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Abstract

Collaboration increasingly happens online.
This is especially true for large groups working
on global tasks, with collaborators all around
the world. The size and distributed nature of
such groups make decision-making challeng-
ing. This paper proposes a set of dialog acts
for the study of decision-making mechanisms
in such groups, and provides a new annotated
dataset based on real-world data from the pub-
lic mail-archives of one such organization – the
Internet Engineering Task Force (IETF). We
provide an initial data analysis showing that
this dataset can be used to better understand
decision-making in such organizations. Finally,
we experiment with a preliminary transformer-
based dialog act tagging model.

1 Introduction and Related Work

Motivation Online collaboration has been used
for many years by large distributed organizations.
The increasing availability of high-speed Internet
connections and collaboration tools, along with the
Covid-19 pandemic, are making it ever more preva-
lent. Large distributed organizations of this type
often undertake important tasks. For example, the
Internet Engineering Task Force (IETF) and the
World Wide Web Consortium (W3C) are responsi-
ble for developing the technical standards that un-
derpin the Internet. Consequently, understanding
the decision-making processes in this type of orga-
nization is essential to increase transparency and
accountability, to facilitate tracking of decisions
and the reasoning behind them, and to understand
alternatives that were considered (or not) and the
voices that were (or were not) heard.

Goals Most studies of decision making in text
(e.g. Hsueh and Moore, 2007; Fernández et al.,
2008; Bui and Peters, 2010) rely on annotation and
analysis of Dialogue Acts (DAs). We adopt this ap-
proach and label emails from public IETF mailing
lists with DAs. Our aim is to answer the following

research questions: RQ1: What is an appropriate
set of DAs to use for this annotation task?; RQ2:
How do communication patterns change through
the life-cycle of a decision discussion?; and RQ3:
How do different types of participants differ in how
they contribute to the process? The overall goal
of these questions is to better understand the mech-
anisms underlying the decision-making process in
a large, distributed, collaborative organization.

Related Datasets The most notable email-based
related dataset is the Enron Corpus (Klimt and
Yang, 2004), covering over 200K messages of En-
ron employees in various positions within the or-
ganization. However, in-house emails of a single
closed company are not representative of commu-
nication in larger, more diverse collaborations.

Datasets specifically relevant for studying deci-
sion making include AMI (McCowan et al., 2005)
and ICSI/MRDA (Janin et al., 2003; Shriberg et al.,
2004). However, the AMI dataset is not “real”: it
uses actors acting out small-group meetings on pre-
defined topics. In contrast, the ICSI dataset is based
on naturally occurring meetings at the International
Computer Science Institute (ICSI). While both are
annotated with general dialogue act labels, AMI
also includes specific decision-oriented dialogue
acts provided by Fernández et al. (2008). Despite
this, they are not representative of interaction in
large groups, or online collaborative settings. Con-
sequently, we annotate a new dataset tailored to ad-
dress our research questions. We denote it as Large-
organization Email-based Decision-dialogue-act
Analysis dataset – LEDA.

There are important differences between LEDA
and AMI/ICSI. First, while AMI/ICSI are tran-
scribed face-to-face, real-time, in-person, and
small-group meetings. LEDA contains emails
from mailing-lists, asynchronous, and from a large
decentralized, globally spread group. Second,
AMI/ICSI discuss mostly self-contained, focused
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topics (design, research-group progress); LEDA
discusses the more long-term, complex task of de-
signing Internet-standards. We further provide a
more detailed comparison of LEDA with AMI in
Appendix A.

Contributions First, we propose a taxonomy of
DA labels for large-group email decision-making.
Second, we provide a novel dataset labeled with
DAs. Third, we provide data analyses exploring
decision-making communication patterns within
the IETF. Fourth, we provide a preliminary DA
prediction model on this dataset, which can serve
as a reference baseline model for future work.

