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Abstract

Large Language Models (LLMs) do not dif-
ferentially represent numbers, which are per-
vasive in text. In contrast, neuroscience re-
search has identified distinct neural represen-
tations for numbers and words. In this work,
we investigate how well popular LLMs cap-
ture the magnitudes of numbers (e.g., that 4 <
5) from a behavioral lens. Prior research on
the representational capabilities of LLMs eval-
uates whether they show human-level perfor-
mance, for instance, high overall accuracy on
standard benchmarks. Here, we ask a differ-
ent question, one inspired by cognitive science:
How closely do the number representations of
LLMs correspond to those of human language
users, who typically demonstrate the distance,
size, and ratio effects? We depend on a linking
hypothesis to map the similarities among the
model embeddings of number words and dig-
its to human response times. The results reveal
surprisingly human-like representations across
language models of different architectures, de-
spite the absence of the neural circuitry that di-
rectly supports these representations in the hu-
man brain. This research shows the utility of
understanding LLMs using behavioral bench-
marks and points the way to future work on the
number of representations of LLMs and their
cognitive plausibility.

1 Introduction

Humans use symbols – number words such as
“three” and digits such as “3” – to quantify the
world. How humans understand these symbols has
been the subject of cognitive science research for
half a century. The dominant theory is that people
understand number symbols by mapping them to
mental representations, specifically magnitude rep-
resentations (Moyer and Landauer, 1967). This is
true for both number words (e.g., “three”) and dig-
its (e.g., “3”). These magnitude representations are
organized as a “mental number line” (MNL), with
numbers mapped to points on the line as shown in

Figure 1d. Cognitive science research has revealed
that this representation is present in the minds of
young children (Ansari et al., 2005) and even non-
human primates (Nieder and Miller, 2003). Most
of this research has been conducted with numbers
in the range 1-9, in part, because corpus studies
have shown that 0 belongs to a different distribu-
tion (Dehaene and Mehler, 1992) and, in part, be-
cause larger numbers require parsing place-value
notation (Nuerk et al., 2001), a cognitive process
beyond the scope of the current study.

Evidence for this proposal comes from magni-
tude comparison tasks in which people are asked
to compare two numbers (e.g., 3 vs. 7) and judge
which one is greater (or lesser). Humans have con-
sistently exhibited three effects that suggest recruit-
ment of magnitude representations to understand
numbers: the distance effect, the size effect, and the
ratio effect (Moyer and Landauer, 1967; Merkley
and Ansari, 2010). We review the experimental evi-
dence for these effects, shown in Figure 1, in LLMs.
Our behavioral benchmarking approach shifts the
focus from what abilities LLMs have in an absolute
sense to whether they successfully mimic human
performance characteristics. This approach can
help differentiate between human tendencies cap-
tured by models and the model behaviors due to
training strategies. Thus, the current study bridges
between Natural Language Processing (NLP), com-
putational linguistics, and cognitive science.

1.1 Effects of Magnitude Representations

Physical quantities in the world, such as the bright-
ness of a light or the loudness of a sound, are en-
coded as logarithmically scaled magnitude repre-
sentations (Fechner, 1860). Research conducted
with human participants and non-human species
has revealed that they recruit many of the same
brain regions, such as the intra-parietal sulcus, to
determine the magnitude of symbolic numbers (Bil-
lock and Tsou, 2011; Nieder and Dehaene, 2009).
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Figure 1: The input types, LLMs, and effects in this study. The three effects are depicted in an abstract manner in
sub-figures (a), (b), (c).

Three primary magnitude representation effects
have been found using the numerical comparison
task in studies of humans. First, comparisons show
a distance effect: The greater the distance |x− y|
between the numbers x vs. y, the faster the com-
parison (Moyer and Landauer, 1967). Thus, peo-
ple compare 1 vs. 9 faster than 1 vs. 2. This is
shown in abstract form in Figure 1a. This effect
can be explained by positing that people possess an
MNL. When comparing two numbers, they first lo-
cate each number on this representation, determine
which one is “to the right”, and choose that number
as the greater one. Thus, the farther the distance
between the two points, the easier (and thus faster)
the judgment.

Second, comparisons show a size effect: Given
two comparisons of the same distance (i.e., of the
same value for |x − y|), the smaller the numbers,
the faster the comparison (Parkman, 1971). For
example, 1 vs. 2 and 8 vs. 9 both have the same
distance (i.e., |x− y| = 1), but the former involves
smaller numbers and is therefore the easier (i.e.,
faster) judgment. The size effect is depicted in ab-
stract form in Figure 1b. This effect also references
the MNL, but a modified version where the points
are logarithmically compressed, i.e., the distance
from 1 to x is proportional to log(x); see Figure
1d. To investigate if a logarithmically compressed
number line is also present in LLMs, we use mul-
tidimensional scaling (Ding, 2018) on the cosine
distances between number embeddings.

Third, comparisons show a ratio effect: The

time to compare two numbers x vs. y is a decreas-
ing function of the ratio of the larger number over
the smaller number, i.e., max(x,y)

min(x,y) (Halberda et al.,
2008). This function is nonlinear, as depicted in
abstract form in Figure 1c. Here, we assume that
this function is a negative exponential, though other
functional forms have been proposed in the cogni-
tive science literature. The ratio effect can also be
explained by the logarithmically compressed MNL
depicted in Figure 1d.

These three effects — distance, size, and ratio —
have been replicated numerous times in studies of
human adults and children, non-human primates,
and many other species (Cantlon, 2012; Cohen Ka-
dosh et al., 2008). The MNL model in Figure 1d
accounts for these effects (and many others in the
mathematical cognition literature). Here, we use
LLMs to evaluate a novel scientific hypothesis: that
the MNL representation of the human mind is latent
in the statistical structure of the linguistic environ-
ment, and thus learnable. Therefore, there is less
need to posit pre-programmed neural circuitry to
explain magnitude effects.

