
variations in any of the k protected attributes of the
set P = {ρ1, ..., ρk}. The bias mitigation objective
is to make the model invariant to these variations
while maintaining the effectiveness on the task, ap-
proached by defining the debiasing loss Lρi for
the protected attribute ρi. We discuss two realiza-
tions of this loss function in Section 3.2. A debi-
ased model in respect to attributes P is achieved by
training on the following loss function:

Ltotal = Lτ + Lρ1 + ...+ Lρk (1)

Using Ltotal, one can finetune all parameters of
the model (Elazar and Goldberg, 2018; Rekabsaz
et al., 2021), or utilize any parameter-efficient train-
ing such as adapters (Lauscher et al., 2021), diff
pruning (Guo et al., 2021), or binary masks (Zhang
et al., 2021). We use some of these methods as base-
lines, explained in the following sections. In the
remainder of this section, we introduce our Modu-
lar Debiasing with Diff Subnetworks (MODDIFFY),
explain its training and inference procedure, and
describe two debiasing optimization methods.

3.1 MODDIFFY

We aim to encapsulate the debiasing functionality
of the protected attribute ρi, provided by the signal
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of the corresponding loss Lρi , into the sparse diff
subnetwork characterized by the set of parameters
δρi . Each parameter in δρi corresponds to a param-
eter in θ, such that adding δρi to the corresponding
parameters in θ results in debiasing the model f .

To learn the model, let us consider a training data
item in form of ⟨x, yτ , yρ1 , ..., , yρk⟩, where x is the
input, yτ the task label, and yρi denotes the label of
the corresponding protected attribute ρi. Figure 1
depicts the MODDIFFY approach with adversarial
bias mitigation optimization. We first optimize for
the task by encoding x into the vector zτ using
f(.;θ). An arbitrary decoder network denoted as
gτ uses zτ to predict the task output, and task loss is
calculated using cross entropy (CE), as formulated
below:

zτ = f(x;θ), L(0)
total = CE(gτ (zτ ), yτ ) (2)

This loss updates θ as well as the parameters
of gτ . While in our experiments we opt for fully
finetuning fθ, in practice the model can be trained
using any parameter-efficient method.

Next, we iterate over the protected attributes,
and in each step learn the corresponding debiasing
diff subnetwork. Specifically in step i dedicated
to the protected attribute ρi, we learn the set of
sparse additional parameters δρi such that by being
added to θ, the resulting f(.;θ + δρi) model is
debiased. Learning δρi is characterized by three
loss functions. The first loss, Ltask

ρi maintains the
task performance when the task output is predicted
from the altered encoder formulated below:

zρi = f(x;θ + δρi), Ltask
ρi = CE(gτ (zρi), yτ )

(3)
The second is the debiasing loss Ldebias

ρi , defined
based on zρi and the label of the corresponding
protected attribute yρi . We discuss adversarial bias
removal and mutual information reduction as two
possible realization of this representation disentan-
glement loss in Section 3.2. The third loss imposes
the sparsity constraint, defined as the L0 regular-
ization of δρi . The L0 loss aims to reduce the
number of non-zero parameters, namely the term
∑|δρi |

j=1 1{δρi,j ̸= 0}, and is realized with the differ-
entiable approximation proposed by Louizos et al.
(2018). Following Guo et al. (2021), δρi is decom-
posed into the element-wise multiplication of two
sets of parameters: δρi = mρi ⊙ wρi . The pa-
rameter set wρi stores the magnitude changes (diff
values), and mρi learns to mask out the parameters.

mρi is characterized by the hard concrete distribu-
tion (Guo et al., 2021) with (logαρi , 1) parameters,
and γ < 0 and ζ > 1 hyperparameters. This results
in the following formulation:

LL0
ρi =

|δρi |∑

j=1

σ

(
logαρi,j − log (−γ

ζ
)

)
(4)

where σ denotes the sigmoid function, and as in
Guo et al. (2021) β is set to 1. The masking net-
work can be simply reduced by assigning a mask
to a group of parameters (such as a weight matrix,
or a layer) instead of each individual one.

Putting all together, the objective of MODDIFFY

at step i > 0 is defined as:

L(i)
total = Ltask

ρi + Ldebias
ρi + LL0

ρi (5)

We should note that while each subnetwork is
trained independently from the others, the output
embeddings zρi are passed to the same decoder net-
work gτ . This design choice forces the learned em-
beddings to remain in the same embedding space,
making it possible to add multiple (independently
trained) subnetworks together to the core model.
Another aspect is that the sparsity rate of each re-
sulting subnetwork is not fixed and may vary due
to the factors such as the hyperparameter setting,
and the extent of encoded information content. To
achieve a fixed sparsity rate, we further apply mag-
nitude pruning by only keeping a fixed portion of
the parameters with the largest absolute values, and
finetuning the resulting parameters with the task
and debiasing loss terms.

