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Abstract

Attribute Value Extraction (AVE) aims to au-
tomatically obtain attribute value pairs from
product descriptions to aid e-commerce. De-
spite the progressive performance of existing
approaches in e-commerce platforms, they still
suffer from two challenges: 1) difficulty in
identifying values at different scales simultane-
ously; 2) easy confusion by some highly similar
fine-grained attributes. This paper proposes a
pre-training technique for AVE to address these
issues. In particular, we first improve the con-
ventional token-level masking strategy, guiding
the language model to understand multi-scale
values by recovering spans at the phrase and
sentence level. Second, we apply clustering to
build a challenging negative set for each exam-
ple and design a pre-training objective based
on contrastive learning to force the model to
discriminate similar attributes. Comprehensive
experiments show that our solution provides
a significant improvement over traditional pre-
trained models in the AVE task, and achieves
state-of-the-art on four benchmarks1.

1 Introduction

Product features are crucial components of e-
commerce platforms and are widely used in appli-
cations such as product recommendation (Cao et al.,
2018), product retrieval (Magnani et al., 2019), and
product question answering (Yih et al., 2015; Chen
et al., 2021b). Each product feature typically con-
sists of an attribute and one or more values, provid-
ing detailed product descriptions to help customers
make purchasing decisions. In recent years, At-
tribute Value Extraction (AVE) (Xu et al., 2019;
Zhu et al., 2020; Yan et al., 2021) methods have
received increasing attention because they can au-
tomatically extract product features from a massive
amount of unstructured product text, with impres-
sive results in e-commerce platforms, such as Ama-
zon, AliExpress, and JD.

1https://github.com/ygxw0909/CoMave

Figure 1: An example of attribute value extraction in the
insurance field. Wherein each insurance clause contains
multi-scale values and fine-grained similar attributes.

However, as e-commerce grows, some emerging
domains, such as finance, insurance, and health-
care, bring two new challenges: a) Multi-scale
values. Unlike normal products (e.g., clothing)
with only short values (e.g., color: red), insurance
products can have a value of a longer phrase or
even multiple sentences. For example, the value
of attribute renewal rule in Figure 1 contains more
than 25 words (in green), rendering it impractical
to retrieve them using related techniques such as
Name Entity Recognition (NER) (Li et al., 2020;
Yang et al., 2021). b) Fine-grained divisions of
attributes. Compared with the coarse division of
attributes in traditional e-commerce (e.g., color,
size, and material), the division in insurance prod-
ucts is more refined, resulting in different attributes
often having similar types. For instance, in the in-
surance clauses in Figure 1, maximum insurance
age and maximum renewal age are both ages, and
grace period and hesitation period are both periods.
This fine-grained division makes the distinction be-
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tween the different attributes subtle, thus increasing
the difficulty to distinguish between them.

Although recent pre-trained language models
(PLMs) such as BERT (Devlin et al., 2019) and
ROBERTA (Liu et al., 2019) achieve tremendous
success on a spectrum of NLP tasks, including
AVE, we argue that they are not sufficient for the
challenges above. First, the conventional Masking
Language Model (MLM) focuses on token-level
recovery and does not consider multi-scale values.
Second, there is still a gap between the unsuper-
vised general objectives and the downstream AVE
in terms of task form, such that the model cannot
benefit from pre-training when retrieving attributes,
let alone distinguishing between fine-grained simi-
lar attributes..