2 Dataset

Our data consists of emails from the IETF mailing
list archive.1 The IETF is a typical example of de-
cision making in a large, distributed, online collab-
orative community; it has rich metadata available
via the IETF DataTracker;2 and the data is publicly
available with appropriate consent.3

IETF background The IETF is a large, open,
voluntary organization tasked with developing In-
ternet standards (Flanagan, 2019; McQuistin et al.,
2021; Khare et al., 2022). It is comprised of work-
ing groups (WGs), each focusing on a relatively
narrow field: e.g., RMCAT4 WG focuses on spe-
cific Real-time Media Congestion Avoidance Tech-
niques. Each WG has one or more participants as
chairs. During its development, an Internet stan-
dard is called a draft. Drafts are discussed in the
mailing lists (the archive has >2M emails, predom-
inantly in English, between 56k participants over
20 years) and in several live meetings yearly. After
sufficient revision and review, a draft becomes an
Internet standard.

Data preparation The email archive consists of
threads (sets of emails connected with reply-to re-
lations, forming a tree-like structure). Given a par-
ticular draft, we extract all threads with at least one
message that mentions the draft in either the sub-
ject or body. We do this for four drafts, chosen by
an IETF expert to span a range of technical areas.
We opted for entire threads over a smaller number
of drafts (rather than more drafts but with partial

1http://mailarchive.ietf.org/arch/
2http://datatracker.ietf.org/
3www.ietf.org/privacy-statement/
4http://datatracker.ietf.org/wg/rmcat/

threads) to ensure a full view of the draft discussion
and agreement process over its life-cycle.

We then preprocess all messages, splitting them
into Quote, Signature, or Normal segments using
custom heuristics developed for this data. A Nor-
mal segment contains text written by the author
of the message. A Quote segment contains text
written by someone else, which is being quoted. A
Signature segment contains signatures (name, com-
pany name, website). Normal segments are useful
for analysis, while the rest introduce noise. We also
keep track of quoting relations between segments.

Label set calibration As our starting point, we
take the DA labels defined in the ISO 24617-2 stan-
dard (Bunt et al., 2012). Cross-referencing with
labels in datasets from related work and manual
inspection of the IETF data suggested that much
of the complexity in the standard is not needed for
our goals. This was confirmed in several initial
rounds of annotations where we observed consider-
able confusion between the very fine grained ISO
24617-2 DAs on our data. After each iteration,
we simplified the label set by removing irrelevant
labels for email communication (e.g., rhetorical
devices such as pauses) and aggregating hard to
distinguish labels (e.g., accepting a request and
agreeing to an opinion). Table 1 presents our two-
level taxonomy with three coarse grained labels
divided into eleven fine-grained ones, which was
obtained after four rounds of calibration.

Annotation Annotation of each segment with
DA labels was carried out by seven student an-
notators, all with a background in linguistics. A
segment can be assigned several DAs simultane-
ously (a multi-label setting). During the calibration
rounds, annotators provided feedback which helped
modify the taxonomy and instructions. For the fi-
nal annotation, they were provided a detailed set
of instructions and an annotation tool specifically
developed in-house.

Table 1 reports data statistics and inter-annotator
agreement (IAA). Each thread is annotated by at
least two annotators. To measure IAA, we consid-
ered both Fleiss’ Kappa and Krippendorff’s Alpha,
but neither supports multi-label annotation. Instead,
we consider one annotator’s labels as “gold labels,”
and another’s as “classifier predictions.” We calcu-
late the F1 score for all annotator pairs and average
them. This calculation is performed on a subset
of 15 threads labeled by all annotators. For some
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labels, the annotation is inherently difficult, as re-
flected in the IAA. Manual inspection reveals that
many of these disagreements may be impossible to
completely resolve as the task is subjective (Uma
et al., 2021). For example, ClarificationElicitation
is more often implicit ("I don’t see why ...") than
explicit ("Can you explain why ..."), introducing
disagreement. However, recent work (Pavlick and
Kwiatkowski, 2019; Basile et al., 2021; Leonardelli
et al., 2021) shows it is viable to design models and
evaluation measures that account for this inherent
ambiguity instead of trying to resolve it. Accord-
ingly, we release all individual annotators’ labels
with the text data and code. 5 While covering only
four drafts, LEDA is of substantial size (8230 seg-
ments, 2196 messages, 363 authors), with the drafts
hand-picked by an IETF expert to ensure they are
representative. We focus on trends that are very
prominent and supported by statistical significance
tests. Finally, an inspection of plots for individual
drafts revealed that the main trends outlined in the
remaining sections were consistent across all four
drafts.

