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Abstract

Open-Domain Conversational Question An-
swering (ODConvQA) aims at answering ques-
tions through a multi-turn conversation based
on a retriever-reader pipeline, which retrieves
passages and then predicts answers with them.
However, such a pipeline approach not only
makes the reader vulnerable to the errors prop-
agated from the retriever, but also demands
additional effort to develop both the retriever
and the reader, which further makes it slower
since they are not runnable in parallel. In this
work, we propose a method to directly pre-
dict answers with a phrase retrieval scheme
for a sequence of words, reducing the conven-
tional two distinct subtasks into a single one.
Also, for the first time, we study its capabil-
ity for ODConvQA tasks. However, simply
adopting it is largely problematic, due to the de-
pendencies between previous and current turns
in a conversation. To address this problem,
we further introduce a novel contrastive learn-
ing strategy, making sure to reflect previous
turns when retrieving the phrase for the cur-
rent context, by maximizing representational
similarities of consecutive turns in a conver-
sation while minimizing irrelevant conversa-
tional contexts. We validate our model on
two ODConvQA datasets, whose experimental
results show that it substantially outperforms
the relevant baselines with the retriever-reader.
Code is available at: https://github.com/
starsuzi/PRO-ConvQA.

1 Introduction

Conversational Question Answering (ConvQA) is
the task of answering a sequence of questions that
are posed during information-seeking conversa-
tions with users (Choi et al., 2018; Reddy et al.,
2019; Zaib et al., 2022). This task has recently
gained much attention since it is similar to how
humans seek and follow the information that they
want to find. To solve this problem, earlier ConvQA
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Figure 1: (A) Conventional retriever-reader pipeline approach,
which first retrieves a relevant passage to a current conversa-
tional (i.e., Conv.) context, and then predicts an answer based
on the passage. (B) Our direct phrase retrieval approach that
predicts start and end tokens of the answer phrase based on
their representational similarities to the current Conv. context.
To reflect the previous history when retrieving the phrase, we
maximize representations of two consecutive conversations.

work proposes to predict answers based on both the
current question and the previous conversational
histories, as well as the passage that is relevant to
the ongoing conversation (Qu et al., 2019; Huang
et al., 2019; Kim et al., 2021; Li et al., 2022a).
However, this approach is highly suboptimal and
might not be applicable to real-world scenarios,
since it assumes that the gold passage, containing
answers for the current question, is given to the
ConvQA system; meanwhile, the gold passage is
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usually not available during the real conversation.

To address this limitation, some recent work (Qu
et al., 2020; Anantha et al., 2021; Li et al., 2022c;
Adlakha et al., 2022; Fang et al., 2022) proposes
to extend the existing ConvQA task to an open-
domain question answering setting with an assump-
tion that the conversation-related passages are not
given in advance; therefore, it is additionally re-
quired to access and utilize the query-relevant pas-
sages in a large corpus, for example, Wikipedia.
Under this open-domain setting, most existing
Open-Domain ConvQA (ODConvQA) work relies
on the retriever-reader pipeline, where they first
retrieve the passages, which are relevant to both the
current question and conversational context, from a
large corpus, and then predict answers based on in-
formation in the retrieved passages. This retriever-
reader pipeline approach is illustrated in Figure 1.

However, despite their huge successes, such a
pipeline approach consisting of two sub-modules
has a few major drawbacks. First, since the reader
is decomposed from the retriever, it is difficult to
train the retriever-reader pipeline in an end-to-end
manner, which results in an additional effort to
develop both the retriever and the reader indepen-
dently. Second, the error can be accumulated from
the retriever to the reader, since the failure in find-
ing the relevant passages for the current question
negatively affects the reader in predicting answers,
which is illustrated in Figure 1. Third, while the la-
tency is an important factor when conversing with
humans in the real-world scenarios, the retriever-
reader pipeline might be less efficient, since these
two modules are not runnable in parallel.

An alternative solution tackling the limitations
above is to directly predict the phrase-level answers
consisting of a set of words, which are predicted
from a set of documents in a large corpus. While
this approach appears challenging, recent work
shows that it is indeed possible to directly retrieve
phrases within a text corpus based on their repre-
sentational similarities to the input question (Seo
et al., 2019; Lee et al., 2021a,b). However, its ca-
pability of retrieving phrases has been studied only
with single-turn-based short questions, and their
applications to ODConvQA, additionally requir-
ing contextualizing the multi-turn conversations as
well as effectively representing the lengthy conver-
sational histories, have not been explored.