In this paper, we propose COMAVE, a novel
PLM for AVE tasks. Relying on the large-scale cor-
pus of triples ⟨text, attribute, value⟩ collected by
distant supervision, we propose three pre-training
objectives to address the challenges: a) Multi-
Scale Masked Language Model (MSMLM). We
extend token-level recovery to the phrase as well as
the sentence level, using different masking mech-
anisms to force the model to perceive spans of
various lengths, thus providing a basis for identi-
fying values at different scales. b) Contrastive
Attribute Retrieval (CAR). To adapt the model to
the fine-grained division of attributes, we require
it to retrieve the correct attributes from a challeng-
ing candidate set of semantically similar attributes.
The candidates are mainly collected by clustering
and a contrastive loss is designed to help the model
perceive the subtle differences between them. c)
Value Detection (VD). To close the gap between
pre-training and downstream AVE and further en-
hance the model’s perception of values extraction,
we let the model recognize all values without con-
sidering the corresponding attribute. To fully eval-
uate our pre-trained COMAVE, we construct a new
challenging benchmark INS. It consists of finan-
cial and medical texts from real scenarios and the
corresponding manual annotations and is full of
the two challenges we mentioned. Comprehen-
sive experiments on four AVE datasets including
INS demonstrate that, equipped with only a simple
fine-tuning output layer, our COMAVE not only
achieves state-of-the-art results on the hardest INS
but also outperforms all the compared methods on
existing benchmarks.

Our contributions are summarized as follows:

• We release an advanced pre-trained language
model, namely COMAVE, for solving com-
mon challenges in AVE tasks. To the best of
our knowledge, this is the first pre-training
model aimed at AVE tasks.

• We propose three novel pre-training objec-
tives: Multi-Scale MLM allows the model to
adapt to values span of different scales, CAR
uses contrastive loss to force the model to per-
ceive subtle differences in similar attributes,
and VD bridges the gap between pre-training
and downstream tasks.

• Our method obtains state-of-the-art results on
four AVE benchmarks, achieving significant
improvements compared to existing PLMs.

2 Preliminaries

Given a natural language text T and a set of candi-
date attributes set A = {a1, a2, ..., a|A|}, where ai
is an attribute, the goal of AVE is to extract a set
Y = {(a∗1,V1), ..., (a

∗
n,Vn)}, where a∗i ∈ A and

Vi is the set of values belonging to a∗i . For simplic-
ity, each value v ∈ Vi is defined as a span of T .
In general, T is collected from a large number of
product-related documents or other data sources,
and A is a collection of attributes for various prod-
ucts in different categories.

Note that although formally AVE is similar to
NER, the two still have significant differences, as
we mentioned in section 1. First, the division of
attributes is more fine-grained than the division of
entity types (e.g., location and person). Second,
the scale of entities is generally shorter, while that
of values varies from token level to sentence level.
Therefore, conventional NER methods are difficult
to directly port to AVE tasks.

3 Methodology

3.1 Pre-training Corpus Construction

The pre-training procedure of COMAVE requires
a large-scale corpus C = {(Ti,Ai,Yi)}M con-
taining tens of millions of data. Manual annota-
tion of such a large corpus is obviously imprac-
tical, thus we designed an automatic method to
construct C. In brief, we first collect the triples
⟨subject, predicate, object⟩ from several existing
open-domain knowledge graphs, including DBpe-
dia (Lehmann et al., 2015), Yago (Tanon et al.,
2020), WikiData (Vrandecic and Krötzsch, 2014),
and OpenKG (Chen et al., 2021a). Then, we regard
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Figure 2: An overview of COMAVE. First, text T randomly selects one of the masking mechanisms (Phrase-Level
Masking or Sentence-Level Masking), meanwhile, based on the golden positive attribute, global sampling and
clustering sampling are adopted for negative attributes construction. They are combined and input to COMAVE for
encoding with ROBERTA form. Thereafter, three objectives: CAR, MSMLM, and VD are predicted separately.

each predicate and object as the attribute ai and the
value vi, respectively, thereby building a seed set
{(ai, Vi)}N by aligning and merging the attributes.
Finally, we use this set as a distant supervision to
mine the corresponding texts from the web data,
thus building the pre-training corpus.