We conduct optimization with Ltotal under two
training regimes. In the first one referred to as
MODDIFFY-PAR, we repeat the mentioned train-
ing steps for each training batch. The second ap-
proach referred to as MODDIFFY-POST trains de-
biasing subnetworks post-hoc to training the core
model. While MODDIFFY-PAR accommodates for
a higher flexibility in optimization by training the
networks in parallel, MODDIFFY-POST provides
the practical benefits of learning various debiasing
solutions for an already trained core model.

Finally at inference time, one can use the core
model in its original form f(x;θ), or in combi-
nation with any of the debiasing subnetworks in
the form of f(x;θ + δρi). Our approach also en-
ables simultaneously debiasing all or any subset of
the protected attributes by adding their correspond-
ing subnetworks to the core network, for instance
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as in f(x;θ + δρ1 + ... + δρk). We should note
that, although these subnetworks reside in the same
distributional space, they might affect each others
functionality, depending on the inherent nature of
the biases as well as the possible correlations be-
tween the protected attributes. We will examine
this case in the next sections on a dataset with two
protected attributes of gender and age.

3.2 Bias Mitigation Objectives
We explain two bias mitigation optimization meth-
ods used in MODDIFFY in the following.

Adversarial Bias Removal This method first de-
fines a new classification head hρi for each pro-
tected attribute ρi. This head receives zρi as in-
put, predicts the corresponding protected attribute,
and calculates the cross entropy loss function
Ldebias
ρi . This loss needs to remove the informa-

tion of ρi from f but train hρi such that it can
effectively predict the protected attribute. This op-
timization forms the min-max game: Ldebias

ρi =
minf maxhρi

CE(hρi(zρi), yρi). A common ap-
proach to turn this loss into a minimization problem
is by using gradient resversal layer (GRL) (Ganin
and Lempitsky, 2015) added before the debiasing
heads. GRL multiplies the gradient of Ldebias

ρi with
a factor of −λi, and thereby simplifies the learning
process to a standard gradient-based optimization,
formulated below:

Ldebias
ρi = min

f,hρi

CE(hρi(zρi), yρi)

Mutual Information (MI) Reduction This ap-
proach represents a family of algorithms that aims
to remove the mutual information of the encoded
embeddings of the task and protected attributes.
Maximum Mean Discrepancy (MMD), first intro-
duced in the context of domain adaptation (Gretton
et al., 2012; Tzeng et al., 2014), offers a realiza-
tion of MI reduction by minimizing the ability to
separate the subsets belonging to two protected at-
tributes. In particular, given a set of data points
X split into two subsets XA

ρi and XB
ρi according

to the values of the (binary) protected attribute ρi,
MMD minimizes the distance between the encoded
embeddings of the subgroups with the following
loss formulation:

Ldebias
ρi =
(∑

xA∈XA
ρi
ϕ(f(xA))

|XA
ρi |

−
∑

xB∈XB
ρi
ϕ(f(xB))

|XB
ρi |

)2

where ϕ is the feature map kernel defined as a linear
combination of multiple Gaussian kernels.

4 Experiment Design

Datasets We evaluate our approach on three
datasets on the tasks of occupation prediction, hate
speech detection, and mention prediction; involv-
ing protected attributes of gender, age, and race di-
alect. The first dataset is BIOS (De-Arteaga et al.,
2019) which contains short biographies used to pre-
dict a person’s job, where the name and any indica-
tion of the person’s gender (such as pronouns) in
the biography are omitted. The BIOS dataset con-
tains around 430K data points with 28 occupations,
and two protected attribute classes (female/male).
The second dataset is FDCL18 (Founta et al., 2018)
for hate speech detection, containing a set of tweets
each classified as hateful, abusive, spam, or none.
As discussed in Xia et al. (2020), hate speech might
have a strong correlation with dialect-based racial
bias. Following previous studies (Sap et al., 2019;
Ravfogel et al., 2020), we assign race dialect la-
bels of African American and White American to
FDCL18 using the probabilistic model developed
by Blodgett et al. (2016), resulting in the dataset of
approximately 62K data points. The third dataset
is PAN16 (Rangel et al., 2016) containing a set of
tweets accompanied with the labels of gender and
age of the authors. The task’s objective is to pre-
dict mentions (whether another user is mentioned
in a tweet). PAN16 provides approximately 200K
data points with binary task classes (mention, no
mention), as well as two gender labels and five age
groups. Further details on the three datasets are
provided in Appendix A.