1.2 LLMs and Behavioral Benchmarks

Modern NLP models are pre-trained on large
corpora of texts from diverse sources such as
Wikipedia (Wikipedia contributors, 2004) and the
open book corpus (Zhu et al., 2015). LLMs like
BERT (Devlin et al., 2018), ROBERTA (Liu et al.,
2019) and GPT-2 (Radford et al., 2019) learn con-
textual semantic vector representations of words.
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These models have achieved remarkable success
on NLP benchmarks (Wang et al., 2018). They
can perform as well as humans on a number of
language tests such as semantic verification (Bha-
tia and Richie, 2022) and semantic disambiguation
(Lake and Murphy, 2021).

Most benchmarks are designed to measure the
absolute performance of LLMs, with higher accu-
racy signaling “better” models. Human or superhu-
man performance is marked by exceeding certain
thresholds. Here, we ask not whether LLMs can
perform well or even exceed human performance at
tasks, but whether they show the same performance
characteristics as humans while accomplishing the
same tasks. We call these behavioral benchmarks.
The notion of behavioral benchmarks requires mov-
ing beyond accuracy (e.g., scores) as the dominant
measure of LLM performance.

As a test case, we look at the distance, size, and
ratio effects as behavioral benchmarks to determine
whether LLMs understand numbers as humans do,
using magnitude representations. This requires a
linking hypothesis to map measures of human per-
formance to indices of model performance. Here,
we map human response times on numerical com-
parison tasks to similarity computations on number
word embeddings.

1.3 Research Questions

The current study investigates the number repre-
sentations of LLMs and their alignment with the
human MNL. It addresses five research questions:

1. Which LLMs, if any, capture the distance,
size, and ratio effects exhibited by humans?

2. How do different layers of LLMs vary in ex-
hibiting these effects?

3. How do model behaviors change when using
larger variants (more parameters) of the same
architecture?

4. Do the models show implicit numeration
("four" = "4"), i.e., do they exhibit these ef-
fects equally for all number symbol types or
more for some types (e.g., digits) than others
(e.g., number words)?

5. Is the MNL representation depicted in Figure
1d latent in the representations of the models?

2 Related Work

Research on the numerical abilities of LLMs fo-
cuses on several aspects of mathematical reasoning
(Thawani et al., 2021), such as magnitude com-

parison, numeration (Naik et al., 2019; Wallace
et al., 2019), arithmetic word problems (Burns
et al., 2021; Amini et al., 2019), exact facts (Lin
et al., 2020), and measurement estimation (Zhang
et al., 2020). The goal is to improve performance
on application-driven tasks that require numerical
skills. Research in this area typically attempts to
(1) understand the numerical capabilities of pre-
trained models and (2) propose new architectures
that improve numerical cognition abilities (Geva
et al., 2020; Dua et al., 2019).

Our work also focuses on the first research di-
rection: probing the numerical capabilities of pre-
trained models. Prior research by Wallace et al.
(2019) judges the numerical reasoning of various
contextual and non-contextual models using dif-
ferent tests (e.g., finding the maximum number in
a list, finding the sum of two numbers from their
word embeddings, decoding the original number
from its embedding). These tasks have been pre-
sented as evaluation criteria for understanding the
numerical capabilities of models. Spithourakis and
Riedel (2018) change model architectures to treat
numbers as distinct from words. Using perplexity
score as a proxy for numerical abilities, they argue
that this ability reduces model perplexity in neu-
ral machine translation tasks. Other work focuses
on finding numerical capabilities through building
QA benchmarks for performing discrete reasoning
(Dua et al., 2019). Most research in this direction
casts different tasks as proxies of numerical abili-
ties of NLP systems (Weiss et al., 2018; Dua et al.,
2019; Spithourakis and Riedel, 2018; Wallace et al.,
2019; Burns et al., 2021; Amini et al., 2019).

An alternative approach by Naik et al. (2019)
tests multiple non-contextual task-agnostic embed-
ding generation techniques to identify the failures
in models’ abilities to capture the magnitude and
numeration effects of numbers. Using a systematic
foundation in cognitive science research, we build
upon their work in two ways: we (1) use contextual
embeddings spanning a wide variety of pre-training
strategies, and (2) evaluate models by comparing
their behavior to humans. Our work looks at num-
bers in an abstract sense, and is relevant for the
grounding problem studied in artificial intelligence
and cognitive science (Harnad, 2023).

3 Experimental Design

The literature lacks adequate experimental studies
demonstrating magnitude representations of num-
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Model Category Size
Base Large

BERT (Devlin et al., 2018) Encoder 110M 340M
RoBERTA (Liu et al., 2019) Encoder 125M 355M
XLNET (Yang et al., 2019) Auto-regressive Encoder 110M 340M
GPT-2 (Radford et al., 2019) Auto-regressive Decoder 117M 345M
T5 (Raffel et al., 2019) Encoder 110M 335M
BART (Lewis et al., 2020) Encoder-Decoder 140M 406M

Table 1: Popular Language Models

bers in LLMs from a cognitive science perspective.
The current study addresses this gap. We propose a
general methodology for mapping human response
times to similarities computed over LLM embed-
dings. We test for the three primary magnitude
representation effects described in section 1.1.

3.1 Linking Hypothesis

In studies with human participants, the distance,
size, and ratio effects are measured using reaction
time. Each effect depends on the assumption that
when comparing which of two numbers x and y
is relatively easy, humans are relatively fast, and
when it is relatively difficult, they are relatively
slow. The ease or difficulty of the comparison is a
function of x and y: |x− y| for the distance effect,
min(x, y) for the size effect, and max(x,y)

min(x,y) for the
ratio effect. LLMs do not naturally make reaction
time predictions. Thus, we require a linking hy-
pothesis to estimate the relative ease or difficulty of
comparisons for LLMs. Here we adopt the simple
assumption that the greater the similarity of two
number representations in an LLM, the longer it
takes to discriminate them, i.e., to judge which one
is greater (or lesser).

We calculate the similarity of two numbers based
on the similarity of their vector representations.
Specifically, the representation of a number for a
given layer of a given model is the vector of acti-
vation across its units. There are many similarity
metrics for vector representations (Wang and Dong,
2020): Manhattan, Euclidean, cosine, dot product,
etc. Here, we choose a standard metric in distribu-
tional semantics: the cosine of the angle between
the vectors (Richie and Bhatia, 2021). This reason-
ing connects an index of model function (i.e., the
similarity of the vector representations of two num-
bers) to a human behavioral measure (i.e., reaction
time). Thus, the more similar the two representa-
tions are, the less discriminable they are from each
other, and thus the longer the reaction time to select
one over the other.