3.2 Pre-training COMAVE

Since ROBERTA (Liu et al., 2019) has been shown
to be promising and robust on multiple NLP tasks,
we use it to initialize COMAVE. We then further
pre-train COMAVE on our corpus C. As shown
in Figure 2, we flatten each pair (T ,A) into a se-
quence X with the </s> token,

<s>, x1, x2, ..., xn, </s>, </s>, x
a
1,1, x

a
1,2,

xa1,|a1|, </s>, x
a
2,1, ..., x

a
m,|am|, </s>,

(1)

then COMAVE converts the each token of X into a
semantic vector,

h<s>,hT
1 ,h

T
2 , ...,h

T
n ,h

</s>,h</s>,ha
1,1,h

a
1,2,

ha
1,|a1|,h

</s>,ha
2,1, ...,h

a
m,|am|,h

</s>,
(2)

where hT
i ∈ Rd and ha

j,k ∈ Rd denote the vector of
xi and xaj,k, respectively, and h<s> ∈ Rd is regarded
as the global semantic vector of X . Considering
the above challenges, we design three objectives to
pre-train COMAVE as follows.

Multi-Scale Masked Language Model
The most common objective of pre-training is to
employ MLM to guide the model to perform ex-
tensively. Unlike BERT or ROBERTA which fo-
cuses on token-level recovery, we prefer COMAVE

to be aware of various values, regardless of their
scales. Consequently, we design two parallel mask-
ing mechanisms, namely phrase-level and sentence-
level masking. During pre-training, each T is per-
formed by only one of the two mechanisms, and
the probabilities are set as ρ and 1-ρ, respectively.
Furthermore, we empirically find that an appropri-
ate masking percentage is a prerequisite for MLM
to be effective. We denote this budget percentage
by µp and µs, respectively, and try to make the
masking result close to it for both mechanisms.

In phrase-level masking, we are inspired by
SpanBERT (Joshi et al., 2020) and randomly mask
a short span of tokens for each selected T until the
budget µp is spent. The probability distribution of
the masking length, denoted by l ∈ [1, lmax], is:

Pphrase(l) =
σ−l + γ

∑lmax

l′=1
σ−l′ + γ

, (3)

where both σ and γ are hyper-parameters. This
distribution ensures that the masking probability
of each span decreases smoothly as its length in-
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creases, while also preventing long spans from be-
ing rarely selected. Note that we make sure that
each masked span is formed by complete words.

In sentence-level masking, we mask only one
sentence for each selected T because recovering
a sentence requires sufficient context. In this way,
it is more difficult to make the total number of
masked tokens approach µs compared to masked
phrases since the length of different sentences can
vary significantly. To achieve this goal, we pro-
pose a simple but effective strategy to dynamically
control the masking probability of each sentence.
Specifically, assuming that the current sentence
masking rate of µc =

∑ |Tmask|∑
l(T ) , where Tmask is the

tokens that has been masked. If µc < µs, it means
that the current masking rate is less than the stan-
dard value, so we should pay more attention to
longer sentences Slong = {s|l(s) > l(T ) ∗ µs},
giving higher masking probabilities. Otherwise,
we should focus on short ones Sshort = {s|l(s) ≤
l(T ) ∗ µs}.

Following BERT (Devlin et al., 2019), we replace
80% of the masked tokens with <mask>, 10% with
the random tokens in the corpus, and leave the
remaining 10% unchanged.

Contrastive Attribute Retrieval

We expect to adapt COMAVE to the subtle differ-
ences between attributes in the pre-training phase.
To this end, for each training text T and its ground
truth attributes A+, a challenging negative set
A− = A−

c ∪ A−
g is built to confuse the model.

Here, each ac ∈ A−
c is sampled using clustering to

guarantee it is highly similar to A+ (see below for
details), and each ag ∈ A−

g is a random one from
the total attribute pool to maintain the diversity of
the negative examples. If T has no ground truth,
then A− = A−

g . During pre-training, COMAVE is
required to retrieve each correct attribute a+ ∈ A+

by scoring all a ∈ A+ ∪ A− with

P(T , a) = sigmoid(h<s> ∗W CAR), (4)

where W CAR ∈ Rd∗η is a trainable parameter and η
denotes the maximum of |A|.