To this end, in this work, we first formulate
the open-domain ConvQA task, previously done

with the two-stage retriever-reader pipeline, as a
direct phrase retrieval problem based on a single
dense phrase retriever. However, in contrast to the
single-turn open-domain question answering task
that needs to understand only a single question, the
target ODConvQA is more challenging since it has
to comprehensively incorporate both the current
question and the previous conversational histories
in multi-turns. For example, as shown in Figure 1,
in order to answer the question, “ What happened
in 2003”, the model has to fully understand that the
conversational context is related to the song, not
the movie. While some work (Qu et al., 2020; Fang
et al., 2022; Adlakha et al., 2022) proposes to feed
an ODConvQA model the entire context consisting
of the current question together with the conver-
sational histories as an input, this naïve approach
might be insufficient to solve the conversational
dependency issue, which may lead to suboptimal
performances in a phrase retrieval scheme.

In order to further address such a conversational
dependency problem, we suggest to enforce the
representation of the current conversational context
to be similar to the representation of the previous
context. Then, since two consecutive turns in a con-
versation are dependently represented in a similar
embedding space, phrases that are relevant to both
the current and previous conversational contexts are
more likely to be retrieved, for the current question.
To realize this objective, we maximize the represen-
tational similarities between the current conversa-
tional context and its previous contexts, while mini-
mizing the representations between the current and
its irrelevant contexts within the same batch via the
contrastive learning loss, which is jointly trained
with the dense phrase retriever. This is illustrated
in Figure 1, where we force the representation of
the current conversational turn to be similar to its
previous turn. We refer to our proposed method as
Phrase Retrieval for Open-domain Conversational
Question Answering (PRO-ConvQA).

We validate our proposed PRO-ConvQA method
on two standard ODConvQA datasets, namely OR-
QuAC (Qu et al., 2020) and TopiOCQA (Adlakha
et al., 2022), against diverse ODConvQA baselines
that rely on the retriever-reader pipeline. The ex-
perimental results show that our PRO-ConvQA sig-
nificantly outperforms relevant baselines. Further-
more, a detailed analysis demonstrates the effective-
ness of the proposed contrastive learning strategy
and the efficiency of our phrase retrieval strategy.
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Our contributions in this work are threefold:

• We formulate a challenging open-domain con-
versational question answering (ODConvQA)
problem into a dense phrase retrieval problem
for the first time, by simplifying the conven-
tional two-stage pipeline approach to ODCon-
vQA tasks consisting of the retriever and the
reader into one single phrase retriever.

• We ensure that, when retrieving phrases, the
representation for the current conversational
context is similar to the representations for
previous conversation histories, by modeling
their conversational dependencies based on
the contrastive learning strategy.

• We show that our PRO-ConvQA method
achieves outstanding performances on two
benchmark ODConvQA datasets against rele-
vant baselines that use a pipeline approach.

2 Related Work

Conversational Question Answering ConvQA
is similar to the reading comprehension task (Ra-
jpurkar et al., 2016; Trischler et al., 2017) in that
it also aims at correctly answering the question
from the given reference passage (Choi et al., 2018;
Reddy et al., 2019). However, ConvQA is a more
difficult task than the reading comprehension task,
since ConvQA has to answer questions interac-
tively with users through multi-turns, which re-
quires capturing all the contexts including pre-
vious conversational turns and the current ques-
tion as well as its reference passage. To consider
this unique characteristics, a line of research on
ConvQA has focused on selecting only the query-
relevant conversation history (Huang et al., 2019;
Qu et al., 2019; Chen et al., 2020; Qiu et al., 2021).
However, recent work observed that a simple con-
catenation of the conversational histories outper-
forms the previous history selection approaches,
thanks to the efficacy of the pre-trained language
models (Vaswani et al., 2017) in contextualizing
long texts (Kim et al., 2021). However, as the con-
versations often involve linguistic characteristics
such as anaphora and ellipsis (Zaib et al., 2022),
some work suggested to rewrite the ambiguous
questions to explicitly model them (Kim et al.,
2021; Vakulenko et al., 2021; Raposo et al., 2022).
However, a naïve ConvQA setting assumes a fun-
damentally unrealistic setting, where the gold refer-
ence passages, containing answers corresponding
to the questions, are already given.