3.2 Materials

For these experiments, we utilized three formats
for number representations in LLMs: lowercase
number words, mixed-cased number words (i.e.,
the first letter is capitalized), and digits. These for-
mats enable us to explore variations in input tokens
and understand numeration in models. Below are
examples of the three input types:

• "one", "two", "three", "four" ... "nine"
• "One", "Two", "Three", "Four" ... "Nine"
• "1", "2", "3", "4" ... "9"

As noted in the Introduction, prior studies of the dis-
tance, size and ratio effects in humans have largely
focused on numbers ranging from 1 to 9. Our input
types are not-affected by tokenization methods as
the models under consideration have each input as
a separate token.

3.3 Large Language Models - Design Choices

Modern NLP models are pre-trained on a large
amount of unlabeled textual data from a diverse set
of sources. This enables LLMs to learn contextu-
ally semantic vector representations of words. We
experiment on these vectors to evaluate how one
specific dimension of human knowledge - number
sense - is captured in different model architectures.

We use popular large language models from Hug-
gingface’s Transformers library (Wolf et al., 2020)
to obtain vector representations of numbers in dif-
ferent formats. Following the work by Min et al.
(2021) to determine popular model architectures,
we select models from three classes of architectural
design: encoder models (e.g., BERT (Devlin et al.,
2018)), auto-regressive models (e.g., GPT-2 (Rad-
ford et al., 2019)), and encoder-decoder models
(e.g., T5 (Raffel et al., 2019)). The final list of
models is provided in Table 1.

Operationalization: We investigate the three
number magnitude effects as captured in the repre-
sentations of each layer of the six models for the
three number formats. For these experiments, we
consider only the obtained hidden layer outputs for
the tokens corresponding to the input number word
tokens. We ignore the special prefix and suffix to-
kens of models (e.g., the [cls] token in BERT) for
uniformity among different architectures. For the
T5-base model, we use only the encoder to obtain
model embedding. All models tested use a simi-
lar number of model parameters (around 110-140
million parameters). For our studies, we arbitrarily
choose the more popular BERT uncased variant as
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opposed to the cased version. We compare the two
models in Appendix section A.2 for a complete
analysis, showing similar behaviors in the variants.
Model size variations for the same architecture are
considered in the Appendix section A.1 to show
the impact of model size on the three effects.

4 Magnitude Representation Effects in
LLMs

4.1 The Distance Effect

Layer T5 BART RoB XLNET BERT GPT-2 Avg.

1 0.974 0.965 0.954 0.967 0.979 0.937 0.963

2 0.984 0.959 0.959 0.951 0.983 0.940 0.963

3 0.973 0.957 0.961 0.960 0.955 0.937 0.957

4 0.956 0.964 0.977 0.962 0.956 0.923 0.957

5 0.941 0.951 0.976 0.948 0.982 0.931 0.955

6 0.972 0.916 0.966 0.942 0.991 0.932 0.953

7 0.967 0.960 0.967 0.943 0.990 0.930 0.959

8 0.945 0.969 0.954 0.923 0.977 0.931 0.950

9 0.950 0.978 0.945 0.920 0.967 0.929 0.948

10 0.933 0.958 0.928 0.926 0.923 0.931 0.933

11 0.924 0.975 0.968 0.951 0.926 0.930 0.946

12 0.920 0.956 0.854 0.934 0.890 0.931 0.914

Table 2: Distance Effect: Averaged (across the three
number formats) R2 values of different LLMs for dif-
ferent layers when fitting a linear function. RoB:
Roberta-base model, BERT: uncased variant.

LLMs\Input LC MC Digits Avg.
T5 0.986 0.937 0.936 0.953
BART 0.942 0.951 0.983 0.959
RoBERTa 0.945 0.943 0.964 0.951
XLNET 0.888 0.965 0.979 0.944
BERT (uncased) 0.976 0.944 0.960
GPT-2 0.906 0.904 0.986 0.932
Total Averages
across models

0.941 0.946 0.965 0.950

Table 3: Distance Effect: Averaged (across layers) R2

values of different LLMs on the three numbers when
fitting a linear function. LC: Lowercase number words,
MC: Mixed-case number words.

Recall that the distance effect is that people are
slower (i.e., find it more difficult) to compare num-
bers the closer they are to each other on the MNL.
We use the pipeline depicted in Figure 1 to inves-
tigate if LLM representations are more similar to
each other if the numbers are closer on the MNL.

Evaluation of the distance effect in LLMs is done
by fitting a straight line (a+ bx) on the cosine sim-
ilarity vs. distance plot. We first perform two oper-
ations on these cosine similarities: (1) We average
the similarities across each distance (e.g., the point

at distance 1 on the x-axis represents the average
similarity of 1 vs. 2, 2 vs. 3, ..., 8 vs. 9). (2)
We normalize the similarities to be in the range [0,
1]. These decisions allow relative output compar-
isons across different model architectures, which
is not possible using the raw cosine similarities of
each LLM. To illustrate model performance, the
distance effects for the best-performing layer in
terms of R2 values for BART are shown in Figure
2 for the three number formats. The high R2 values
indicate a human-like distance effect.

Layer T5 BART RoB XLNET BERT GPT-2 Avg.

1 0.756 0.651 0.494 0.602 0.617 0.466 0.597

2 0.685 0.637 0.507 0.551 0.783 0.653 0.636

3 0.744 0.697 0.503 0.492 0.834 0.574 0.641

4 0.726 0.677 0.519 0.493 0.871 0.478 0.627

5 0.665 0.685 0.610 0.54 0.783 0.528 0.635

6 0.670 0.692 0.586 0.563 0.757 0.539 0.635

7 0.701 0.634 0.613 0.585 0.823 0.539 0.649

8 0.705 0.687 0.567 0.591 0.870 0.532 0.659

9 0.697 0.757 0.581 0.566 0.877 0.541 0.670

10 0.727 0.694 0.622 0.555 0.905 0.533 0.672

11 0.729 0.756 0.734 0.602 0.911 0.547 0.713

12 0.703 0.702 0.744 0.662 0.889 0.550 0.708

Table 4: Size Effect: Averaged (across inputs) R2 val-
ues of different LLMs on different input layers when
fitting a linear function. RoB: Roberta-base model,
BERT: uncased variant.