3 Analysis of gold-standard labels

3.1 Draft life-cycle

To address RQ1, we divide the period between the
submission and publication of a draft into five equal
time intervals (T1 - T5), each representing 20% of
the period. We visualize the distribution of DAs
falling into each of the periods. in Figure 1.6

Answer and Question are more common in the
early phases, likely due to more new issues being
raised and unresolved issues discussed.

ContextSetting and Extension are very frequent,
increasingly so towards the end phases; we conjec-
ture this is because those phases cover more com-
plex issues requiring more background description.

The frequency of ProposeAction is stable
throughout the cycle and noticeably higher than
StateDecision. This may imply that participants
prefer to discuss actionable options rather than ex-
plicitly deciding on a single one.

3.2 Different groups

To explore RQ2, we categorize the participants as:
(1) authors of the draft being discussed, or not;

5https://github.com/sodestream/
acl2023-email-da-dataset.git

6In both figures InformationProviding is omitted because
it dominates the plot and obscures other trends.

(2) influential — following (Khare et al., 2022),
having top-10% centrality in the email interaction
graph — or not; (3) chairs of any IETF WG, or
not; (4) everyone (all participants). Figure 2 gives
a visualization of DA distributions for each group.

Authors vs. non-Authors Authors are more so-
cial, give more answers, and ask fewer questions
(including clarification questions). Also, they use
fewer NeutralResponse, Extension, and ContextSet-
ting, indicating shorter, more focused messages.
These trends imply they take a more reactive role
in the discussion. Finally, they make the most deci-
sions in the discussion, as would be expected, since
they are in charge of the writing process.

Influential vs. non-Influential Influential peo-
ple use Answer, Agreement, and NeutralResponse
more, making them generally more responsive.
They use less Extension, ContextSetting and Thank-
ing, implying a concise, focused communication
style. As expected, they make more decisions and
propose slightly more actions.

Chairs vs. non-Chairs Similar to influential par-
ticipants, chairs use NeutralResponse more than
non-Chairs. However, they use more ContextSet-
ting and Extension, and do more Thanking. We find
this is because chairs send a lot of emails initiating
and managing discussions and review assignments.
Such emails are often composed of many small
segments and contain a lot of these labels.

Feedback to questions We further explored how
likely the different groups are to have their ques-
tions answered. From the labeled data we obtain
percentages for authors (22%), chairs (51%), influ-
ential (34%), and everyone (37%). Authors have
the lowest ratio, possibly because their questions
are, on average, more complex. The chairs, while
they tend not to ask many questions, are the most
likely to to get an answer. This is expected, as it
is difficult to ignore a question from someone in
that position. Surprisingly, the difference between
ratios of influential participants and everyone are
not statistically significant.7 Another surprising
finding is that, on average, around two thirds of all
questions appear to remain unanswered.

3.3 Other observations

ClarificationElicitation is almost nonexistent, im-
plying either very little misunderstandings or un-

7We used a z-test with significance level 0.05.
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Label Description Example Count IAA
InformationProviding Any type of providing information - 7643 .86

Agreement Agreeing with opinion or accepting a task That’s a good idea. 651 .74
Answer Answering a question It is 42 bytes. 655 .73
ContextSetting Providing context before other DAs Imagine the case when ... 2212 .25
Disagreement Disagreeing with opinion on rejecting a task I don’t think so. 365 .68
Extension Natural continuation of the previous one. Moreover, it’s faster. 3007 .65
NeutralResponse Response without clear (dis)agreement Your idea seems interesting. 2066 .71
ProposeAction Propose an actionable activity We should update the text. 2225 .65
StateDecision Explicitly express a decision We will incorporate this. 359 .63

InformationSeeking Any type of seeking information - 1146 .84
ClarificationElicitation Expresses need for further elaboration. Could you explain again ... 326 .29
Question Any type of question. How big is the header? 865 .86

Social Social acts (thanking, apologizing etc.) - 1040 .67
Thanking Conveying thanks. Thanks for the comment. 249 .98

Table 1: Labels at the higher (bold) and lower levels of the taxonomy with corresponding counts and
inter-annotator agreement.