Models and Baselines We conduct the exper-
iments on the following models and baselines.
FINETUNE: finetuning all parameters of the PLM
on the task without any bias mitigation objec-
tive. FINETUNE-DEBIAS: the same model as
FINETUNE but with the bias mitigation objective.
ADAPTER: learning the task with an adapter net-
work while the rest of the PLM’s parameters are
kept frozen. ADAPTER-DEBIAS: the same model
as ADAPTER but the adapter is trained on both task
and bias mitigation objectives. DIFFPRUN: using
a diff network to learn the task while PLM pa-
rameters remain unchanged. DIFFPRUN-DEBIAS:
same as DIFFPRUN but the diff network is trained
on both task and bias mitigation objectives. MOD-
DIFFY-POST: our introduced post-hoc approach
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Model
BIOS (gender) FCDL18 (race-dialect)

Adversarial MI Reduction Adversarial MI Reduction
Task↑ Probe↓ Task↑ Probe↓ Task↑ Probe↓ Task↑ Probe↓

FINETUNE 84.10.3 67.20.7 84.10.3 67.20.7 82.00.4 93.00.4 82.00.4 93.00.4
ADAPTER 84.40.1 65.90.1 84.40.1 65.90.1 80.90.1 82.14.1 80.90.1 82.14.1
FINETUNE-DEBIAS 84.20.1 56.90.9 84.10.7 61.70.8 81.90.7 84.53.9 81.60.4 87.30.5
ADAPTER-DEBIAS 84.60.2 60.80.4 84.40.0 65.60.2 80.50.7 65.6♣0.1 80.10.4 82.1♣1.3
DIFFPRUN 84.60.1 68.90.2 84.60.1 68.90.2 81.30.3 93.20.3 81.30.3 93.20.3
DIFFPRUN-DEBIAS 84.50.1 62.40.3 84.20.4 63.21.4 81.60.4 66.83.7 81.30.2 91.80.2
MODDIFFY-POST 84.50.1 61.60.7 84.30.1 64.50.4 81.30.2 66.01.2 81.20.2 91.10.9
MODDIFFY-PAR 84.20.2 53.7♣1.5 84.50.2 58.8♣1.2 81.20.6 75.43.7 81.30.7 85.50.4

Table 1: Results of the BIOS and FCDL18 datasets on BERT-Base with adversarial bias removal and mutual
information (MI) reduction. Task performance is measured with accuracy, and bias mitigation with balanced
accuracy of the probes. The protected attribute is gender for BIOS, and race-dialect for FCDL18. The results with
the best bias mitigation performance (lowest values) among the models that use diff subnetworks (lower part of the
table) are shown in bold, and among all models with the ♣ symbol. Subscript values indicate standard deviation.

where the debiasing modules are learned after train-
ing the model. We use FINETUNE as the base
model for MODDIFFY-POST, whose parameters
are kept frozen during post-hoc training. MOD-
DIFFY-PAR: our introduced parallel approach
where the debiasing modules are learned together
with the base model finetuned on the task. Addi-
tionally, to provide a comprehensive view on bias
mitigation methods, we evaluate the datasets on
the INLP (Ravfogel et al., 2020) approach using
the implementation and suggested hyperparameter
setting. The evaluation results of the INLP method
are separately reported in Table 8 in Appendix B.
As the PLM encoder for all models, we using two
versions of BERT (Devlin et al., 2019) with differ-
ent sizes, namely BERT-Mini (Turc et al., 2019)
and BERT-Base. This provides us a more com-
prehensive picture regarding the effect of encoder
size and number of involved parameters on the bias
mitigation methods.

All debiasing models are separately trained ac-
cording to the adversarial bias mitigation and mu-
tual information reduction methods. We partic-
ularly opt for a non-linear adversarial head with
two fully connected layers and the tanh activation.
Furthermore, to improve the capacity of adversar-
ial learning, we initialize 5 instances of hρi and
calculate the average of the loss for the backward
pass. In MI reduction, in the case of protected at-
tributes with more than two classes, we turn the
multi-classes setting to multiple one-versus-rest
splits. For the models with diff subnetworks, we
conduct preliminary experiments to find proper
thresholds for magnitude pruning that improves

sparsity as much as possible without sacrificing
performance. For BERT-Base and BERT-Mini, we
set the minimum sparsity threshold to 99% and
95% (maximum size of 1% and 5%), respectively.
We note that these ratios are the lower bounds, and
the L0 regularization may by itself reach a higher
sparsity. The complete details of our hyperparam-
eters setting and training procedure are explained
in Appendix A. Our code and trained resources are
available in https://github.com/CPJKU/
ModularizedDebiasing.