All of the models show strong distance effects
for all layers, as shown in Table 2, and for all num-
ber formats, as shown in Table 3. Interestingly,
LLMs are less likely to reveal the distance effect
as layer count increases (Table 2). For example,
layer one results in the strongest distance effect
while layer twelve is the least representative of the
distance effect. With respect to number format,
passing digits as inputs tended to produce stronger
distance effects than passing number words (Table
3); this pattern was present for four of the six LLMs
(i.e., all but T5 and BERT).

4.2 The Size Effect

The size effect holds for comparisons of the same
distance (e.g., for a distance of 1, these include 1
vs. 2, 2 vs. 3, ..., 8 vs. 9). Among these compar-
isons, those involving larger numbers (e.g., 8 vs.
9) are made more slowly (i.e., people find them
more difficult) than those involving smaller num-
bers (e.g., 1 vs. 2). That larger numbers are harder
to differentiate than smaller numbers aligns with
the logarithmically compressed MNL depicted in
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Figure 2: Distance effect for the best-performing layer (9th layer) for the BART model

Figure 1d. This study evaluates whether a given
LLM shows a size effect on a given layer for num-
bers of a given format by plotting the normalized
cosine similarities against the size of the compari-
son, defined as the minimum of the two numbers
being compared. For each minimum value (points
on the x-axis), we average the similarities for all
comparisons to form a single point (vertical com-
pression). We then fit a straight line (ax+ b) over
the vertically compressed averages (blue line in
Figure 3) to obtain the R2 values (scores). To il-
lustrate model performance, the size effects for the
best-performing layer of the BERT-uncased model
(in terms of R2 values) are shown in Figure 3. Sim-
ilar to the results for the distance effect, the high
R2 values indicate a human-like size effect.

Interestingly, Table 4 generally shows an increas-
ing trend in the layer-wise capability of capturing
the size effect across the six LLMs. This is opposite
to the trend observed across layers for the distance
effect. Table 5 shows that using digits as the input
values yields significantly better R2 values than the
other number formats. In fact, this is the only num-
ber format for which the models produce strong
size effects. However, the vertical compression of
points fails to capture the spread of points across
the y-axis for each point on the x-axis. This spread,
a limitation of the size effect analysis, is captured
in the ratio effect (section 4.3).

LLMs\Input LC MC Digits Avg.
T5 0.702 0.539 0.886 0.709
BART 0.614 0.568 0.885 0.689
RoBERTa 0.520 0.466 0.783 0.59
XLNET 0.500 0.408 0.793 0.567
BERT (uncased) 0.803 0.851 0.827
GPT-2 0.434 0.332 0.853 0.54
Total Averages
across models

0.596 0.519 0.842 0.654

Table 5: Size Effect: Averaged (across layers) R2 val-
ues of different LLMs on the three number formats
when fitting a linear function. LC: Lowercase number
words, MC: Mixed-case number words.

4.3 The Ratio Effect

LLMs\Input LC MC Digits Avg.
T5 0.852 0.756 0.868 0.826
BART 0.786 0.833 0.897 0.838
RoBERTa 0.714 0.747 0.746 0.736
XLNET 0.729 0.761 0.901 0.797
BERT (uncased) 0.906 0.757 0.831
GPT-2 0.686 0.758 0.681 0.709
Total Averages
across models

0.779 0.793 0.808 0.789

Table 6: Ratio Effect: Averaged (across layers) R2

values of different LLMs on different number formats
when fitting a negative exponential function. LC: Low-
ercase number words, MC: Mixed-case number words.

Layer T5 BART RoB XLNET BERT GPT-2 Avg.

1 0.850 0.820 0.756 0.868 0.837 0.735 0.811

2 0.865 0.837 0.745 0.828 0.878 0.755 0.819

3 0.846 0.861 0.725 0.820 0.853 0.738 0.807

4 0.847 0.859 0.739 0.822 0.820 0.659 0.791

5 0.851 0.847 0.805 0.825 0.847 0.695 0.812

6 0.880 0.821 0.800 0.816 0.883 0.703 0.817

7 0.867 0.811 0.795 0.810 0.883 0.698 0.811

8 0.824 0.849 0.780 0.780 0.880 0.702 0.803

9 0.806 0.852 0.780 0.746 0.861 0.705 0.791

10 0.785 0.821 0.720 0.754 0.779 0.704 0.760

11 0.755 0.849 0.666 0.781 0.769 0.702 0.754

12 0.731 0.834 0.516 0.717 0.687 0.708 0.699

Table 7: Ratio Effect: Averaged (across number for-
mats) R2 values of different LLMs on different in-
put layers when fitting a negative exponential function.
RoB: Roberta-base model, BERT: uncased variant.

The ratio effect in humans can be thought of as
simultaneously capturing both the distance and size
effects. Behaviorally, the time to compare x vs. y
is a decreasing function of the ratio of the larger
number over the smaller number, i.e., of max(x,y)

min(x,y) .
In fact, the function is nonlinear as depicted in
Figure 1c. For the LLMs, we plot the normalized
cosine similarity vs. max(x,y)

min(x,y) . To each plot, we fit
the negative exponential function a ∗ e−bx + c and
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Figure 3: Size effect for the best-performing layer for the BERT model (layer 11).
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Figure 4: Ratio effect for the best-performing layer for the BART model (layer 3).

evaluate the resulting R2. To illustrate model per-
formance, Figure 4 shows the ratio effects for the
best-fitting layer of the BART model for the three
number formats. As observed with the distance
and size effect, the high R2 values of the LLMs
indicate a human-like ratio effect in the models.

LLMs\Input LC MC Digits Avg.
T5 0.489 0.526 0.410 0.475
BART 0.676 0.714 0.678 0.690
RoBERTa 0.520 0.597 0.587 0.568
XLNET 0.622 0.620 0.622 0.621
BERT (uncased) 0.312 0.423 0.368
GPT-2 0.566 0.513 0.828 0.636
Total Averages
across models

0.531 0.547 0.591 0.560

Table 8: Averaged (across layers) correlations when
comparing MDS values with Log101 to Log109 for
different LLMs. LC: Lowercase number words, MC:
Mixed-case number words.