Open-Domain ConvQA In order to address the
unrealistic nature of the aforementioned ConvQA
scenario, some recent work proposed to extend it to
the open-retrieval scenario, which aims at retriev-
ing relevant passages in response to the ongoing
conversation and then uses them as reference pas-
sages, instead of using human-labeled passages. In
this setting, effectively incorporating the conversa-
tional histories into the retrieval models is one of
the main challenges, and several work (Lin et al.,
2021; Yu et al., 2021; Mao et al., 2022; Wu et al.,
2022) proposed improving the first-stage retrievers,
which are trained with particular machine learn-
ing techniques such as knowledge distillation, data
augmentation, and reinforcement learning. How-
ever, their main focus is only on the first-stage
retrieval aiming at returning only the query-related
candidate passages, without giving exact answers
to the questions. Also, some methods, such as Con-
vDR (Yu et al., 2021) and ConvADR-QA (Fang
et al., 2022), use additional questions, which are
rewritten from original questions by humans, to
improve a retrieval performance by distilling the
knowledge from the rewritten queries to the origi-
nal queries. However, manually-rewritten queries
are usually not available, and annotating them re-
quires significant costs; therefore, they are trainable
only under specific circumstances. On the other
hand, to provide exact answers for the question
within the current conversation turn, some other
work adapted a retriever-reader pipeline, which can
additionally read the query-relevant passages re-
trieved from a large corpus (Qu et al., 2020; Li
et al., 2022c; Adlakha et al., 2022; Fang et al.,
2022). However, such a pipeline approach has
critical drawbacks due to its structural limitation
composed of two sub-modules, thereby requiring
additional effort to independently train both the re-
triever and the reader, both of which are also not
runnable in parallel during inference, as well as
bounding the reader’s performance to the previous
retrieval performance.

Dense Phrase Retrieval Instead of using a con-
ventional pipeline approach, consisting of the re-
triever and the reader, we propose to directly pre-
dict answers for the ODConvQA task based on
dense phrase retrieval. Following this line of pre-
vious researches, there exists some work that pro-
posed to directly retrieve phrase-level answers from
a large corpus; however, such work mainly focuses
on non-conversational domains, such as question
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answering and relation extraction tasks (Seo et al.,
2019; Lee et al., 2021a,b). Specifically, the pio-
neering work (Seo et al., 2019) used both of the
sparse and dense phrase representations for their re-
trieval. Afterwards, Lee et al. (2021a) improved the
phrase retrieval model that uses only dense repre-
sentations without using any sparse representations,
resulting in improved performance while reducing
the memory footprint. Motivated by its effective-
ness and efficiency, several work recently proposed
to use the dense phrase retrieval system in diverse
open-retrieval problems (Lee et al., 2021b; Li et al.,
2022b; Kim et al., 2022); however, their applica-
bility to our target ODConvQA has been largely
underexplored. Therefore, in this work, we adapt
dense phrase retrieval to the ODConvQA task for
the first time, and further propose to model conver-
sational dependencies in phrase retrieval.

3 Method

In this section, we first define the Conversational
Question Answering (ConvQA) task, and its ex-
tension to the open-domain setting: Open-Domain
ConvQA (ODConvQA) in Section 3.1. Then, we
introduce our dense phrase retrieval mechanism to
effectively and efficiently solve the ODConvQA
task, compared to the conventional retriever-reader
pipeline approach, in Section 3.2. Last, we ex-
plain our novel conversational dependency model-
ing strategy via contrastive learning, in Section 3.3.

3.1 Preliminaries

In this subsection, we first provide general descrip-
tions of the ConvQA and the ODConvQA tasks.

Conversational Question Answering Let qi be
the question and ai be the answer for the i-th turn
of the conversation. Also, let p∗i a reference pas-
sage, which contains the answer ai for the question
qi. Then, given qi, the goal of the ConvQA task
is to correctly predict the answer ai based on the
reference passage p∗i and the previous conversa-
tion histories: {qi−1, ai−1, ..., q1, a1}. Here, for
the simplicity of the notation, we denote the i-th
conversational context as the concatenation of the
current input question and the previous conversa-
tion histories, formally represented as follows:

Convi = {qi, qi−1, ai−1, ..., q1, a1}. (1)

Then, based on the notation of the conversational
context Convi, we formulate the objective of the

ConvQA task with a scoring function f , as follows:

f(ai|Convi) = Mcqa(p
∗
i , Convi; θcqa), (2)

where Mcqa is a certain ConvQA model that pre-
dicts ai from p∗i based on Convi, which is parame-
terized by θcqa. However, this setting of providing
the reference passage p∗i containing the exact an-
swer ai is largely unrealistic, since such the gold
passage is usually not available when conversing
with users in the real-world scenario. Therefore,
in this work, we consider the more challenging
open-domain ConvQA scenario, where we should
extract the answers within the query-related docu-
ments from a large corpus, such as Wikipedia.