Evaluation Metrics We evaluate the perfor-
mance of the classifiers on the core task using
the accuracy metric. We evaluate bias mitigation
based on the concept of fairness through blindness,
namely by examining whether models are agnostic
about the protected attributes. Concretely follow-
ing previous works (Elazar and Goldberg, 2018;
Barrett et al., 2019), we report the leakage of a
protected attribute in terms of the performance of
a strong probe (or attacker) network. To train the
probe, we freeze the model’s parameters, and train
a new classification head (two-layer feed-forward
layer with a tanh activation) to predict the protected
attribute from the z encoding vector. For each eval-
uation, we train an ensemble of 5 probes for 40
epochs with early stopping if validation loss does
not increase over 5 epochs, and report the results
of the best performing probe. We report the perfor-
mance of the probe in terms of balanced/macro ac-
curacy (average of per-class accuracy scores). Bal-
anced accuracy has the benefit of better reflecting
the performance of the methods when considering
minority groups, particularly given the unbalanced
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Model
Adversarial Bias Mitigation MI Reduction
Task↑ ProbeG↓ ProbeA↓ Task↑ ProbeG↓ ProbeA↓

FINETUNE 93.50.2 70.42.2 53.63.2 93.50.2 70.42.2 53.63.2
ADAPTER 87.30.1 67.80.6 37.11.7 87.30.1 67.80.6 37.11.7
FINETUNE-DEBIASG 93.70.0 52.30.5 34.81.1 93.70.1 62.20.1 41.91.4
FINETUNE-DEBIASA 92.90.2 52.30.3 31.42.6 93.70.1 61.50.7 41.22.1
FINETUNE-DEBIASG&A 93.00.2 51.71.4 33.91.8 93.50.1 61.40.7 40.81.0
ADAPTER-DEBIASG 86.90.1 54.90.4 29.21.7 87.00.1 67.40.3 37.02.2
ADAPTER-DEBIASA 86.10.2 58.50.2 25.6♣2.0 87.10.3 67.10.5 36.61.2
ADAPTER-DEBIASG&A 92.20.2 51.6♣2.4 27.51.9 92.80.1 64.20.4 34.90.2

DIFFPRUN 93.00.1 76.10.4 62.40.5 93.00.1 76.10.4 62.40.5
DIFFPRUN-DEBIASG 93.40.1 56.30.8 48.51.2 93.30.0 73.00.7 58.20.5
DIFFPRUN-DEBIASA 92.90.1 64.50.8 34.11.1 93.40.0 73.10.8 57.10.6
DIFFPRUN-DEBIASG&A 92.90.2 54.72.6 29.72.0 93.60.2 73.30.3 57.20.9
MODDIFFY-POSTG 93.70.1 57.01.0 45.41.3 93.60.1 66.20.2 46.21.4
MODDIFFY-POSTA 93.70.1 63.70.9 31.72.8 93.60.0 66.60.2 46.52.8
MODDIFFY-POSTG + dittoA 92.30.6 57.71.2 32.02.8 93.40.1 66.40.8 46.61.8
MODDIFFY-POSTG&A 93.60.1 52.62.2 30.90.5 93.60.1 66.90.4 47.40.1
MODDIFFY-PARG 93.50.2 53.01.6 32.21.1 93.60.0 59.30.4 35.70.4
MODDIFFY-PARA 93.50.2 53.81.9 30.11.0 93.70.2 55.00.2 29.90.9
MODDIFFY-PARG + dittoA 93.50.2 52.81.7 30.20.8 93.60.2 56.11.1 30.11.0
MODDIFFY-PARG&A 93.80.2 52.31.4 28.31.6 93.60.2 52.7♣1.3 29.4♣0.6

Table 2: Results of the PAN16 dataset on BERT-Base. The subscripts G and A refer to the protected attributes
gender and age, respectively. The sign G&A denotes that the bias mitigation loss is the sum of the debiasing loss
terms of both gender and age. The MODDIFFY models in the form of “+ditto” refer to the case where first two
debiasing subnetworks with the same core model are trained separately, and then they are added to the base model
at inference time. The results with the best bias mitigation performance (lowest values) among the models that use
diff subnetworks (lower part of the table) are shown in bold, and among all models with the ♣ symbol. Subscript
values indicate standard deviation.

distributions over protected labels in the datasets.
To account for possible variabilities, we repeat ev-
ery experiment five times and report the mean and
standard deviation.

5 Results and Analysis

Single-attribute Evaluation Table 1 reports the
evaluation results of the BIOS and FCDL18
datasets on BERT-Base using adversarial bias re-
moval and mutual information (MI) reduction. The
results of the same experiments on BERT-Mini are
shown in Table 6 in Appendix B.

Starting from task accuracy, the models using
subnetworks (variations of DIFFPRUN and MOD-
DIFFY shown at the lower part of the table) con-
sistently perform the same as the fully finetuned
models on both datasets and debiasing methods.
We observe a slight decrease in performance for
the adapter-based models on FCDL18.

Looking at the leakage probing performance of
bias attributes, MODDIFFY models show better

performance (lower values) among the subnetwork-
based models on both datasets, and overall on
BIOS.2 In particular, MODDIFFY models outper-
form the directly comparable baselines FINETUNE-
DEBIAS and DIFFPRUN-DEBIAS on all configura-
tions, indicating the benefits of learning separate
debiasing modules on bias mitigation performance.
This indeed comes with the core advantages of
MODDIFFY models in proving modularized and
on-demand bias mitigation.