To make the score of A+ higher than that of each
negative example, i.e., ∀a− ∈ A−, P(T , a+) >
P(T , a−), where a+ ∈ A+. Inspired by (Khosla
et al., 2020), we define a Margin Ranking Loss to
better leverage contrastive learning and strengthen

the distinction between fine-grained attributes,

LCRA =

|A|∑

i=1

|A|∑

j=i+1

(1− z) ∗ |Pi − Pj |+

z ∗max(0, λ− |Pi − Pj |),
(5)

where Pi is short for P(T , ai), and λ is the margin.
If both ai and aj are positive or negative examples,
z = 0, otherwise z = 1.

The key to this training objective is how to col-
lect A−

c that is highly similar to A+. Clustering
has been proven to have a natural advantage in re-
trieving similar instances, so we used the widely
used K-medoids (Park and Jun, 2009) clustering
method to construct A−

c . Concretely, the distance
between two attributes is

d(ai, aj) = ω∗d̃(ai, aj)+(1−ω)∗d̃(Vi,Vj), (6)

d̃(zi, zj) = τ(ft(zi, zj)) + τ(fs(zi, zj)), (7)

where ft and fs denote Levenshtein distance and
Euclidean metric, respectively. z ∈ Rd is the
ROBERTA (Liu et al., 2019) pooling vector of z. τ
denotes the score normalization to ensure balance.
The distance considers both the literal and semantic
features of the attributes and associated values.

Value Detection

To further cross the gap between the pre-training
and downstream AVE tasks, we also add a training
objective of detecting values. For (T ,A), wherein
each positive attribute a+i ∈ A+ corresponds to one
or more extractable values Vi = {v1, v2, ..., vn} in
T . The model needs to classify each token xi ∈ T ,
according to whether it is a part values of V:

P (xi|T ,A) = softmax(hT
i ·W VD), (8)

where W VD ∈ Rd is trainable parameter. We define
“V” and “O” as labels to represent that xi ∈ V and
xi /∈ V , respectively. Note that each token does
not need to be classified to the exactly belonged
attribute.

3.3 Fine-tuning

To fully evaluate the effectiveness of our pre-
training for downstream tasks, we add the follow-
ing two output layers to fine-tune our COMAVE,
respectively.
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Sequence Tagging Layer
In this setting, T and all candidate attributes A
are first fed to COMAVE, as in the pre-training.
Then, according to the output hT , a Conditional
Random Field (CRF) generates a sequence Y =
{y1, y2, ..., yn}. Here n is the length of T and each
yi ∈

⋃|A|
k=1{Bk, Ik, O} is a tag indicating whether

the token xi ∈ T is the beginning (Bk), inside (Ik)
and outside (Ok) of a value in the attribute ak ∈ A.

Machine Reading Comprehension Layer
In this case, COMAVE takes each (T , ai) as input
and predicts the span of target values belonging
to ai ∈ A in T . Here, we follow a representative
work (Li et al., 2020) that consists of two steps.
First, the candidate start and end indexes of the
span are predicted using the binary classification
of each token separately. Subsequently, a matching
score is performed for each candidate index pair of
start and end. Finally, the pairs with scores above
the threshold are retained as the results.

4 Experiments

Datasets
To comprehensively evaluate our method, we used
the following four datasets covering both English
and Chinese: 1) INS is a Chinese AVE dataset
which is collected from the real product data of
Alipay2 platform. It contains various types of
large-scale insurance products from real scenar-
ios, including wealth insurance, health insurance,
travel insurance, life insurance, etc. From each
product document, the attributes and values are
manually annotated. There are 29 global attributes
and the samples are divided into 9112/1138/1138
for Train/Val/Test, respectively. Table 1 gives sev-
eral groups of similar attributes and the number
of their corresponding examples. Table 2 shows
the distribution of different value scales. They re-
veal that the two challenges we focus on are preva-
lent in INS. 2) MEPAVE (Zhu et al., 2020) is a
Chinese AVE dataset with examples from the JD
e-commerce platform 3, containing 26 global at-
tributes and 87,194 samples. Most of the text is
mainly from the product titles. We randomly di-
vided the dataset into three parts of Train/Val/Test
in the ratio of 8:1:1 according to (Zhu et al., 2020)
for experiments. 3) AE-Pub (Xu et al., 2019) is
an English AVE dataset with 110,484 samples and

2https://www.alipay.com/
3https://www.jd.com

FG Attributes Group Train Val Test

Period: hesitation period,
grace period, waiting period for
continuous insurance, etc.