Open-Domain ConvQA Unlike the ConvQA
task that aims at extracting the answers from the
gold passage p∗i , the ODConvQA task is required to
search a collection of passages for the relevant pas-
sages and then extract answers from them. There-
fore, the scoring function f of the ODConvQA
task is formulated along with the certain passage
pj from the large corpus P , as follows:

f(ai|Convi) = Modcqa(pj , Convi; θodcqa),

with pj ∈ P,
(3)

where Modcqa is an ODConvQA model parameter-
ized by θodcqa, and P is a collection of passages.

Retriever-Reader To realize the scoring func-
tion in Equation 3 for ODConvQA, the retriever-
reader pipeline approach is dominantly used, which
first retrieves the top-K query-relevant passages
and then reads a set of retrieved passages to answer
the question based on them. Therefore, for this
pipeline approach, the scoring function f is decom-
posed into two sub-components (i.e., retriever and
reader), formally defined as follows:

f(ai|Convi) = Mretr(PK |Convi; θretr)
×Mread(ai|PK ; θread),

(4)

where the first-stage retriever Mretr and the second-
stage reader Mread are parameterized with θretr
and θread, respectively. Also, PK indicates a set
of top-K query-relevant passages, which are re-
trieved from the large corpus, PK ⊂ P , based
on the retriever Mretr. However, such a retriever-
reader pipeline is problematic for the following
reasons. First, it is prone to error propagation from
the retriever to the reader, since, if Mretr retrieves
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irrelevant passages PK that do not contain the an-
swer such that ai /∈ PK , the reader Mread fails to
answer correctly. Second, it is inefficient, since
Mread requires the Mretr’s output as the input;
therefore, Mretr and Mread are not runnable in
parallel. Last, it demands effort to construct both
Mretr and Mread.

3.2 Dense Phrase Retrieval for ODConvQA

In order to address the aforementioned limitations
of the retriever-reader pipeline for ODConvQA, in
this work, we newly formulate the ODConvQA
task as a dense phrase retrieval problem. In other
words, we aim at directly retrieving the answer ai,
consisting of a sequence of words (i.e., phrase),
based on its representational similarity to the con-
versational context Convi via the dense phrase re-
triever (Lee et al., 2021a). Formally, the scoring
function for our ODConvQA based on the phrase
retrieval scheme is defined as follows:

f(ai|Convi) = EConvQ(Convi)
⊤EA(ai), (5)

where EConvQ and EA are encoders that represent
the conversational context Convi and the phrase-
level answer ai, respectively. Also, ⊤ symbol
denotes inner product between its left and right
terms. We note that this phrase retrieval mecha-
nism defined in Equation 5 is similarly understood
as predicting the answer in the reading compre-
hension task (Rajpurkar et al., 2016; Seo et al.,
2017). To be specific, in the reading comprehen-
sion task, we predict the start and end tokens of
the answer ai located in the gold passage p∗i . Sim-
ilarly, in the phrase retrieval task, we directly pre-
dict the start and end tokens of the answer which
is located within one part of the entire total pas-
sages P; therefore, all words in all passages are
sequentially pre-indexed and the goal is to find
only the locations of the answer based on its sim-
ilarity to the input context, e.g., Convi. Note that
this phrase retrieval approach simplifies the con-
ventional two-stage pipeline approach, commonly
used for ODConvQA tasks, into the single direct
answer retrieval, by removing the phrase reading
done over the retrieved documents.

The training objective of the most information
retrieval work (Karpukhin et al., 2020; Qu et al.,
2021) is to rank the pair of the query and its relevant
documents highest among all the other irrelevant
pairs. Similar to this, our training objective with a

dense phrase retriever is formalized as follows:

Lneg = − log
ef(a

+,Convi)

ef(a+,Convi) +
N∑
k=1

ef(a−,Convi)

, (6)

where, for the context Convi, a+ is the positive
answer phrase and a− is the negative answer phrase.
We describe how to construct the negative context-
phrase pairs and additional details for training of
the dense phrase retriever in the paragraph below.

