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Abstract

While prior work has established that the use
of parallel data is conducive for cross-lingual
learning, it is unclear if the improvements
come from the data itself, or it is the model-
ing of parallel interactions that matters. Ex-
ploring this, we examine the usage of unsu-
pervised machine translation to generate syn-
thetic parallel data, and compare it to super-
vised machine translation and gold parallel
data. We find that even model generated paral-
lel data can be useful for downstream tasks, in
both a general setting (continued pretraining)
as well as the task-specific setting (translate-
train), although our best results are still ob-
tained using real parallel data. Our findings
suggest that existing multilingual models do
not exploit the full potential of monolingual
data, and prompt the community to reconsider
the traditional categorization of cross-lingual
learning approaches.

1 Introduction

Multilingual models have been shown to general-
ize across languages in a zero-shot fashion (Pires
et al., 2019; Conneau and Lample, 2019; Conneau
et al., 2020; Kale et al., 2021). These models
are usually pretrained on concatenated monolin-
gual corpora in multiple languages using some
form of language modeling or denoising objec-
tive. The models are then finetuned using labeled
downstream data in the source language (typically
English), which makes them capable of general-
izing to the target language thanks to the aligned
representations learned at pretraining.

While this paradigm does not require any data
in the target language other than the monolingual
pretraining corpus, prior work has reported im-
proved results by incorporating parallel data into
the pipeline, either at pretraining or finetuning time.
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Figure 1: Cross-lingual transfer settings. Monolin-
gual and parallel data can be used at different stages
of the pipeline, either directly or indirectly through MT
(b), but the traditional categorization falls short at cap-
turing them (a).

During pretraining, parallel data has been incor-
porated through an auxiliary objective, such as
Translation Language Modeling (TLM) in XLM
(Conneau and Lample, 2019) or bitext denoising in
PARADISE (Reid and Artetxe, 2022). Regarding
finetuning, it is common to use Machine Transla-
tion (MT)—which is trained on parallel data under
the hood—to translate the downstream training data
into the target language(s) (Conneau et al., 2020),
which can be seen as a form of data augmentation.

Nevertheless, it is still unclear why parallel data
is beneficial for cross-lingual transfer learning. Is
the data itself that matters, given the additional
information that it contains? Or is it the explicit
modeling of parallel interactions that is important?
To answer this question, we systematically com-
pare the use of parallel data from different sources:
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ground truth parallel data, or synthetic parallel
data generated by either supervised MT, unsuper-
vised MT, or word-by-word translation. Most no-
tably, our unsupervised MT variant relies on the
exact same monolingual corpus used to pretrain
the model, so any potential improvement can only
come from the modeling side.

Our experiments on Natural Language Inference
(NLI), Question Answering (QA) and Named En-
tity Recognition (NER) show that the explicit mod-
eling of parallel interactions is indeed beneficial,
demonstrating that existing pretraining and fine-
tuning methods do not exploit the full potential of
monolingual data. However, our best results are
obtained using real parallel data—either directly or
indirectly through supervised MT—showing that
there is also some inherent value on it.

In the light of these results, we argue that the
traditional categorization of cross-lingual trans-
fer approaches into zero-shot, translate-train and
translate-test (Figure 1a) falls short at capturing the
required detail for a fair comparison across differ-
ent approaches. Given this, we encourage further
research on understanding what the contribution
of monolingual and parallel data is, and how to
best leverage them (directly or indirectly through
MT, and at different parts of the pipeline), which
requires thinking beyond the boundaries of the ex-
isting categorization (Figure 1b).

2 Experimental setup

2.1 Tasks

We run experiments on 3 tasks: NLI on XNLI
(Conneau et al., 2018), extractive QA on XQuAD
(Artetxe et al., 2020), and NER on WikiANN (Pan
et al., 2017). In all cases, we use the original train-
ing set in English, and evaluate transfer perfor-
mance in other languages. Due to compute con-
straints, we restrict evaluation to the following set
of languages: English (en), Arabic (ar), German
(de), Hindi (hi), French (fr), Swahili (sw), Russian
(ru), Thai (th) and Vietnamese (vi).