4.4 Multidimensional Scaling
Along with the three magnitude effects, we also
investigate whether the number representations of
LLMs are consistent with the human MNL. To do
so, we utilize multidimensional scaling (Borg and
Groenen, 2005; Ding, 2018). MDS offers a method
for recovering the latent structure in the matrix
of cosine (dis)similarities between the vector rep-
resentations of all pairs of numbers (for a given
LLM, layer, and number format). It arranges each
number in a space of N dimensions such that the

Layer T5 BART RoB XLNET BERT GPT-2 Avg.

1 0.686 0.679 0.602 0.595 0.739 0.526 0.638

2 0.271 0.693 0.763 0.734 0.704 0.669 0.639

3 0.374 0.657 0.772 0.704 0.456 0.685 0.608

4 0.385 0.728 0.489 0.621 0.425 0.663 0.552

5 0.476 0.733 0.597 0.707 0.448 0.615 0.596

6 0.540 0.739 0.571 0.598 0.465 0.608 0.587

7 0.687 0.696 0.250 0.677 0.445 0.665 0.570

8 0.529 0.624 0.594 0.591 0.189 0.624 0.525

9 0.544 0.718 0.691 0.566 0.400 0.671 0.598

10 0.502 0.624 0.697 0.563 0.394 0.613 0.566

11 0.195 0.708 0.602 0.543 -0.013 0.675 0.451

12 0.509 0.677 0.186 0.557 -0.239 0.615 0.384

Table 9: Averaged (across inputs) correlations of differ-
ent LLMs on different model layers when comparing
MDS values with Log101 to Log109. RoB: Roberta-
base model, BERT: uncased variant.

Number T5 BART RoB XLNET BERT GPT-2 Avg.
1 0.01 0.00 0.02 0.00 0.02 0.00 0.01
2 0.10 0.17 0.15 0.17 0.09 0.12 0.13
3 0.07 0.05 0.07 0.10 0.06 0.10 0.07
4 0.05 0.04 0.05 0.05 0.03 0.05 0.04
5 0.17 0.09 0.07 0.05 0.20 0.05 0.11
6 0.02 0.04 0.08 0.02 0.06 0.04 0.04
7 0.09 0.08 0.11 0.04 0.20 0.06 0.10
8 0.04 0.01 0.08 0.01 0.09 0.05 0.05
9 0.40 0.08 0.17 0.18 0.44 0.17 0.24

Table 10: Residual analysis on MDS outputs in 1 di-
mension on the base variants of the model. RoB:
Roberta-base model, BERT: uncased variant.

distance between each pair of points is consistent
with the cosine dissimilarity between their vector
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representations.

We fix N = 1 to recover the latent MNL repre-
sentation for each LLM, layer, and number format.
For each solution, we anchor the point for "1" to
the left side and evaluate whether the resulting vi-
sualization approximates the log compressed MNL
as shown in Figure 1d. To quantify this approxi-
mation, we calculate the correlation between the
positions of the numbers 1 to 9 in the MDS solution
and the expected values (log(1) to log (9)) of the
human MNL; see Table 8. All inputs have similar
correlation values. Surprisingly, GPT-2 with digits
as the number format (and averaged across all lay-
ers) shows a considerably higher correlation with
the log-compressed MNL than all other models and
number formats. The average correlation between
latent model number lines and the log compressed
MNL decreases over the 12 layers; see Table 9.

We visualize the latent number line of GPT-2
by averaging the cosine dissimilarity matrix across
layers and number formats, submitting this to MDS,
and requesting a one-dimensional solution; see Fig-
ure 5. This representation shows some evidence
of log compression, though with a few exceptions.
One obvious exception is the right displacement of
2 away from 1. Another is the right displacement
of 9 very far from 8.

To better understand if this is a statistical arti-
fact of GPT-2 or a more general difference between
number understanding in humans versus LLMs, we
perform a residual analysis comparing positions on
the model’s number line to those on the human
MNL. We choose the digits number format, esti-
mate the latent number line representation averaged
across the layers of each model, and compute the
residual between the position of each number in
this representation compared to the human MNL.
This analysis is presented in Table 10. For 1, all
models show a residual value of less than 0.03. This
makes sense given our decision to anchor the latent
number lines to 1 on the left side. The largest resid-
uals are for 2 and 9, consistent with the anomalies
noticed for the GPT-2 solution in Figure 5. These
anomalies are a target for future research. We note
here that 2 is often privileged even in languages
such as Piraha and Mundurucu that have very lim-
ited number of word inventories(Gordon, 2004;
Pica et al., 2004). Further note that 9 has special
significance as a “bargain price numeral” in many
cultures, a fact that is often linguistically marked
(Pollmann and Jansen, 1996).

0.0 0.2 0.4 0.6 0.8 1.0

−0.04
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3
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Model: GPT2, Averaged pairwise dis ances

Figure 5: MDS visualization on averaged distances of
the GPT-2 model for all number formats and layers.

4.5 Ablation studies: Base vs Large Model
Variants

We investigate changes in model behaviors when
increasing the number of parameters for the same
architectures. We use the larger variants of each of
the LLMs listed in Table 1. The detailed tabular
results of the behaviors are presented in Appendix
section A.1; see Tables 11, 12, and 13. Here, we
summarize key takeaways from the ablation stud-
ies:

• The distance and ratio effects of the large vari-
ants of models align with human performance
characteristics. Similar to the results for the
base variants, the size effect is only observed
when the input type is digits.

• We observe the same decreasing trend in the
layer-wise capability of capturing the distance
effect, ratio effect, and the MDS correlation
values in the Large variants of LLMs as ob-
served in the base variants. The increasing
trend in the layer-wise capability of the size
effect is not observed in the Larger LLMs.

• Residual analysis shows high deviation for
the numbers "2", "5", and "9"; which is in line
with our observations for the base variations.