555 73 77

Age: Maximum insurance age,
Minimum insurance age, Maxi-
mum renewal age, etc.

544 65 69

Amount: deductible, insured
amount, etc.

170 19 24

Area: insured areas, restricted
areas, etc.

83 12 13

Disease: disease, disease re-
striction, etc.

329 39 38

Table 1: Statistical results of the fine-grained attributes
in INS. There are about 20% samples containing two or
more attributes in the same group.

Length Train Val Test

[1, 5] 5235 (55.0%) 667 (54.8%) 662 (53.5%)
(5, 10] 1622 (17.0%) 202 (16.6%) 207 (16.7%)
(10, 20] 1481 (15.6%) 198 (16.3%) 205 (16.6%)
(20, +∞) 1179 (12.4%) 149 (12.3%) 164 (13.2%)

Table 2: Statistical results of multi-scale value in INS.
Note that the results are the amounts of the values

over 2400 attributes obtained from AliExpress4.
In order to make a fair comparison with previous
models that could not handle a large number of
attributes, we selected 4 frequent attributes (i.e.
BrandName, Material, Color, Category) and di-
vided the relevant instances randomly by 7:1:2, re-
ferring to the dataset publisher. 4) MAE (IV et al.,
2017) is an English multi-modal AVE dataset that
contains 200 million samples and 2000 attributes.
Following (Zhu et al., 2020), we built an MAE-
text dataset to focus on the textual modal. Same
as AE-Pub, we also selected the 20 most frequent
attributes from Train/Val/Test sets.

Evaluation Metrics
In most experiments, we used Mirco-F1 scores
as the main evaluation metric. We followed the
criterion of exact matching, where the complete se-
quence of predicted attributes and extracted values
must be correct. Accuracy was also used as another
evaluation in the detailed analysis.

Methods for Comparison
We compared the proposed method with notable
AVE methods, including BiLSTM+CRF (Ma and
Hovy, 2016), OpenTag (Zheng et al., 2018),

4https://www.aliexpress.com
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INS MEPAVE AE-Pub MAE
Method Attr Val Over Attr Val Over Attr Val Over Attr Val Over

BiLSTM + CRF 74.37 55.26 52.05 89.29 80.49 78.94 81.74 77.03 75.69 79.84 77.40 73.50
OpenTag 73.66 62.65 57.16 88.54 83.26 84.11 86.35 85.18 83.37 82.22 79.34 76.23
ScalingUp 83.88 66.78 65.99 93.42 91.20 89.56 89.05 88.64 87.19 89.36 79.69 78.75
JAVE 87.11 72.40 70.07 95.56 92.98 91.03 90.57 90.14 88.14 93.50 94.12 91.96
AVEQA 86.53 71.34 68.89 95.75 93.65 91.69 91.45 92.86 90.35 94.56 95.78 92.91
UIE 87.46 73.11 71.65 96.67 93.24 92.98 94.35 91.10 89.36 96.02 95.99 94.50

COMAVE + Tagger 87.31 75.95 73.34 96.02 94.52 93.41 93.07 92.73 90.91 96.31 96.88 94.91
COMAVE + MRC 88.90 78.70 75.92 97.04 95.78 95.39 95.97 94.24 93.65 96.92 98.12 96.55

Table 3: Overall results compared with existing baselines. Here, Attr, Val, and Over denote the Mirco-F1 of attribute
retrieval, value extraction, and overall task, respectively.