Training Details In order to improve the per-
formance of the dense phrase retriever, we adopt
the existing strategies following Lee et al. (2021a).
First of all, we construct the negative samples, used
in Equation 6, based on in-batch and pre-batch sam-
pling strategy. Specifically, for the B number of
phrases in the batch, (B − 1) in-batch phrases are
used for negative samples by excluding one posi-
tive phrase with regard to the certain conversation
context. Also, given the preceding C number of
batches, we can obtain the negative phrases for the
current conversation context with a size of (B×C).
In addition to negative sampling, we use the query-
side fine-tuning scheme, which optimizes only the
conversational question encoder, EConvQ, by maxi-
mizing the representational similarities between the
correctly retrieved phrases and their corresponding
conversational contexts after the phrase indexing.
Last, to further improve predicting the start and
end spans of the phrase retriever, we first train
the reading comprehension model and then distill
its knowledge, by minimizing the KL divergences
of span predictions between the reading compre-
hension model and the phrase retriever. For more
details, please refer to Lee et al. (2021a).

3.3 Conversational Dependency Modeling

While Equation 6 effectively discriminates positive
answer phrases from negative answer phrases, rely-
ing on it is sub-optimal when solving the ODCon-
vQA task, where each conversational turn shares
a similar context with its previous turn. In other
words, since information-seeking conversational
questions are asked in a sequence, two consecu-
tive contexts, Convi−1 and Convi, should have sim-
ilar representations compared to the other turns
from different conversations. Therefore, we further
model such a conversational dependency by maxi-
mizing the similarity between the sequential turns
while minimizing the similarity between the other

6023



irrelevant turns via contrastive learning as follows:

Lturn = − log
ef(Convi,Convi−1)

ef(Convi,Convi−1) +
B−1∑
k=1

ef(Convi
−,Convi−1)

,

(7)
where Convi

− comes from a collection of the ir-
relevant conversation turns within the batch. By
optimizing the objective in Equation 7, the encoder
EConvQ represents the current conversational turn
Convi probably similar to its previous turn Convi−1;
therefore, the retrieved phrase captures both the cur-
rent and previous conversational contexts.

Overall Training objective We optimize the
phrase retrieval loss from Equation 6 and conversa-
tional dependency loss from Equation 7 as follows:

L = λ1Lneg + λ2Lturn, (8)

where λ1 and λ2 are the weights for each loss term.

4 Experimental Setups

In this section, we explain datasets, metrics, mod-
els, and implementation details.

4.1 Datasets and Metrics
OR-QuAC OR-QuAC (Qu et al., 2020) is the
benchmark ODConvQA dataset, which extends
a popular ConvQA dataset, namely QuAC (Choi
et al., 2018), to the open-retrieval setting. This
dataset consists of 35,526 conversational turns for
training, 3,430 for validation, and 5,571 for testing.

TopiOCQA TopiOCQA (Adlakha et al., 2022)
is another ODConvQA dataset that considers the
topic-switching problem across different conver-
sational turns. This dataset contains 45,450 con-
versational turns and 2,514 turns for training and
validation, respectively. Note that we use a valida-
tion set since the test set is not publicly open.

Evaluation Metrics We evaluate all models with
F1-score and extact match (EM) following the stan-
dard protocol on the ODConvQA tasks (Qu et al.,
2020; Adlakha et al., 2022). Also, for retrieval per-
formances, we use the standard ranking metrics:
Top-K accuracy, mean reciprocal rank (MRR), and
Precision, following Lee et al. (2021b).

4.2 Baselines and Our Model
We introduce the baselines with a retriever-reader
pipeline, which is dominantly adopted for ODCon-
vQA. We do not compare against the incomparable

OR-QuAC TopiOCQA
F1 EM F1 EM

BM25 Ret. + DPR Read. 30.82 11.17 13.92 4.09
DPR Ret. + DPR Read. 25.94 8.15 23.13 9.06
ORConvQA 28.86 14.39 10.67 2.36
PRO-ConvQA (Ours) 36.84 15.73 36.67 20.38

Table 1: F1 and EM scores on OR-QuAC and TopioCQA.
Note that the best scores are highlighted in bold.

baselines that use the additional data, such as rewrit-
ten queries (Yu et al., 2021; Fang et al., 2022).