Our finetuning incorporation experiments in §3.2
involve machine translating the training data into
the target languages. For XNLI, we just translate
the premise and hypothesis and leave the label un-
changed. For XQuAD and WikiANN, which have
token-level labels (as opposed to sequence-level),
we translate the input text and project the answer
spans by using the awesome (Dou and Neubig,
2021) word aligner , taking the aligned spans as the

target labels.

2.2 Model

We use XLM-R base (Conneau et al., 2020) for
all of our experiments, which was trained through
Masked Language Modeling (MLM) on CC-100 (a
monolingual corpus covering 100 languages). For
finetuning, we experiment with learning rates of
le-5, Se-5, and 1e-4 using the Adam optimizer. We
train for up to 10 epochs and choose the check-
point with the best validation performance aver-
aged across the languages in consideration.

2.3 Parallel data sources

We compare the following sources of parallel data
in our experiments:

Gold. Ground-truth parallel data generated by
humans. We use the same parallel data as Reid and
Artetxe (2022), which combines data from IWSLT,
WMT, and other parallel corpora.

Supervised MT. Synthetic parallel data gener-
ated through a conventional MT system. The MT
system is supervised, so this approach is also lever-
aging ground-truth parallel data indirectly. We use
the 420M M2M-100 model (Fan et al., 2020).

Unsupervised MT. Synthetic parallel data gener-
ated through an unsupervised MT system (Artetxe
et al., 2018; Conneau and Lample, 2019). The MT
system is trained on a subset of the monolingual
data used for pretraining, so this approach does not
use any additional data neither directly nor indi-
rectly, other than the synthetically generated one.
More concretely, we use XLM-R base to initialize
our unsupervised MT model, and finetune it in 16
directions (en<>{ar,de,hi,fr,sw,ru,th,vi} using the
iterative denoising autoencoding and backtransla-
tion approach proposed by Conneau and Lample
(2019).! We train for a total of 750k iterations us-
ing a batch size of 128k tokens. We use 200MB of
text from CC100 for each language, amounting to
a total of 1.8GB of training data.

Dictionary. Synthetic parallel data generated
through random word replacement with a dictio-
nary. We use the same dictionaries as Reid and
Artetxe (2022), which combine dictionaries from
MUSE (Lample et al., 2018) and those extracted us-
ing word aligners (Ostling and Tiedemann, 2016).
Following Reid and Artetxe (2022), we replace

1https ://github.com/facebookresearch/XLM
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XNLI (acc) XQuAD (F1) WikiANN (F1)
en ar de hi fr sw avg en ar hi ru th vi avg en ar fr hi ru th vi sw avg
1) XLM-R 83.9 719 752 69.1 77.4 62.2 733 86.5 68.6 76.7 80.1 74.2 79.1 77.5 81.3 53.0 80.5 73.0 69.1 1.3 79.4 70.5 63.5
2)  +unsup MT 83.4 724 77.1 72.2 78.2 67.8 752 86.7 70.2 80.7 81.5 75.8 79.6 79.0 81.3 54.1 82.1 749 71.1 3.8 80.7 71.7 64.9
3)  +supMT 83.2 744 77.5 72.7 78.3 70.1 76.0 86.6 73.5 81.1 83.0 77.4 81.9 80.7 81.6 57.0 82.3 75.4 71.6 5.8 81.6 73.4 66.1
4)  + gold 84.0 75.2 77.7 72.4 78.6 70.4 76.4 86.3 72.3 82.3 82.7 78.2 81.9 80.6 82.4 57.3 82.4 75.6 71.8 4.6 81.5 73.7 66.2

Table 1: Pretraining incorporation results. We compare the original XLM-R model (1) with three variants where
we continue pretraining it on either synthetic (2, 3) or real (4) parallel data. All models are finetuned on English
downstream data and zero-shot transferred to the target language.