5 Conclusion

This paper investigates the performance character-
istics in various LLMs across numerous configura-
tions, looking for three number-magnitude compar-
ison effects: distance, size, and ratio. Our results
show that LLMs show human-like distance and ra-
tio effects across number formats. The size effect
is also observed among models for the digit num-
ber format, but not for the other number formats,
showing that LLMs do not completely capture nu-
meration. Using MDS to scale down the pairwise
(dis)similarities between number representations
produces varying correspondences between LLMs
and the logarithmically compressed MNL of hu-
mans, with GPT-2 showing the highest correlation
(using digits as inputs). Our residual analysis ex-
hibits high deviation from expected outputs for the
numbers 2, 5, 9 which we explain through patterns
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observed in previous linguistics studies. The be-
havioral benchmarking of the numeric magnitude
representations of LLMs presented here helps us
understand the cognitive plausibility of the rep-
resentations the models learn. Our results show
that LLM pre-training allows models to approx-
imately learn human-like behaviors for two out
of the three magnitude effects without the need to
posit explicit neural circuitry. Future work on build-
ing pre-trained architectures to improve numerical
cognition abilities should also be evaluated using
these three effects.

6 Limitations

Limitations to our work are as follows: (1) We only
study the three magnitude effects for the number
word and digit denotations of the numbers 1 to
9. The effects for the number 0, numbers greater
than 10, decimal numbers, negative numbers, etc.
are beyond the scope of this study. Future work
can design behavioral benchmark for evaluating
whether LLMs shows these effects for these other
number classes. (2) The mapping of LLM behav-
iors to human behaviors and effects might vary for
each effect. Thus, we might require a different link-
ing hypothesis for each such effect. (3) We only
use the models built for English tasks and do not
evaluate multi-lingual models. (4) We report and
analyze aggregated scores across different dimen-
sions. There can be some information loss in this
aggregation. (5) Our choice of models is limited
by certain resource constraints. Future works can
explore the use of other foundation / super-large
models (1B parameters +) and API-based models
like GPT3 and OPT3. (6) The behavioral analysis
of this study is one-way: we look for human per-
formance characteristics and behaviors in LLMs.
Future research can utilize LLMs to discover new
numerical effects and look for the corresponding
performance characteristics in humans. This could
spur new research in cognitive science. (7) The
results show similar outputs to low dimensional hu-
man output and show that we do not need explicit
neural circuitry for number understanding. We do
not suggest models actually are humanlike in how
they process numbers.
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A Appendix

A.1 Variants in Large Language Models

Inputs\Effects
Averaged
Distance

Effect

Averaged
Size

Effect

Averaged
Ratio
Effect

Averaged MDS
Correlation

values
Lowercase
number words

0.909 0.587 0.730 0.593

Mixedcase
number words

0.933 0.514 0.749 0.460

Digits 0.930 0.678 0.707 0.548
Total

Averages
0.927 0.595 0.727 0.534

Table 11: Averaged distance effect, size effect, ratio
effect, and the MDS correlation values for the different
input types of the models.

For the models in Table1, we show the three
effects for the larger variants. The variants have the
same architectures and training methodologies as
their base variants but more parameters ( thrice the
number of parameters). The in-depth results for the

Number T5 BART RoB XLNET BERT GPT-2 Avg.
1 0.04 0.01 0.01 0.01 0.01 0.00 0.01
2 0.09 0.17 0.09 0.16 0.07 0.12 0.12
3 0.02 0.09 0.04 0.07 0.03 0.10 0.06
4 0.02 0.07 0.03 0.04 0.03 0.07 0.04
5 0.12 0.07 0.13 0.17 0.16 0.02 0.11
6 0.20 0.06 0.06 0.05 0.10 0.02 0.08
7 0.17 0.09 0.09 0.07 0.12 0.02 0.09
8 0.22 0.09 0.05 0.06 0.09 0.03 0.09
9 0.15 0.19 0.25 0.36 0.25 0.14 0.22

Table 12: Residual analysis on MDS outputs in 1 di-
mension on the large variants of the models. RoB:
Roberta-base model, BERT: uncased variant.

Layer\Effects
Averaged
Distance

Effect

Averaged
Size

Effect

Averaged
Ratio
Effect

Averaged MDS
Correlation

values
1 0.967 0.647 0.825 0.643
2 0.963 0.549 0.718 0.557
3 0.964 0.587 0.736 0.584
4 0.968 0.622 0.765 0.544
5 0.962 0.632 0.763 0.423
6 0.958 0.641 0.774 0.483
7 0.957 0.591 0.752 0.526
8 0.956 0.608 0.753 0.550
9 0.956 0.599 0.773 0.625
10 0.944 0.612 0.766 0.610
11 0.938 0.608 0.742 0.526
12 0.923 0.604 0.726 0.557
13 0.939 0.659 0.739 0.538
14 0.944 0.656 0.755 0.562
15 0.940 0.645 0.751 0.500
16 0.933 0.611 0.741 0.509
17 0.934 0.567 0.730 0.550
18 0.933 0.580 0.723 0.505
19 0.919 0.559 0.690 0.527
20 0.900 0.557 0.671 0.535
21 0.867 0.558 0.644 0.553
22 0.854 0.571 0.664 0.524
23 0.829 0.509 0.633 0.484
24 0.805 0.508 0.622 0.414

Table 13: Averaged distance effect, size effect, ratio
effect, and MDS correlation values for the 24 layers of
the models.

LLMs\Input LC MC Digits Avg.
T5 0.961 0.957 0.974 0.964
BART 0.892 0.957 0.845 0.898
RoBERTa 0.893 0.959 0.946 0.933
XLNET 0.924 0.952 0.855 0.910
BERT (uncased) 0.837 0.969 0.903
GPT-2 0.946 0.934 0.987 0.956
Total Averages
across models

0.909 0.933 0.930 0.927

Table 14: Distance Effect: Averaged (across layers) R2

values of different Larger variants of LLMs on differ-
ent input types when fitting a linear function. LC: Low-
ercase number words, MC: Mixedcase number words.

three effects are presented in tables 14, 16, 15, 17,
18, and 19. We also present the MDS correlation
values in the same manner as done for base variants;
see tables 20 and 21.