The results also show that MODDIFFY-POST,
while (as expected) slightly weaker than MOD-
DIFFY-PAR, provides competitive bias mitigation
performance (i.e., on par with DIFFPRUN-DEBIAS).
Finally, comparing between debiasing optimiza-
tions, MI reduction shows consistently worse bias

2Particularly on FCDL18, we observe high variations,
which requires us to more cautiously interpret results. We
assume that this is due to the small size of this dataset es-
pecially in the learning regimes with many parameters on
BERT-Base, as this effect is less pronounced on BERT-Mini
(Table 6 in Appendix B).

6198



mitigation performance in comparison with adver-
sarial training, particularly on FCDL18 where the
protected attribute has more than two labels.

Two-attribute Evaluation The results on
PAN16 using BERT-Base are reported in Table 2,
and the same experiments on BERT-Mini in
Table 7 in Appendix B. In this experiment,
every debiasing model is trained based on either
gender, age, or simultaneously on both gender
and age, shown with the subscripts G, A, G&A,
respectively. An additional evaluation is indicated
with MODDIFFY-*G + dittoA, which refers to
adding the two separately trained gender and
age debiasing subnetworks to the core model at
inference time. In fact, for the experiments of
each MODDIFFY model indicated with “+ditto”,
G, and A, we train only one model with gender
and age subnetworks, and then add the respective
subnetwork(s) to the core model.

Looking at task performance results, similar to
the previous datasets the models perform on par
with fully finetuning, except the adapter-based mod-
els which in this case significantly underperform
in both optimization methods. Regarding bias mit-
igation performance, we observe similar patterns
to the ones discussed on the other datasets: MOD-
DIFFY models particularly MODDIFFY-PAR show
the least attribute leakage among the subnetwork-
based models consistently, and also over all models
with MI reduction. This reaffirms the benefits of
modularizing debiasing of the attributes separately
from the task. The results also indicate the exis-
tence of a correlation between the gender and age
attributes in this dataset, such that debiasing each
attribute also results in a decrease in leakage of the
other attribute. The overall best results are achieved
on the models that simultaneously optimize on both
attributes (G&A).

Finally, let us have a closer look at the results
of applying the two independently trained subnet-
works. On both training regimes, we observe on par
debiasing performance between MODDIFFY-*G+
dittoA and the corresponding results with one sub-
network, namely the ones of gender and age de-
biasing in MODDIFFY-*G and MODDIFFY-*A,
respectively. These results indicate the viability of
our approach to effectively merge subnetworks at
inference time.

Subnetworks analysis We further investigate the
achieved sparsity rate of the subnetworks, keeping

PAN16 BIOS FCDL18
Gender Age Gender Dialect

Overall 0.01% 1.00% 0.27% 0.18%

Layer 12 0.04% 7.00% 0.26% 0.92%
Layer 11 0.02% 3.59% 0.30% 0.52%
Layer 10 0.01% 1.76% 0.33% 0.30%
Layer 9 0.00% 0.49% 0.20% 0.18%
Layer 8 0.00% 0.38% 0.22% 0.11%
Layer 7 0.01% 0.21% 0.30% 0.14%
Layer 6 0.00% 0.15% 0.28% 0.13%
Layer 5 0.01% 0.03% 0.28% 0.07%
Layer 4 0.01% 0.25% 0.43% 0.08%
Layer 3 0.01% 0.25% 0.56% 0.08%
Layer 2 0.01% 0.38% 0.41% 0.07%
Layer 1 0.01% 0.21% 0.44% 0.06%
Embeddings 0.00% 0.04% 0.05% 0.03%

Table 3: The percentage of non-masked parameters in
the debiasing subnetworks of MODDIFFY-PAR.

in mind that the maximum capacity of the debiasing
subnetworks on BERT-Base is set to 1%. The size
of a subnetwork indicates the amount of informa-
tion or in fact modifications needed to be applied,
in order to debias a protected attribute. Table 3 re-
ports the percentage of the number of non-masked
parameters in every layer, and also overall, in the
subnetworks of the MODDIFFY-PAR models re-
garding the protected attributes. The results show
interesting patterns in respect to various protected
attributes: the gender attribute on both PAN16 and
BIOS dataset require much smaller subnetworks,
such that the subnetwork on PAN16 is only 0.01%
of the size of the core model. The age attribute ap-
pears to be a more complex topic in the underlying
PLM, as it fully uses the 1% maximum capacity.
Looking across the layers, the results show that
debiasing the gender attribute is mostly handled in
the lower transformer layers (particularly on BIOS),
while debiasing age and dialect attributes mostly
happens at the higher layers.

In Appendix C, we further discuss this topic
for all models on the level of individual weight
matrices. Moreover, in Appendix D we investigate
to what extent the subnetworks of a model across
several runs affect on the same set of parameters.