XNLI (acc) XQuAD (F1) WikiANN (F1)
en ar de hi fr sw avg en ar hi ru th vi avg en ar fr hi ru th vi sw avg
1) XLM-R 83.9 719 752 69.1 77.4 622 733 86.5 68.6 76.7 80.1 742 79.1 77.5 81.3 53.0 80.5 73.0 69.1 1.3 79.4 70.5 63.5
2)  +dict 83.7 72.6 71.6 70.7 789 656 749 - - - - - - - - - - - - - - - =
3) +unsup MT 84.0 732 77.1 71.6 78.6 67.9 754 86.0 70.4 80.3 81.0 76.3 79.8 78.9 80.6 56.0 82.7 75.7 71.8 3.7 80.9 72.3 65.5
4)  +sup MT 84.2 74.6 78.2 73.1 79.4 70.6 76.7 86.3 73.2 81.6 83.4 77.2 81.4 80.5 82.2 57.4 83.1 76.4 72.4 5.2 82.1 73.4 66.6

Table 2: Finetuning incorporation results. We compare finetuning XLM-R on the original English data (1), and
machine translated data through either word-by-word replacement (2), unsupervised MT (3) or supervised MT (4).

words that are included in our dictionary with a
probability of 0.4.

3 Experiments and results

3.1 Pretraining incorporation

In these experiments, we incorporate parallel data
into the pretraining process. We take XLM-R as our
starting point, which was trained on monolingual
data through MLM, and continue pretraining it on
both MLM and TLM for 70k steps, using a batch
size of 64k tokens. We use a learning rate of 5e-5
with a linear warmup and cosine decay schedule.
We use the MLM objective 70% of the time, and the
TLM objective 30% of the time. The latter applies
the same masking objective over concatenated par-
allel sentences, and we compare different sources
of parallel data as detailed in §2.3. For parallel
data generated through MT, we translate a random
subset of CC100 (keeping consistent with the data
used in pretraining). The model is then finetuned
on the downstream tasks using the original training
data in English, and zero-shot transferred to the
target languages.

We report our results in Table 1. We find that all
variants incorporating parallel data outperform the
original XLM-R model,” and the improvements

’The skeptical reader might attribute this improvement to
the additional training steps we perform, irrespective of the
use of parallel data. However, we find strong evidence that the
improvements are brought by the use of parallel data given
that (i) XLM-R was trained until convergence using a huge
amount of compute, and our continued training represents an
insignificant fraction on top (96 GPU days, compared to 13k
GPU days, or a relative 0.7% further), and (ii) we get improve-
ments in all target languages but not in English, suggesting

are consistent across all target languages. How-
ever, different from Reid and Artetxe (2022), we
do not find any clear improvements on English.
Regarding the source of parallel data, we find that
supervised MT performs at par with gold data, even
for less-resourced languages for which MT tends
to suffer. Unsupervised MT lags behind them, but
consistently outperforms the baseline.

These results suggests that the mere facilita-
tion of parallel interaction is helpful even when
not using any new data, but incorporating ground-
truth parallel data brings further improvements.
However, the way in which parallel data is
incorporated—either directly or through MT—
does not have any clear impact, as evidenced by the
similar performance of supervised MT and gold.

3.2 Finetuning incorporation

In these experiments, we incorporate parallel data
into the finetuning process. We translate the down-
stream training data in English into the rest of lan-
guages, and finetune XLLM-R in the combined data
in all languages. This is commonly referred to as
translate-train-all in the literature.

We report our results in Table 2. Similar to
the finetuning incorporation, we find that incor-
porating parallel data outperforms the baseline in
all tasks and target languages for all data sources
that we explore. Supervised MT obtains the best
results, followed by unsupervised MT and word-
by-word translation with dictionaries. Similar to
the pretraining incorporation results, this suggests

that the additional steps improve the cross-lingual capabilities
of the model but not its general quality.
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that synthetic parallel data can bring improvements
even when generated exclusively through monolin-
gual data, but using real parallel data brings further
improvements. Finally, we find that even simplis-
tic ways to incorporate parallel signals can bring
improvements, as evidenced by the dictionary re-
placement results.