BM25 Retriever + DPR Reader This is one of
the most widely used retriever-reader pipeline ap-
proaches that first retrieves query-relevant passages
with a sparse retriever, BM25 (Robertson et al.,
1994), and then reads top-k retrieved passages with
a DPR reader (Karpukhin et al., 2020).

DPR Retriever + DPR Reader This pipeline
uses a dense retriever for the first retrieval stage,
DPR retriever (Karpukhin et al., 2020), which cal-
culates the similarity between a query and passages
on a latent space, instead of using a sparse retriever.

ORConvQA This model consists of a dense re-
triever and a reader with an additional re-ranker,
which is trained with two phases (Qu et al., 2020):
1) retriever pre-training and 2) concurrent learn-
ing. Specifically, it first trains the retriever and
generates dense passage representations. Then, the
model further trains the retriever, reader, and re-
ranker using the pre-trained retriever and generated
passage representations.

PRO-ConvQA(Ours) This is our model that di-
rectly retrieves answers without passage reading,
trained jointly with contrastive learning to further
address a conversational dependency issue.

4.3 Implementation Details
We implement ODConvQA models using Py-
Torch (Paszke et al., 2019) and Transformers li-
brary (Wolf et al., 2020). For all the models, we
use the 2018-12-20 Wikipedia snapshot having a
collection of 16,766,529 passages. We exclude the
questions with unanswerable answers, since we
cannot find their answers with the corpus, which is
not suitable for the goal of the open-retrieval prob-
lem. Furthermore, as our model answers questions
extractively, we convert TopiOCQA with the gold
answers in a free-form text to our extractive setting
by considering the provided rationale as the gold
answers, following the existing setting from Jeong
et al. (2023). For training PRO-ConvQA, we set
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Figure 2: Retrieval results on OR-QuAC, measured with Top-1
accuracy, MRR, and Precision. Note that we limit the number
of total retrieved documents for MRR and Precision to 10.

the batch size (B) as 24 and the pre-batch size (C)
as 2. Also, We train PRO-ConvQA with 3 epochs
with a learning rate of 3e− 5 and further fine-tune
a query encoder with 3 epochs. We set λ1 and
λ2 as 4 and 1 for OR-QuAC and 2 and 1 for Top-
iOCQA, respectively. For computing resources,
we use two GeForce RTX 3090 GPUs with 24GB
memory. For retriever-reader baselines, we retrieve
top-5 passages to train and evaluate the reader, fol-
lowing Qu et al. (2020). Also, due to the significant
costs of evaluating retrieval models, we perform
experiments with a single run.

5 Results and Discussion

In this section, we show the overall results and
provide detailed analyses.

Main Results As Table 1 shows, our proposed
PRO-ConvQA model significantly outperforms all
baselines with a retriever-reader pipeline on two
benchmark datasets. This implies that the two-
stage models might be susceptible to error prop-
agation between the retrieval and reader stages,
therefore ineffectively bounding the overall perfor-
mances when a model fails to correctly retrieve
reference passages during the first stage. However,
our PRO-ConvQA is free from such a bottleneck
problem, since it directly retrieves answer phrases,
without requiring an additional reader.

Interestingly, a recent ORConvQA model shows
largely inferior performances on the TopiOCQA
dataset. Note that for TopiOCQA, target passages
of two consecutive conversation turns sometimes
have different topics, compared to the OR-QuAC
dataset where all passages within the whole con-
versation share a single topic. Therefore, Topi-
OCQA follows a more realistic setting where a
topic constantly changes during the conversation.
However, note that ORConvQA is not trained in
a truly end-to-end fashion, since it first retrieves
passage embeddings from a pre-trained retriever,

Relative Time #Q / sec.
BM25 Ret. + DPR Read. 16.94 1.74
DPR Ret. + DPR Read. 15.48 1.91
ORConvQA 10.95 2.70
PRO-ConvQA (Ours) 1.00 29.6

Table 2: Wall-clock time for inference on TopiOCQA. Note
that we measure the total inference time required to output an
answer, thereby considering both retrieving and reading time.

and then uses the already encoded passage em-
beddings when concurrently training a retriever,
reader, and re-ranker. Therefore, ORConvQA is
vulnerable to such a topic-shifting situation, as the
passage encoder and embedding are not updated
during a concurrent training step. Meanwhile, our
PRO-ConvQA is trained in an end-to-end fashion,
thereby effectively learning to retrieve phrases.