SUOpenTag (Xu et al., 2019), JAVE (Zhu et al.,
2020), AVEQA (Wang et al., 2020), and UIE (Lu
et al., 2022). In addition, the existing repre-
sentative PLMs are involved in comparison to
showing the improvement of our PLM on the
AVE task, including BERT (Devlin et al., 2019),
ROBERTA (Liu et al., 2019), SpanBERT (Joshi
et al., 2020), MacBERT (Cui et al., 2020), and
ELECTRA (Clark et al., 2020).

Implementation Details
Our method ran on Tesla A100 GPUs. All the pre-
trained models used in our experiments were large
versions by default. Chinese and English versions
of COMAVE were pre-trained respectively for eval-
uation in two languages. The hyper-parameters in
pre-training were set as follows: (1) The batch size
and the learning rate were set to 256 and 1e-5. (2)
In the CAR task, η, λ, and ω were set to 12, 2, and
0.4, respectively. The ratio for A+, A−

g , and A−
c

was 1:1:1 (3) In the MSMLM task, ρ, σ, γ, ℓmax,
µp, and µs were separately set to 0.2, 1.20, 2e-4,
20, 15%, 10%. In phrase-level masking, ℓmax was
set to 20, and ℓmean was approximately equal to
5.87. In the fine-tuning stage, the batch size and the
learning rate were set to 80 and 2e-5, respectively.

4.1 Overall Results

Comparison with AVE Baselines
We first compared with the baselines. To ensure
fairness in the number of parameters, we replaced
BERT-Base with ROBERTA-Large in the evalua-
tions of Chinese datasets, and the distilled context
layer of AVEQA is also replaced by ROBERTA-
Large in all evaluations. The results are shown in
Table 3. Our proposed COMAVE equipped with
the MRC layer achieves state-of-the-art on all four
benchmarks. Most baselines perform poorly on
INS because they focus on traditional e-commerce

Method INS MEPAVE AE-pub MAE

+ Tagger Layer

BERT 70.42* 89.77* 86.72 92.71
ROBERTA 71.63 90.82 88.55 93.12
SpanBERT - - 88.23 92.79
MacBERT 71.55 90.79 - -
ELECTRA 71.69 91.53 88.75 93.42
COMAVE 73.34 93.41 90.91 94.91

+ MRC Layer

BERT 71.59* 94.03* 90.49 93.31
ROBERTA 72.89 94.74 91.13 94.14
SpanBERT - - 90.62 94.24
MacBERT 73.03 93.99 - -
ELECTRA 73.46 94.21 91.50 95.32
COMAVE 75.92 95.39 93.65 96.55

Table 4: Overall results compared with existing pre-
training model. “*” represents the results run by the
base version of the pre-training model.

products and cannot handle the two challenges men-
tioned in Section 1. Unlike them, UIE achieves
competitive results, especially on Attr, as it is a
generic approach pre-trained by multiple informa-
tion extraction tasks. However, limited by its weak
multi-scale value extraction capability, it still can-
not handle INS. The performance on Attr and Val
demonstrates that our method brings significant im-
provements in both attribute retrieval and value ex-
traction, thus outperforming all baselines on Over.
Benefiting from the pre-training, our COMAVE out-
performs all the baselines by adding only a simple
fine-tuning output layer.

Comparison with PLMs

To further evaluate the contribution of our pre-
training methods, we compared COMAVE with
several common PLMs. All the models were guar-
anteed to be equipped with the same output layer
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Method INS MEPAVE AVE-Pub MAE

COMAVE 75.92 95.39 93.65 96.55

− MSMLM 74.60 94.87 91.99 94.86
MSMLM − PhraM 75.19 94.97 92.59 95.33
MSMLM − SentM 75.23 95.04 92.77 95.54

− CAR 73.97 94.45 91.32 94.97
CAR − MRL 74.55 95.12 92.58 95.29
CAR − CS 74.30 95.04 91.96 95.12

− VD 74.82 94.74 91.80 95.01

ROBERTA 73.22 94.03 89.49 94.31

Table 5: Overall ablation results on four datasets.

when compared. The results are shown in Table 4.
Here SpanBERT and MacBERT have no results on
some datasets because of lacking a corresponding
language version. SpanBERT achieves almost the
same results as ROBERTA with half the number
of parameters because it excels in span represen-
tation. ELECTRA adopts creative adversarial pre-
training and therefore performs well. Compared
to the pre-training backbone ROBERTA, our fur-
ther pre-trained COMAVE gains a significant im-
provement. Moreover, regardless of the simple fine-
tuning layer used, our model outperforms all the
other PLMs, which indicates that our pre-training
effectively alleviates the challenges of AVE tasks.