6 Conclusion

We propose MODDIFFY, a novel bias mitigation
approach which enables integration of an arbitrary
subset of the debiasing modules at inference time.
Our method encapsulates the functionality of bias
mitigation in respect to a protected attribute into a
separate magnitude-difference subnetwork, which
can then be applied to the core model on-demand.
Our experiments on three classification tasks show
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that MODDIFFY improves bias mitigation achieved
by separating the debiasing from the task network,
and effectively mitigates the bias of two (and pos-
sibly more) attributes when their respective subnet-
works are simultaneously utilized.

7 Limitations

An important limitation of our work concerns the
definition of the protected attributes in the datasets
used for evaluation. In particular, gender in BIOS
and PAN16 is limited to the binary female/male,
lacking an inclusive and nuanced definition of gen-
der. Similarly in FDCL18, we consider only two
dialects of African American and White American,
while clearly this definition is limited and non-
inclusive. Furthermore as in previous work (Sap
et al., 2019; Ravfogel et al., 2020; Zhang et al.,
2021), the labels of this protected attribute are as-
signed through a probabilistic model, and hence the
dataset might not represent the nuances and traits
of the real-world.

The second limitation regards reaching strong
conclusions on the generalizability of the multi-
attribute setting for MODDIFFY over any possible
number of protected attributes or subset of them.
Our multi-attribute experiments are conducted on
one dataset with two attributes of gender and age,
particularly due to the lack of available suitable
datasets. Hence, Further studies (as well as more
suitable datasets) are required for achieving a more
comprehensive picture on the topic.

Finally, we should also highlight two general
limitations, shared with the other related studies in
the area of model bias mitigation. First, we should
consider that the aim of representation disentangle-
ment optimizations is to reduce the existing corre-
lations in the model with the protected attributes
based on the observed data. These data-oriented
approaches might lack effective generalization, par-
ticularly when the model is evaluated in other do-
mains or out-of-distribution data. Second, our bias
mitigation evaluation is grounded in the notion of
fairness through blindness, and the debiasing opti-
mization methods are designed to support this form
of fairness. The effects of our method on other
possible definitions of fairness are therefore left for
future work.
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A Experiment Settings – Additional
Details

In FDCL18 dataset, we use the TwitterAAE
model (Blodgett et al., 2016) to assign racial dialect
classes. The TwiiterAAE model predicts four racial
classes, African American, White American, His-
panic, and Others. We labeled a tweet as African
American or White American if the prediction score
was greater than 0.5. For PAN16 dataset, following
(Sap et al., 2019) we balanced the task labels and
sampled 200K data. The age groups of this dataset
are 18-24, 25-34, 35-49, 50-64, and 65+.

We randomly split the dataset into train, vali-
dation, and test set with the proportions 63:12:15
for BIOS, 63:12:15 for FDCL18, and 80:5:15 on
PAN16. We use the validation set for hyperparam-
eter tuning, and the best result on the validation set
is evaluated on test set for the final results. The
validation and test sets in all datasets follow the
same distribution as the whole dataset. To address
the unbalancedness of the dataset and the poten-
tial problems in adversarial learning, we apply up-
sampling only on the training sets of BIOS and
FDCL18 datasets, to balance the protected attribute
labels within each task label. For instance, genders
are balanced in the dentist class by repeating the
data items of the minority subgroup.

Adversarial heads consist of five classifiers with
different initialization. The loss for the five clas-
sifiers is averaged and accuracy is measured via
majority vote. All baseline models are trained for
20 epochs. All DIFFPRUN and MODDIFFY model
variants are trained for 30 epochs as they need to
account for the two phases of diff pruning, where
a model requires more training to recover its per-
formance after the magnitude pruning step. We fix
the learning rate of BERT weights to 2e−5 and the
learning rate for the classifier heads to 1e−4. We
set the batch size to 64 for all experiments. We
keep other diff -specific hyperparameters the same
as suggested by Guo et al. (2021). Adapter base-
lines follow Pfeiffer et al. (2021) with reduction
factor of two. Rest of the hyperparameters are same
as the subnetwork-based models. Table 4 reports
the hyperparameters of our experiments.