Similarly, using BM25 as a first-stage retriever
also shows a large performance gap between the
two datasets. Note that BM25 lexically measures
relevance between a conversational turn and a pas-
sage by counting their overlapping terms. There-
fore, compared to the other dense-retrieval-based
two-stage models, this unique characteristic of
BM25 brings additional advantages on the OR-
QuAC dataset, where each conversational turn re-
volves around the same topic. More specifically,
the conversational history, which is accumulated
during each turn, becomes very relevant to the tar-
get retrieval passage as the conversation progresses.
However, such a lexical comparison scheme fails
to effectively retrieve the passages when a topic
slightly changes for each conversation turn on Top-
iOCQA, since it cannot capture a semantic inter-
relationship between conversational turns and a
passage. On the other hand, our PRO-ConvQA
shows robust performances on both datasets by
retrieving the phrases over the semantic representa-
tion space. We further analyze the strengths of the
PRO-ConvQA in the following paragraphs.

Effectiveness on Retrieval Performance In or-
der to validate whether a failure of the retriever
works as a bottleneck in a two-stage pipeline, we
measure retrieval performances in Figure 2. Com-
pared to the PRO-ConvQA, the models based on
the retriever-reader pipeline fail to correctly re-
trieve relevant reference passages, thus negatively
leading to the degenerated overall performance.
This result corroborates our hypothesis that there
exists a bottleneck problem in the first retrieval
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CL QF F1 EM
PRO-ConvQA (Ours) ✓ ✓ 36.84 15.73
PRO-ConvQA w/o QF ✓ ✗ 33.00 13.07
PRO-ConvQA w/o CL ✗ ✓ 33.53 13.20
PRO-ConvQA w/o CL, QF ✗ ✗ 30.33 11.14

Table 3: Ablation studies of our PRO-ConvQA on the OR-
QuAC dataset. Note that CL and QF refer to contrastive
learning and query-side fine-tuning strategies, respectively.

stage. Furthermore, this result demonstrates that
our PRO-ConvQA also effectively retrieves the re-
lated passages at a phrase level, even though it is
not directly designed to solve the conversational
search task that aims at only retrieving the passages
related to each conversational turn.

Efficiency on Inference Time In the real world,
inference speed for returning answers to the given
questions is crucially important. Thus, we report
the runtime efficiency of our PRO-ConvQA against
the other baselines in Table 2. Note that PRO-
ConvQA is highly efficient for searching answer
phrases over the baselines with a retriever-reader
pipeline. This is because retrieval and reader stages
cannot be run in parallel, since the latter reader
stage requires the retrieved passages as the input.
On the other hand, our proposed PRO-ConvQA is
simply composed of a single phrase retrieval stage
with two decomposable encoders, as formulated
in Equation 5. This decomposable feature enables
maximum inner product search (MIPS), thus con-
tributing to fast inference speed.

Ablation Studies To understand how each com-
ponent in the PRO-ConvQA contributes to per-
formance gains, we provide ablation studies in
Table 3. As shown in Table 3, our contrastive
learning for conversational dependency modeling
and also query-side fine-tuning strategies positively
contribute to the overall performance. Furthermore,
the significant performance drops when removing
each component indicate that there exists a comple-
mentary relation between the two components.

Zero-shot Performance In order to apply OD-
ConvQA models in a real-world scenario, one
may consider a zero-shot performance since high-
quality training data is not always available. There-
fore, we show zero-shot performances, assuming
that the target training data is only available for OR-
QuAC, but not for TopiOCQA. As Figure 3 shows,
the proposed PRO-ConvQA outperforms the base-
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Figure 3: F1-scores in a zero-shot setting where a model is
trained on OR-QuAC (O) and evaluated on TopiOCQA (T).
Finetune denotes the query-side fine-tuning on TopiOCQA.

line models by a large margin. This implies that
such a zero-shot setting is challenging to the previ-
ous ODConvQA models, since they are trained and
tested in a different topic-shifting setting; they are
trained to assume that each turn shares the same
topic within a conversation, but tested in a situa-
tion where the topic changes as the conversation
proceeds. However, PRO-ConvQA is more robust
than other baselines in a zero-shot setting, since
its training objective aims at retrieving answers at
a phrase-level, rather than a passage-level, which
enables capturing topic shifts with more flexibility.