Figure 1: DA distribution across time. Each column is a DA distribution in a particular time period of the
draft life-cycle. Colors convey the probability mass assigned to a DA in emails from that period.

Figure 2: DA distribution for different groups. Each column is a DA distribution of a particular group.
Colors convey the probability mass of a DA for that group.
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willingness to explicitly voice it. Research on
misunderstandings in dialog (Aberdeen and Ferro,
2003) implies it is likely the latter.

Most participants tend to use NeutralResponse,
as opposed to Agreement or Disagreement, and be-
tween the latter two they prefer Agreement. This
tendency is confirmed by related research on agree-
ment (Stromer-Galley and Muhlberger, 2009).

ContextSetting, Extension, and NeutralResponse
are, expectedly, very frequent. This implies there
are a lot of boilerplate explanations around seg-
ments with more relevant DAs.

4 Automated Dialogue Act Tagging

We provide a preliminary DA tagging model to in-
vestigate the predictability of our DA tags, and to
serve as a baseline for future work. We use a hier-
archical sequence model, inspired by work in DA
tagging for spoken dialogue (e.g. Li et al., 2019):
the input is a sequence of segments (each one a
sequence of words), and the output is a sequence
of predictions, one 14-dimensional vector for each
input segment, representing DA probabilities.

Each input segment is encoded into a vector; we
use the [CLS] token of BERT (Devlin et al., 2019).
The sequence of segment vectors is then passed to a
Bidirectional-LSTM (Hochreiter and Schmidhuber,
1997); each BiLSTM hidden state vector is passed
through a linear layer (shared for all time steps)
to produce the output prediction vector sequence.
The loss function is binary cross-entropy averaged
across all labels and all elements of the sequence.

The model is implemented using PyTorch
(Paszke et al., 2019) and scikit-learn (Pedregosa
et al., 2011). We used a learning rate of 2−5, batch-
size of 32, and LSTM hidden-layer size of 256. All
other hyper-parameters are left at default values.
We experiment with two variants of BERT: bert-
base and bert-base-ietf (fine-tuned using language
modeling loss on the entire IETF mail archive).

We split the data into train (60%), validation
(20%), and test threads (20%). We report results
on test threads by the model best on the validation
threads. The input sequences for the model are
the possible root-to-leaf paths in the input threads,
following (e.g. Zubiaga et al., 2016).8

Results are given in Table 2. Predicting higher-
level labels is easier, as expected. For lower-level

8This will cause segments that are part of several paths
to be processed multiple times and assigned multiple label
hypotheses; we take the most common label in this case.

bert-base bert-base-ietf
Label P R F1 P R F1

InfProviding .89 .96 .93 .88 .97 .93
Agreement .67 .72 .69 .47 .67 .55
Answer .44 .40 .41 .35 .49 .41
ContextSetting .38 .67 .49 .36 .67 .47
Disagreement .14 .24 .17 .10 .29 .15
Extension .64 .72 .67 .66 .62 .64
NeutralResponse .45 .52 .48 .43 .52 .47
ProposeAction .47 .72 .57 .44 .67 .53
StateDecision .39 .28 .47 .19 .30 .23

InfSeeking .85 .87 .86 .78 .84 .81
ClarificationEl. .25 .46 .33 .21 .51 .30
Question .78 .98 .87 .84 .88 .86

Social .33 .67 .44 .45 .52 .48
Thanking .75 .99 .86 .33 .92 .48

Macro-average .53 . 66 .59 .46 63 .52

Table 2: Precision, Recall, and F1 on the test set.

labels, performance is worst for labels that are con-
ceptually more subjective (as reflected by IAA) or
have very few examples.

Curiously, bert-base-ietf performs comparably to
or worse than bert-base. We hypothesize the reason
for this may be the specific language of the IETF
(technical discussions). It may cause the additional
language model training step to make the bert-base-
ietf model forget information generally useful for
DA tagging. On the other hand, this information
is retained in bert-base. If this is the case, it would
hurt the performance of bert-base-ietf after further
fine-tuning on the DA tagging task. However, we
leave investigation of this and other hypotheses for
this unexpected result to future work.