Given the large layer count for these model vari-
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LLMs\Input LC MC Digits Avg.
T5 0.720 0.730 0.840 0.763
BART 0.697 0.644 0.380 0.574
RoBERTa 0.468 0.267 0.677 0.471
XLNET 0.533 0.448 0.510 0.497
BERT (uncased) 0.635 0.712 0.674
GPT-2 0.467 0.358 0.950 0.592
Total Averages
across models

0.587 0.514 0.678 0.595

Table 15: Size Effect: Averaged (across layers) R2 val-
ues of different Larger variants of LLMs on different
input types when fitting a linear function. LC: Lower-
case number words, MC: Mixedcase number words.

Layer T5 BART RoB XLNET BERT GPT-2 Avg.

1 0.978 0.948 0.968 0.972 0.978 0.959 0.967

2 0.977 0.958 0.962 0.976 0.967 0.940 0.963

3 0.977 0.970 0.931 0.979 0.977 0.951 0.964

4 0.976 0.948 0.972 0.984 0.968 0.959 0.968

5 0.975 0.944 0.950 0.981 0.976 0.947 0.962

6 0.973 0.919 0.950 0.978 0.975 0.952 0.958

7 0.979 0.911 0.968 0.974 0.958 0.952 0.957

8 0.981 0.892 0.953 0.977 0.973 0.959 0.956

9 0.983 0.875 0.967 0.974 0.980 0.959 0.956

10 0.980 0.857 0.947 0.967 0.957 0.958 0.944

11 0.984 0.847 0.931 0.944 0.964 0.959 0.938

12 0.990 0.828 0.865 0.920 0.974 0.959 0.923

13 0.990 0.953 0.901 0.865 0.968 0.959 0.939

14 0.990 0.933 0.935 0.874 0.975 0.957 0.944

15 0.988 0.919 0.945 0.858 0.972 0.959 0.940

16 0.977 0.900 0.941 0.854 0.966 0.957 0.933

17 0.974 0.899 0.944 0.883 0.948 0.955 0.934

18 0.978 0.897 0.946 0.892 0.930 0.957 0.933

19 0.951 0.882 0.938 0.874 0.913 0.957 0.919

20 0.947 0.885 0.900 0.857 0.858 0.956 0.900

21 0.932 0.879 0.887 0.808 0.740 0.957 0.867

22 0.927 0.858 0.927 0.789 0.668 0.957 0.854

23 0.859 0.827 0.889 0.862 0.579 0.957 0.829

24 0.872 0.825 0.867 0.808 0.502 0.954 0.805

Table 16: Distance Effect: Averaged (across inputs) R2

values of different Larger variants of LLMs for differ-
ent layers when fitting a linear function. RoB: Roberta-
base model, BERT: uncased variant.

ants and the multiple tables, we also present a sum-
marized view of the results in tables 11, 12, 13.

A.2 Cased vs Uncased BERT

The behavioral differences between the cased and
uncased variants of the BERT architecture are
shown in TableA.2. Despite different preprocess-
ing paradigms, both models have similar perfor-
mance characteristics. The only visible distinction
is the higher correlation values for the cased ver-
sion when compared to the uncased version of the

Layer T5 BART RoB XLNET BERT GPT-2 Avg.

1 0.785 0.800 0.591 0.630 0.608 0.467 0.647

2 0.794 0.763 0.275 0.666 0.198 0.597 0.549

3 0.894 0.709 0.379 0.665 0.214 0.661 0.587

4 0.922 0.719 0.465 0.661 0.345 0.620 0.622

5 0.940 0.721 0.550 0.634 0.387 0.563 0.632

6 0.925 0.606 0.426 0.644 0.661 0.584 0.641

7 0.912 0.441 0.360 0.603 0.636 0.594 0.591

8 0.923 0.399 0.460 0.548 0.726 0.595 0.608

9 0.915 0.354 0.435 0.541 0.750 0.599 0.599

10 0.923 0.329 0.546 0.553 0.727 0.593 0.612

11 0.924 0.362 0.458 0.574 0.727 0.601 0.608

12 0.890 0.351 0.512 0.543 0.728 0.601 0.604

13 0.864 0.801 0.467 0.468 0.757 0.595 0.659

14 0.837 0.861 0.452 0.436 0.751 0.600 0.656

15 0.805 0.796 0.480 0.454 0.741 0.597 0.645

16 0.761 0.683 0.449 0.436 0.739 0.597 0.611

17 0.692 0.550 0.391 0.423 0.746 0.598 0.567

18 0.743 0.520 0.453 0.423 0.747 0.594 0.580

19 0.633 0.512 0.435 0.391 0.788 0.594 0.559

20 0.583 0.513 0.448 0.373 0.828 0.596 0.557

21 0.523 0.532 0.512 0.345 0.847 0.592 0.558

22 0.432 0.546 0.633 0.350 0.874 0.588 0.571

23 0.356 0.455 0.491 0.316 0.846 0.590 0.509

24 0.335 0.444 0.634 0.250 0.801 0.584 0.508

Table 17: Size Effect: Averaged (across inputs) R2 val-
ues of different Larger variants of LLMs for different
layers when fitting a linear function. RoB: Roberta-
base model, BERT: uncased variant.

LLMs\Input LC MC Digits Avg.
T5 0.868 0.816 0.833 0.839
BART 0.767 0.838 0.478 0.694
RoBERTa 0.672 0.686 0.725 0.694
XLNET 0.617 0.649 0.711 0.659
BERT (uncased) 0.786 0.732 0.759
GPT2 0.669 0.720 0.767 0.718
Total Averages
across models

0.730 0.749 0.707 0.718

Table 18: Ratio Effect: Averaged (across layers) R2

values of different Larger variants of LLMs on differ-
ent input types when fitting a negative exponential func-
tion. LC: Lowercase number words, MC: Mixedcase
number words.

model.

A.3 Impact of Distance effect and Size effect
in Ratio effect scores

When interpreting LLM findings on the ratio effect,
we observe that they are dominated by the distance
effect as compared to the size effect. We observe
the same decreasing trend in averaged results over
input types in layers; see Table 7 (column: Total
Averages). The impact of layer-wise trends can be
quantified using regression with the distance effect
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Layer T5 BART RoB XLNET BERT GPT-2 Avg.