B Additional Results

The results of all models using BERT-Mini are
shown in Table 6 for BIOS and FCDL18 datasets,
and in Table 7 for PAN16. Table 8 reports the
evaluation results of the INLP method.

training

batch_size 64
structured_diff_pruning True
alpha_init 5
concrete_samples 1
concrete_lower -1.5
concrete_upper 1.5
num_epochs 20
num_epochs_finetune 15
num_epochs_fixmask 15
learning_rate 2e-05
learning_rate_task_head 0.0001
learning_rate_adv_head 0.0001
learning_rate_alpha 0.1
task_dropout 0.3
task_n_hidden 0
adv_dropout 0.3
adv_n_hidden 1
adv_count 5
adv_lambda 1.0
sparsity_pen 1.25e-07
max_grad_norm 1.0

adv attack

batch_size 64
num_epochs 40
learning_rate 0.0001
adv_n_hidden 1
adv_count 5
adv_dropout 0.3

Table 4: Hyperparameters used for training

Parameter Name Size

word_embeddings 117,204,480

intermediate.dense 11,811,840

output.dense 11,800,320

attention.self.query 2,952,960

attention.self.key 2,952,960

attention.self.value 2,952,960

attention.output.dense 2,952,960

position_embeddings 1,966,080

output.adapter 590,976

others 7680

Table 5: BERT-Base number of parameters

C Sparsity rates of subnetworks

We visualize the percentage of non-masked param-
eters of the subnetworks in BERT-Base for each
parameter matrix in Figures 2, 3 and 4 for MOD-
DIFFY-PAR, MODDIFFY-POST, and DIFFPRUN-
DEBIAS, respectively. In addition to the discussion
in Section 5, we observe in these detailed figures
that the LayerNorm module of the last Transformer
block generally has a high density. We assume
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Model
BIOS FCDL18

Adversarial MI Reduction Adversarial MI Reduction
Task↑ Probe↓ Task↑ Probe↓ Task↑ Probe↓ Task↑ Probe↓

FINETUNE 82.90.1 65.50.4 82.90.1 65.50.4 82.10.2 90.30.9 82.10.2 90.30.9
ADAPTER 81.60.2 65.70.2 81.60.2 65.70.2 81.90.0 79.20.5 81.90.0 79.20.5
FINETUNE-DEBIAS 81.60.2 56.41.7 81.60.1 59.90.9 80.00.5 73.72.7 79.70.5 87.32.6
ADAPTER-DEBIAS 81.50.1 63.40.1 81.70.1 65.40.1 81.10.2 64.6♣1.3 81.80.1 78.5♣0.5
DIFFPRUN 83.50.1 65.80.3 83.50.1 65.80.3 82.80.1 92.60.9 82.80.1 92.60.9
DIFFPRUN-DEBIAS 83.30.1 59.10.7 82.30.1 65.50.9 82.30.4 65.82.8 82.50.3 91.90.9
MODDIFFY-POST 83.10.0 57.30.7 83.10.0 63.41.4 81.60.4 69.7♣1.9 82.3.0.1 89.30.4
MODDIFFY-PAR 81.50.2 55.7♣0.6 81.40.2 58.8♣0.8 80.20.3 73.86.7 79.980.6 85.41.6

Table 6: Results of the BIOS and FCDL18 datasets on BERT-Mini with adversarial bias removal and mutual
information (MI) reduction. Task performance is measured with accuracy, and bias mitigation with balanced
accuracy of the probes. The protected attribute is gender for BIOS, and race-dialect for FCDL18. The results with
the best bias mitigation performance (lowest values) among the models that use diff subnetworks (lower part of the
table) are shown in bold, and among all models with the ♣ symbol.

Model
Adversarial Bias Mitigation MI Reduction

Task↑ ProbeG ↓ ProbeA↓ Task↑ ProbeG↓ ProbeA↓
FINETUNE 91.50.2 64.80.6 46.80.3 91.50.2 64.80.3 88.41.1
ADAPTER 78.40.2 65.80.2 35.30.8 78.40.2 65.80.2 35.30.8
FINETUNE-DEBIASG 91.70.2 54.60.6 42.20.6 91.60.2 61.30.6 42.40.5
FINETUNE-DEBIASA 91.10.2 61.90.6 39.10.8 91.40.6 61.90.1 43.20.0
FINETUNE-DEBIASG&A 91.20.1 57.01.0 38.50.6 91.90.0 62.50.1 42.10.9
ADAPTER-DEBIASG 78.10.1 59.60.4 32.01.3 78.50.2 65.90.2 34.80.0
ADAPTER-DEBIASA 77.30.1 60.50.9 27.30.9 78.30.1 65.50.2 34.1♣0.3
ADAPTER-DEBIASG&A 80.90.6 55.60.4 25.5♣1.2 82.00.1 64.20.4 34.90.2