5 Conclusion

We have presented a taxonomy of dialogue acts
(DAs) and a labeled dataset of emails. Moreover,
we provided a data analysis and a preliminary DA
prediction model. We hope this dataset will be use-
ful to facilitate further research on the interaction
behavior of participants in online collaboration set-
tings. Future work could include a more detailed
investigation into the underlying reasons for the
observed trends. Another possibility is looking
into the interaction of DAs and the participant in-
teraction graph as described by (Khare et al., 2022).
Finally, to get further insights, it would be inter-
esting to annotate segments of with a particular
DA with additional labels, e.g., explicit/implicit for
Agreement or different sub-types of Question.

6084



6 Limitations

One of the main limitations is that we focus solely
on the IETF. Consequently, we can never be com-
pletely sure how well our findings generalize to
other similar organizations without further annota-
tion.

We are also limited by not conducting a hyper-
parameter search on our models. We omit this step
as the main goal is not maximizing performance,
but rather data annotation and analysis. In a similar
vein, it is likely possible to increase performance by
using a more advanced model that is either trained
on dialogue-like data or is specifically designed
to exploit phenomena specific to dialogue (e.g.,
having speaker embeddings).

We also acknowledge that many emails are
longer than 512 tokens which is the limit of our
BERT model and thus might have been cut short.
However, most of the emails do fit into this limit.

7 Ethical Considerations

The IETF conditions participation by agreements
and policies that explicitly state mailing list dis-
cussions and Datatracker metadata will be made
publicly available.9 In our analysis we use only
this publicly available data. We have discussed our
work with the IETF leadership and confirmed it is
conforming to all their policies.
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A Appendix A: Comparison with the
AMI dataset

In this section, we compare our dataset with the
AMI dataset (McCowan et al., 2005). The counts
are given in Table 3, after removing those AMI DA
categories that make sense in AMI’s spoken, face-
to-face setting but do not exist in the email given
the text modality and non-synchronous nature (e.g.
Stall, Backchannel). The distributions are roughly
similar. The main difference is a lot more Clarifi-
cationElicitation and Answer in AMI. The former
may reflect the explicitly decision-oriented setting
of AMI (actors were tasked with making design
decisions on how to build a remote control, and
therefore decisions and clarity were the primary
focus), and/or its synchronous speech, which par-
ticipants must clarify immediately (while email can
be studied over more time before replying). The
latter may reflect the fact that AMI is built on live
face-to-face conversations, thus leaving an articu-
lated question ignored and unanswered would be
considered rude, while in email communication,
this is less problematic.

B Appendix B: Computing resources

The prediction model experiments (two of them –
bert-base and bert-base-ietf) were run on a single
Nvidia QUADRO RTX 6000 GPU for 100 epochs
each. For both experiments, one epoch took approx-
imately 4 minutes. In preliminary experiments, we
found the models with our hyperparameters need
14GB of video memory. They can, however, run
with less memory with reduced batch size. Alter-
natively, larger batches could be emulated using
several smaller batches and gradient accumulation
(this is not implemented in our code).
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AMI This work
label count label count
Inform 33484 InformationProviding 7643
Assess 21391 Answer 655
Suggest / Offer 10921 ProposeAction 2225
Elicit-Inform / Elicit-Offer-Or-Suggestion / Elicit-Assessment 7191 Question 865
Comment-About-Understanding / Elicit-Comment-Understanding 2560 ClarificationElicitation 326
Be-Positive 2210 Agreement 651
Be-Negative 98 Disagreement 365

Table 3: Comparison of label distributions between AMI and the dataset proposed in this work. We
consider only labels that have a rough equivalent in both datasets.

C Appendix C: Annotation details

The annotators come from diverse backgrounds but
were primarily chosen as skilled linguists from the
population of graduate and Ph.D. level linguistics
students. They all lived in the UK and were paid
an hourly wage that was slightly above average for
similar tasks in the UK.
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