1 0.868 0.837 0.803 0.881 0.829 0.733 0.825

2 0.803 0.740 0.529 0.873 0.657 0.708 0.718

3 0.792 0.798 0.573 0.875 0.602 0.775 0.736

4 0.828 0.782 0.722 0.868 0.667 0.725 0.765

5 0.860 0.823 0.716 0.863 0.664 0.652 0.763

6 0.878 0.811 0.671 0.836 0.765 0.680 0.774

7 0.898 0.686 0.669 0.818 0.735 0.704 0.752

8 0.896 0.657 0.726 0.797 0.722 0.716 0.753

9 0.910 0.658 0.714 0.792 0.838 0.729 0.773

10 0.915 0.639 0.718 0.774 0.818 0.729 0.766

11 0.921 0.640 0.583 0.745 0.835 0.725 0.742

12 0.917 0.638 0.518 0.691 0.868 0.724 0.726

13 0.920 0.836 0.538 0.593 0.820 0.728 0.739

14 0.937 0.764 0.679 0.585 0.837 0.724 0.755

15 0.931 0.715 0.772 0.546 0.822 0.722 0.751

16 0.915 0.713 0.762 0.514 0.815 0.726 0.741

17 0.904 0.684 0.747 0.492 0.836 0.718 0.730

18 0.907 0.666 0.728 0.497 0.815 0.728 0.723

19 0.778 0.617 0.754 0.464 0.807 0.720 0.690

20 0.754 0.613 0.717 0.450 0.775 0.720 0.671

21 0.692 0.600 0.723 0.435 0.699 0.716 0.644

22 0.679 0.605 0.802 0.459 0.715 0.721 0.664

23 0.637 0.587 0.730 0.478 0.651 0.716 0.633

24 0.592 0.559 0.767 0.486 0.624 0.703 0.622

Table 19: Ratio Effect: Averaged (across inputs) R2

values of different Larger variants of LLMs for differ-
ent layers when fitting a negative exponential function.
RoB: Roberta-base model, BERT: uncased variant.

LLMs\Input LC MC Digits Avg.
T5 0.572 0.127 0.408 0.369
BART 0.677 0.546 0.515 0.580
RoBERTa 0.669 0.573 0.473 0.572
XLNET 0.498 0.373 0.465 0.445
BERT (uncased) 0.519 0.541 0.530
GPT2 0.623 0.624 0.888 0.711
Total Averages
across models

0.593 0.460 0.548 0.534

Table 20: Averaged (across layers) correlation values
when comparing MDS values with Log101 to Log109
for Large variants of different LLMs. LC: Lowercase
number words, MC: Mixedcase number words.

and size effect as inputs (column: Total Averages;
tables 2, 4) and the ratio effect (column: Total Av-
erages; Table4) as output. Importantly, the distance
effect averages are statistically significant predic-
tors of ratio effect averages; see Table 23). These
results provide a superficial view of the impact of
distance and size effect in the ratio effect scores
because of the aggregation performed at different
levels of the study.

Layer T5 BART RoB XLNET BERT GPT-2 Avg.

1 0.675 0.633 0.731 0.590 0.542 0.689 0.643

2 0.249 0.662 0.461 0.649 0.555 0.767 0.557

3 0.251 0.673 0.522 0.689 0.662 0.707 0.584

4 0.156 0.682 0.698 0.674 0.353 0.703 0.544

5 0.059 0.518 0.493 0.686 0.065 0.719 0.423

6 0.219 0.471 0.411 0.533 0.535 0.729 0.483

7 0.569 0.421 0.558 0.549 0.367 0.688 0.526

8 0.578 0.413 0.540 0.690 0.385 0.695 0.550

9 0.581 0.710 0.594 0.546 0.598 0.720 0.625

10 0.495 0.716 0.531 0.487 0.710 0.718 0.610

11 0.286 0.691 0.404 0.495 0.576 0.702 0.526

12 0.481 0.682 0.304 0.466 0.708 0.700 0.557

13 0.387 0.605 0.533 0.394 0.588 0.721 0.538

14 0.483 0.672 0.538 0.383 0.574 0.718 0.562

15 0.486 0.386 0.596 0.241 0.586 0.705 0.500

16 0.485 0.454 0.689 0.140 0.591 0.692 0.509

17 0.536 0.677 0.617 0.163 0.588 0.719 0.550

18 0.259 0.562 0.651 0.251 0.602 0.704 0.505

19 0.458 0.750 0.583 0.077 0.599 0.694 0.527

20 0.463 0.545 0.652 0.246 0.585 0.718 0.535

21 0.362 0.526 0.653 0.524 0.554 0.700 0.553

22 0.402 0.522 0.656 0.247 0.596 0.719 0.524

23 -0.019 0.466 0.649 0.490 0.600 0.720 0.484

24 -0.051 0.473 0.652 0.476 0.205 0.726 0.414

Table 21: Averaged (across inputs) correlation val-
ues of the Large variants of different LLMs on dif-
ferent model layers when comparing MDS values with
Log101 to Log109. RoB: Roberta-base model, BERT:
uncased variant.

Variant Effect LC MC Digits Avg.

Uncased

Distance 0.976 0.944 0.960
Size 0.803 0.851 0.827
Ratio 0.906 0.757 0.831
MDS (Corr.) 0.312 0.423 0.386

Cased

Distance 0.958 0.980 0.890 0.943
Size 0.664 0.691 0.918 0.758
Ratio 0.854 0.880 0.866 0.867
MDS (Corr.) 0.621 0.553 0.487 0.554

Table 22: Behavioral differences between the cased and
uncased variants of the BERT architecture. LC: Lower-
case number words, MC: Mixed-case number words.

Variant Coef. Std. Error t Stat P-value
Intercept -0.916 0.531 -1.722 0.119

Base Distance Effect 1.953 0.452 4.314 0.001 �
Size Effect -0.228 0.188 -1.212 0.256
Intercept -0.188 0.075 -2.491 0.0.021

Large Distance Effect 0.700 0.117 5.997 0.000 ⊕
Size Effect 0.447 0.124 3.612 0.001 �

Table 23: Impact of layer-wise trends of distance and
size effect on the ratio effect; � indicates statistical sig-
nificance with p-value less that 0.01, ⊕ indicates statis-
tical significance with p-value less that 0.00001
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