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Abstract
This paper proposes a new method, OFA-OCR,
to transfer multimodal pretrained models to
text recognition. Specifically, we recast text
recognition as image captioning and directly
transfer a unified vision-language pretrained
model to the end task. Without pretraining on
large-scale annotated or synthetic text recogni-
tion data, OFA-OCR outperforms the baselines
and achieves state-of-the-art performance in the
Chinese text recognition benchmark. Addition-
ally, we construct an OCR pipeline with OFA-
OCR, and we demonstrate that it can achieve
competitive performance with the product-level
API. The code1 and demo2 are publicly avail-
able.

1 Introduction

Optical character recognition (OCR) plays an im-
portant role in the real-world applications. It helps
users or developers extract text contents from dif-
ferent types of images, including photos, scanned
documents, etc. In practice, building a tool for
OCR needs a pipeline consisting of a text localiza-
tion module and a text recognition module.

In this work, we focus on improving the ac-
curacy of text recognition. Text recognition has
often been regarded as a key challenge owing to
the room for improvements in recognition accu-
racy. In the deep learning era, the classical meth-
ods are mostly based on CNN and RNN, which
are responsible for visual feature extraction and
sequence modeling, respectively (Shi et al., 2017a,
2019; Luo et al., 2019). Recently, with the rise of
Transformer (Vaswani et al., 2017), researchers ap-
plied the Transformer encoder-decoder framework
to text recognition and achieved outperforming re-
sults over the baselines (Li et al., 2021; Lyu et al.,
2022). However, most methods are based on large-
scale pretraining on human-annotated or synthetic

1https://github.com/OFA-Sys/OFA
2https://modelscope.cn/studios/damo/ofa_ocr_p

ipeline/summary
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Figure 1: An comparison between the performance
with or without general vision-language pretrain-
ing. On 4 subtasks of text recognition, OFA-OCR
with general-domain vision-language pretraining sig-
nificantly outperforms the baseline without one.

OCR data. It is hard for other researchers to collect
or create such data for reproduction. Furthermore,
the methods often include complex model or ob-
jective designs, like DETR-like decoder (Carion
et al., 2020), CTC loss (Graves et al., 2006), etc.
These components also might hinder reproduction
as they increase the difficulty in training. There-
fore, we naturally raise a question: Is there any
way to achieve high recognition accuracy without
complex designs on data and model?

Inspired by the recent progress in multimodal
pretraining, we argue that the transfer of a unified
multimodal pretrained model is a possible solu-
tion. Multimodal pretraining has proved signifi-
cant to the performance of downstream tasks, and
thanks to the rise of unified multimodal pretrained
models, they can perform both cross-modal under-
standing and generation and achieve state-of-the-
art performance (Wang et al., 2022a,b; Lu et al.,
2022). We therefore propose to transfer the unified
multimodal pretrained model by finetuning the pre-
trained model on the text recognition datasets with
the task of image captioning, which is essentially
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a simple sequence-to-sequence learning task with
maximum likelihood estimation for optimization.

To support the effectiveness of the proposed
method, we have conducted extensive experiments
on the Chinese text recognition benchmark (Chen
et al., 2021b) covering multiple scenarios, includ-
ing scene, web, document, and handwriting. Specif-
ically, we finetune the open-source Chinese multi-
modal pretrained model OFA (Wang et al., 2022a)
on text recognition, and we name the model OFA-
OCR. Figure 1 demonstrates the results of meth-
ods with or without general-domain pretraining.
It shows that multimodal pretraining on general-
domain vision-language data can effectively boost
downstream performance in text recognition. To
achieve the best performance, we apply the multi-
task + single-task finetuning to OFA-OCR, and it
outperforms the previous state-of-the-art methods
on the benchmark. Furthermore, through the abla-
tion studies, we demonstrate the effectiveness of
our method designs, including multitask + single-
task finetuning, data augmentation, etc. Further-
more, to enable deployment for real-world applica-
tions, we construct a pipeline with both OFA-OCR
and a simple text localization module. We find
that this simple pipeline can provide high-quality
OCR performance, competitive with a product-
level API.

2 Method

2.1 Pretraining

To leverage the capability of the multimodal pre-
trained model for image captioning, we employ
the unified multimodal pretrained model architec-
ture. Specifically, we implement our models on
OFA (Wang et al., 2022a), an open-source state-of-
the-art unified multimodal pretrained model with
the release of Chinese models.

The model is mainly based on the Transformer
encoder-decoder framework (Vaswani et al., 2017).
To make information from different modalities
adaptable to the Transformer, there are adaptors
for images and texts, which are visual backbones,
e.g., ResNet (He et al., 2016), ViT (Dosovitskiy
et al., 2021), etc., and word embeddings, respec-
tively. The information from modalities is encoded
as discrete tokens so that the decoder can perform
their generation.