Efficient Transfer Learning Besides a zero-
shot performance, transferability between different
datasets is another important feature to consider
in a real-world scenario. In particular, it would
be efficient to reuse a dump of phrase embeddings
and indexes even if the target data changes, with
respect to the training effort and disk footprint for
storing a large size of embeddings and indexes. As
we have validated the effectiveness of fine-tuning
a query encoder in Table 3, it would be more effi-
cient if we could only update the query encoder to
adapt to the newly given data, without re-training
everything from scratch. To see this, we conduct an
experiment in a transfer learning scenario, where
a phrase retrieval model is trained on OR-QuAC,
but the query-side encoder is further fine-tuned for
TopiOCQA and tested on it. As Figure 3 shows,
fine-tuning a query-side encoder further improves
the performance when compared to the zero-shot
model. This indicates that PRO-ConvQA can be
efficiently adapted to diverse realistic settings, only
compensating a little amount of costs for adaption.

Generative Reader While our PRO-ConvQA
shows outstanding performances under the extrac-
tive reader setting, it is also possible to further
combine PRO-ConvQA with a recent generative
reader model, Fusion-in-Decoder (FiD) (Izacard
and Grave, 2021). We conduct experiments with
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Figure 4: F1 and EM scores on TopiOCQA with a generative
reader, namely FiD (Izacard and Grave, 2021).

the publicly available FiD model1, which is already
trained on TopiOCQA, without any further train-
ing. As Figure 4 shows, our PRO-ConvQA con-
sistently shows superior F1 and EM scores under
the generative reader setting, compared to the DPR
baseline. This is because PRO-ConvQA is supe-
rior in passage-level retrieval as shown in Figure 2,
which further leads to accurately answering ques-
tions with correctly retrieved passages. Also, we
believe that the performance would be further im-
proved by additionally training a FiD model on the
retrieved passages from PRO-ConvQA, instead of
using an already trained one.

6 Conclusion

In this work, we pointed out the limitations of the
retriever-reader pipeline approach to ODConvQA,
which is prone to error propagation from the re-
triever, unable to run both sub-modules in parallel,
and demanding effort to manage these two sub-
modules, due to its decomposed structure. To ad-
dress such issues, we formulated the ODConvQA
task as a dense phrase retrieval problem, which
makes it possible to directly retrieve the answer
based on its representational similarity to the cur-
rent conversational context. Furthermore, to model
the conversational dependency between the current
and its previous turns, we force their representa-
tions to be similar with contrastive learning, which
leads to retrieving more related phrases to the con-
versational history as well as the current question.
We validated our proposed PRO-ConvQA on OD-
ConvQA benchmark datasets, showing its efficacy
in effectiveness and efficiency.

Limitations

As shown in Table 3, the contrastive learning strat-
egy to model the conversational dependencies be-
tween the current and previous conversational turns
is a key element in our phrase retrieval-based OD-

1https://github.com/McGill-NLP/topiocqa

ConvQA task. However, when the current conver-
sational topic is significantly shifted from the pre-
vious topic as the user may suddenly come up with
new ideas, our contrastive learning strategy might
be less effective. This is because modeling the con-
versational dependency is, in this case, no longer
necessary. While we believe such situations are
less frequent, one may further tackle this scenario
of significant topic switching, for example, with
history filtering, which we leave as future work.

Ethics Statement

We show clear advantages of our PRO-ConvQA
framework for ODConvQA tasks compared to the
retriever-reader approach in both effectiveness and
efficiency perspectives. However, when given the
conversational context from malicious users who
ask for offensive and harmful content, our PRO-
ConvQA framework might become vulnerable to
retrieving toxic phrases. Therefore, before deploy-
ing our PRO-ConvQA to real-world scenarios, we
have to ensure the safety of the retrieved phrases.
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Not applicable. Left blank.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Not applicable. Left blank.

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
See ’4. Experimental Setups’.

C �3 Did you run computational experiments?
See ’4. Experimental Setups’.

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
See ’4. Experimental Setups’.

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.
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�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
See ’4. Experimental Setups’.

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
See ’4. Experimental Setups’.

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
See ’4. Experimental Setups’.

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
Not applicable. Left blank.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
Not applicable. Left blank.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
Not applicable. Left blank.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Not applicable. Left blank.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Not applicable. Left blank.
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