4.2 Ablation Tests
To evaluate the contributions of each training ob-
jective, we considered the following settings:

• − MSMLM: Removing the training objective
of Multi-Scale Masked Language Model.

• MSMLM − PhraM: Only Using the sentence-
level masking mechanism.

• MSMLM − SentM: Only Using the phrase-
level masking mechanism.

• − CAR: Removing the training objective of
Contrastive Attribute Retrieval.

• CAR − MRL: Replacing the Margin Ranking
Loss LCAR with the Cross Entropy Loss.

• CAR − CS: Cluster sampling is not used in
CAR, i.e., A− = A−

g .
• − VD: Removing the training objective of

Value Detection.
Here, MRC was uniformly selected as the output

layer for all the settings due to its better perfor-
mance. Table 5 shows the results on four datasets.
CAR, MSMLM, and VD all bring obviously im-
provements, proving the effectiveness and neces-
sity of our pre-training objectives for the AVE tasks.

Period Age Amount Area Disease

80

85

90

A
ttr

ib
ut

e
A

cc
ur

ac
y

ROBERTA

− CAR
COMAVE

1-5 6-10 11-20 21-+∞

70

75

80

V
al

ue
A

cc
ur

ac
y

ROBERTA

−MSMLM
MSMLM − PhraM
MSMLM − SentM

COMAVE

Figure 3: Detailed ablation tests of fine-grained attribute
retrieval and multi-scale value extraction on INS. Here,
accuracy is used as the evaluation metric.

The result indicates that the contribution of CAR
is the most pronounced among the three objectives.
The final performance of the model decreases sig-
nificantly when either the clustering sampling or
the contrast loss is removed. In addition, we find
that the combination of phrase-level and sentence-
level masking is more effective than using only one
of them. VD also delivers a promising improve-
ment which proves the benefit for AVE tasks.

4.3 Tests on Fine-Grained Attribute Groups

To further validate the effectiveness of our method
in discriminating fine-grained similar attributes, we
evaluated the performance of the model on the fine-
grained attribute groups mentioned in Table 1. The
experimental results are shown in the upper part
of Figure 3. Our COMAVE equipped with all com-
ponents achieves the best results on all attribute
groups. When the CAR training objective is re-
moved, the overall performance shows a dramatic
decrease in all the fine-grained attribute groups.
This reveals that contrastive learning in a challeng-
ing set during pre-training contributed significantly
to enhancing the capability of discriminating simi-
lar attributes in downstream tasks.

4.4 Performance on Multi-Scale Values

We also tested the performance of the model for
extracting values at different scales, and the results
are shown in the lower part of Figure 3. As we
expected, the contribution of phrase-level masking
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Dataset Setting ROBERTA COMAVE

INS(29Attr)
5-SHOT 45.47 50.56
10-SHOT 50.91 54.32

MEPAVE(26Attr)
5-SHOT 55.53 58.42
10-SHOT 61.86 64.70

AE-Pub(4Attr)
5-SHOT 45.84 51.24
10-SHOT 62.31 66.04

MAE(20Attr)
5-SHOT 51.07 55.71
10-SHOT 59.19 62.36

Table 6: Results of few-shot tests on all datasets.

is greater when dealing with shorter values (num-
ber of tokens less than 10). The improvement of
sentence-level masking becomes significant when
the length of value gradually grows to more than
20. This proves the reasonableness of our combi-
nation of phrase-level and sentence-level masking.
Moreover, we find that even pre-training without
MSMLM, COMAVE still performs better than pure
ROBERTA. This demonstrates the boost from ob-
jective VD and the expected external knowledge of
the pre-training corpus.