3.3 Discussion

While prior work has reported strong results from
incorporating parallel data for cross-lingual trans-
fer learning, our results show that this improvement
can partly—but not exclusively—be attributed to
the explicit use of a parallel training signal, which
can also be achieved through unsupervised MT
without the need for any real parallel data. In fact,
we find that the facilitation of parallel interactions
is more important than the use of real parallel data
in all tasks but XQuAD, where the latter has a
larger impact. Despite the popularity of multi-
lingual pretrained models, which predominantly
rely on monolingual data both for pretraining and
finetuning, this calls into question the extent to
which existing approaches are able to exploit the
full potential of such monolingual data. In addi-
tion, it is striking that we obtain similar results for
both pretraining and finetuning incorporation, as
well as supervised MT and gold standard parallel
data. While further evidence is necessary to draw a
more definitive conclusion, this suggests that paral-
lel data brings similar improvements regardless of
when (pretraining vs. finetuning) and how (directly
vs. indirectly through MT) it is incorporated.

4 Reconsidering the categorization of
cross-lingual learning approaches

As illustrated in Figure 1a, approaches to cross-
lingual learning have traditionally been classified
into 3 categories: zero-shot (finetune a multilingual
model on English and zero-shot transfer into the tar-
get language), translate-train (translate the English
training data into the target languages through MT
and finetune a multilingual model), and translate-
test (translate the test set into English and run infer-
ence using a monolingual model). This distinction
is primarily based on which stage of the pipeline
MT is incorporated into. While relevant from a
practical perspective, we believe that, if taken in
a rigid manner, such a framework can hinder ad-
dressing the more fundamental question of what
the contribution of each data source is, and how to

best leverage each of them.

More concretely, as shown in Figure 1b, there are
different data types that one can use (monolingual
source corpora, monolingual target corpora and
parallel corpora, in addition to downstream data),
which can be incorporated at different stages of the
pipeline (pretraining, finetuning, testing) and via
different procedures (directly or indirectly through
MT). We argue that research in cross-lingual learn-
ing should aim to understand how the variants in
each dimension as well the interactions between
them impact downstream performance, which can
require thinking beyond the boundaries of the 3
conventional categories. For instance, our variant
using unsupervised MT to translate the downstream
training data would fall within the definition of
translate-train. However, this approach is more
comparable to zero-shot in that it only uses mono-
lingual data, and it would be unfair to compare it
to conventional translate-train systems that rely on
parallel data to train the MT system.

5 Related work

Prior work has explored the extent to which mono-
lingual pretraining relies on knowledge transfer
from unlabeled corpora by using synthetic data
(Chiang and Lee, 2020; Krishna et al., 2021) or
downstream data (Krishna et al., 2022) instead, and
similar ideas have also been explored in computer
vision (Kataoka et al., 2020; Asano et al., 2020).
However, to the best of our knowledge, we are
first to examine if cross-lingual learning also re-
lies on knowledge transfer from parallel data. Our
use of synthetic parallel corpora is also connected
with back-translation, which is widely used in MT
(Sennrich et al., 2016). However, conventional
MT systems are trained on parallel data, and back-
translation is usually motivated as a way to leverage
additional (monolingual) data. In contrast, our un-
supervised MT variant does not use any additional
data compared to regular pretraining.

6 Conclusions

In this work, we show that even model-generated
parallel data can be useful for cross-lingual
learning—greatly expanding the possibilities for
multilingual models to improve their performance
by taking advantage of their own machine trans-
lation capabilities. Given this, we advocate for
investigating the optimal way to leverage monolin-
gual and/or parallel data for cross-lingual learning,
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which might require thinking beyond the bound-
aries of the conventional zero-shot, translate-train
and translate-test categories.

7 Limitations

In this work, we only consider the pre-train then
fine-tune paradigm which assumes that model
weights are tuned for adaptation to specific tasks.
Future work, once more capable multilingual
LLMs are released, may also consider the few shot,
and in-context learning-based setups to accommo-
date for more recent approaches towards adaptation
in NLP. Future work may also consider setups more
relevant to different, more diverse tasks (e.g. in-
cluding webtext).
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