DIFFPRUN 90.00.1 67.20.3 49.40.8 90.00.1 67.20.3 49.40.8
DIFFPRUN-DEBIASG 90.10.1 54.1♣1.1 44.10.7 78.50.2 65.90.2 34.80.0
DIFFPRUN-DEBIASA 89.20.3 64.80.6 39.41.9 78.30.1 65.50.2 34.1♣0.3
DIFFPRUN-DEBIASG&A 89.10.1 57.91.7 35.82.2 86.30.0 68.80.1 52.30.9
MODDIFFY-POSTG 91.70.2 55.71.2 42.70.6 91.50.0 62.60.0 43.71.3
MODDIFFY-POSTA 91.40.2 62.30.5 34.80.8 91.50.0 62.80.3 44.00.0
MODDIFFY-POSTG + dittoA 91.00.4 59.30.6 37.31.2 !!! 91.50.5 62.80.4 43.90.8
MODDIFFY-POSTG&A 91.50.2 56.71.3 35.12.1 91.50.0 63.00.3 43.90.4
MODDIFFY-PARG 91.60.2 55.90.8 41.70.7 91.60.1 60.90.4 40.30.8
MODDIFFY-PARA 91.30.2 61.30.5 37.61.2 91.50.2 60.80.6 41.60.7
MODDIFFY-PARG + dittoA 91.40.4 60.71.0 39.61.6 91.70.1 60.2♣0.5 39.70.1
MODDIFFY-PARG&A 91.30.3 55.51.1 33.71.6 91.50.3 60.71.3 41.31.1

Table 7: Results of the PAN16 dataset on BERT-Mini. The subscripts G and A refer to the protected attributes
gender and age, respectively. The sign G&A denotes that the bias mitigation loss of the model consists of the
debiasing loss terms of both gender and age. The MODDIFFY models in the form of “+ditto” refer to the case,
where first two debiasing subnetworks with the same core model are trained separately, and then they are added to
the base model at inference time. The results with the best bias mitigation performance (lowest values) among the
models that use diff subnetworks (lower part of the table) are shown in bold, and among all models with the ♣
symbol.
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BIOS (gender) FDCL18 (race)
Model Task↑ Probe↓ Task↑ Probe↓
BERT-Mini 71.10.2 59.80.9 73.61.6 57.90.4
BERT-Base 66.20.4 50.50.3 71.62.2 50.20.1

(a) BIOS and FDCL18

Model Task↑ ProbeG ↓ ProbeA ↓

BERT-Mini G 69.30.1 60.10.3 29.20.8
A 66.71.8 60.60.1 25.60.2

BERT-Base G 69.40.1 54.40.1 25.50.2
A 49.80.8 54.60.6 27.50.2

(b) PAN16

Table 8: Evaluation results of INLP.

that this is due to the additive nature of these diff -
based methods, as changing the weight magnitude
through adding a subnetwork requires rescaling the
final output.

D Consistency in finding subnetworks

Figures 5, 6 and 7 show the percentage of com-
mon non-masked parameters in subnetworks on
a particular weight matrix/layer across 5 runs for
MODDIFFY-PAR, MODDIFFY-POST, and DIFF-
PRUN-DEBIAS, respectively. We report the percent-
age of overlap between the subnetworks of two,
three, four, and five runs, separated with the “/”.
The results show that the equivalent subnetworks
across various runs (with different initialization
seeds) seem to be largely separated. This results
are consistent with the observations on the lottery
ticket hypothesis on large neural networks (Chen
et al., 2020).
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(a) PAN16 - Gender (b) PAN16 - Age

(c) BIOS - Gender (d) FCDL18 - Dialect

Figure 2: Sparsity rate of the subnetworks in MODDIFFY-PAR on BERT-Base. Each value shows the sparsity rate
on the specific block/matrix.
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(a) PAN16 - Gender (b) PAN16 - Age

(c) BIOS - Gender (d) FCDL18 - Dialect

Figure 3: Sparsity rate of the subnetworks in MODDIFFY-POST on BERT-Base. Each value shows the sparsity rate
on the specific block/matrix.
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(a) PAN16 - Gender (b) PAN16 - Age

(c) BIOS - Gender (d) FCDL18 - Dialect

Figure 4: Sparsity rate of the subnetworks in DIFFPRUN-DEBIAS using BERT-Base. Each value shows the sparsity
rate on the specific block/matrix.
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(a) PAN16 - Gender

(b) PAN16 - Age

(c) BIOS - Gender

(d) FCDL18 - Dialect

Figure 5: The percentage of common non-masked parameters for MODDIFFY-PAR across 5 runs with different
initialization seeds. For each block, the numbers indicate the percentage of the number of common parameters
across two, three, four, and five runs of a subnetwork, respectively.
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(a) PAN16 - Gender

(b) PAN16 - Age

(c) BIOS - Gender

(d) FCDL18 - Dialect

Figure 6: The percentage of common non-masked parameters for MODDIFFY-POST across 5 runs with different
initialization seeds. For each block, the numbers indicate the percentage of the number of common parameters
across two, three, four, and five runs of a subnetwork, respectively.
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(a) PAN16 - Gender

(b) PAN16 - Age

(c) BIOS - Gender

(d) FCDL18 - Dialect

Figure 7: The percentage of common non-masked parameters for DIFFPRUN-DEBIAS across 5 runs with different
initialization seeds. For each block, the numbers indicate the percentage of the number of common parameters
across two, three, four, and five runs of a subnetwork, respectively.
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