4.5 Few-Shot Tests

To further fit realistic applications, we also tested
the performance of the model in few-shot scenar-
ios. We adopted the N -WAY K-SHOT setup, i.e.,
the few-shot training set has N attributes, and each
attribute has corresponding K training samples ran-
domly selected. Here, we let N equal the number
of attributes per dataset and focused on testing two
sets of 5-SHOT and 10-SHOT settings.

Table 6 shows the experimental results. Under
the stringent condition of using only 5 training sam-
ples for each attribute, COMAVE scores Mirco-F1
over 50% on all datasets. When the training set is
expanded to 10-SHOT, the performance reaches
approximately 65% on the other three datasets,
except for the challenging INS. The smaller the
sample size, the greater the improvement of CO-
MAVE. Due to pre-training with a large-scale AVE
corpus collected, COMAVE is more capable than
ROBERTA in handling the few-shot AVE task.

5 Related Work

With the development of e-commerce, Attribute
Value Extraction which aims to retrieve the at-
tributes and extract the values from the target data
resource in order to obtain the structured infor-
mation of the products recently attracts lots of at-

tention. Several previous methods (Zheng et al.,
2018; Xu et al., 2019) employ traditional sequence
tagging models. Furthermore, AVEQA (Wang
et al., 2020) first tries to use MRC based method
to handle the task, but it can not be applied
when each attribute has several different values.
JAVE (Zhu et al., 2020) designs a multi-task model
which divides the task into two sub-task: attributes
prediction and value extraction. AdaTag (Yan
et al., 2021) uses a hyper-network to train ex-
perts’ parameters for each attribute in order to
build an adaptive decoder. QUEACO (Zhang et al.,
2021) adopts a teacher-student network to leverage
weakly labeled behavior data to improve perfor-
mance. MAVEQA (Yang et al., 2022) mixes multi-
source information with a novel global and local
attention mechanism. However, none of the exist-
ing methods pay attention to the two challenges
mentioned in section 1.

Language model pre-training (Devlin et al.,
2019; Liu et al., 2019) and task-specific fine-tuning
achieve significant improvement on many NLP
tasks. Recently, some work (Joshi et al., 2020;
Clark et al., 2020; Cui et al., 2020; Sanh et al.,
2019) further modified the MLM to achieve better
results. In information extraction tasks, UIE (Lu
et al., 2022) is proposed as a universal pre-training
model for several extraction tasks by generation,
it is generic but lacks further fitting for different
extraction tasks. Currently, there is no task-specific
pre-training model for attribute value extraction.

6 Conclusion

In this paper, we presented a new pre-training
model for attribute value extraction, called CO-
MAVE which is pre-trained by three novel ob-
jectives with a large-scale corpus. Multi-Scale
Masked Language Model is designed to force the
model to understand multi-scale values by recover-
ing masked spans at both the phrase and sentence
levels. Contrastive Attribute Retrieval improves
the discrimination of fine-grained attributes based
on contrastive learning. Meanwhile, Value Detec-
tion is adopted to reinforce the value extraction and
further benefit downstream AVE tasks. Extensive
experiments indicate that COMAVE achieves state-
of-the-art results on four benchmarks compared
with the existing baselines and PLMs. In future
work, we will expand our work on more scenarios
and industries, and also explore the optimization of
the downstream fine-tune model.
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7 Limitations

This paper proposed a novel pre-training model
COMAVE which aims at textual AVE tasks, while
in this field, multi-modal AVE tasks also widely
exist in many e-commerce platforms. We expect
that the following works can leverage COMAVE as
a powerful word embedding pre-training model for
text encoding combined with image feature repre-
sentation in multi-modal AVE tasks in the future.
Meanwhile, the same as the previous AVE works,
we assume that each T is an independent extraction
object, without considering the context-dependent
of the whole data resources, such as long docu-
ments and instructions, which exceeds the length
of an allowable single input.
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