For Chinese multimodal pretraining, OFA-
Chinese was pretrained on a large-scale dataset,
which consists of LAION-5B (Schuhmann et al.,

2022), Wukong dataset, as well as translated
datasets from MSCOCO (Chen et al., 2015), Visual
Genome (Krishna et al., 2017), VQA (Goyal et al.,
2017), RefCOCO (Yu et al., 2016), etc.

Note that this work is different from previous
pretraining-related methods, which pretrain the
model on large-scale human-annotated or synthetic
data. We show that through pretraining on general-
domain data, the model can obtain the potential of
text recognition by finetuning on small datasets.

2.2 Finetuning with Image Captioning
It is natural to recast text recognition as image cap-
tioning, as text recognition also requires the model
to generate a piece of text based on the input image.
It is equivalent to finetuning on different image
captioning datasets, where the target refers to the
text on the image. We finetune the model with
maximum likelihood estimation for optimization.

Furthermore, to better alleviate the discrepancy
between upstream and downstream data, we apply
a transformation to the input images to make them
square, e.g., a resolution of 480 × 480. Specifi-
cally, we first resize the image to a longer edge of
the specified resolution while keeping the original
height-width ratio of the image, and we make the
image square by padding on all sides with the edge
value. The lengths for the directions are random,
and thus this method can play as data augmentation
in this context. We demonstrate the pseudo code in
Sec. A.3.

For better performance in the downstream tasks,
we often use a larger resolution in the finetuning
stage, and thus we encounter issues with the posi-
tional embedding. In our practice, we still use the
same one from pretraining but apply interpolation
to adapt to images of a larger resolution.

2.3 Multitask Finetuning
There are multiple subtasks in text recognition, con-
cerning different scenarios, e.g., scene, document,
etc. Our experiments are implemented on the Chi-
nese text recognition benchmark consisting of 4
subtasks. In our practice, we implement multitask
finetuning and single-task finetuning for compar-
ison. Specifically, as the data of all subtasks are
organized with the same format, we directly build
a mixture of datasets for multitask finetuning. We
find that directly applying multitask finetuning can
help OFA-OCR achieve outstanding performance
on all datasets. To further boost its performance,
we additionally apply single-task finetuning after
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Metrics Scene Web Document Handwriting Average

CRNN (Shi et al., 2017a) 53.4 54.5 97.5 46.4 67.0
ASTER (Shi et al., 2019) 54.5 52.3 93.1 38.9 64.7
MORAN (Luo et al., 2019) 51.8 49.9 95.8 39.7 64.3
SAR (Li et al., 2019) 62.5 54.3 93.8 31.4 67.3
TransOCR (Chen et al., 2021a) 63.3 62.3 96.9 53.4 72.8
MaskOCRViT-B 73.9 74.8 99.3 63.7 80.8
MaskOCRViT-L 76.2 76.8 99.4 67.9 82.6

OFA-OCRBase 82.9 81.7 99.1 69.0 86.0
OFA-OCRLarge 83.7 82.6 99.2 67.7 86.3

Table 1: Experimental results on the Chinese text recognition benchmark. Results show that the base-size OFA-
OCR model can outperform the previous state-of-the-art, and the large-size model achieves the best performance on
average.

multitask finetuning, and we find that this pushes
its performance to the new state-of-the-art.

3 Experiments

3.1 Datasets and Metrics
We implement OFA-OCR on the Chinese text
recognition benchmark (Chen et al., 2021b). This
benchmark consists of multiple subtasks of text
recognition, which are text recognition in different
scenarios, including scene, web, document, and
handwriting. The details of the datasets are pro-
vided in Sec. A.1. The evaluation metric includes
accuracy, which refers to the ratio of exact match.

3.2 Experimental Results
The experimental results are demonstrated in Ta-
ble 1. We compare our method with baseline mod-
els of OCR, including the previous state-of-the-art
MaskOCR (Lyu et al., 2022). It can be found that
with no regard to the scale of models, the base-size
OFA-OCR, which is finetuned from the pretrained
Chinese OFABase, can outperform both the base-
size and large-size MaskOCR models. Specifically,
it shows the advantages of 9.0, 6.9, and 5.3 abso-
lute improvements in the scenarios of scene, web,
and handwriting. On average, the base-size OFA-
OCR outperforms the base-size MaksOCR by 5.2
and the large-size MaskOCR by 3.4. Scaling up the
model size can consistently bring steady improve-
ment in the downstream performance. On average,
OFALarge reaches the best results of 86.3.

Specifically, we find that the advantage in the
scene dataset is the largest among the tasks. This
may be attributed to the pretraining on general-
domain data, where there are images of street views,
and some of them might contain texts. Similarly,
the pretraining dataset consists of web images that

resemble those in the web dataset, and thus the
gaps between OFA-OCR and the previous methods
are large. However, text recognition for documents
should be a simpler task as the texts are more regu-
lar in fonts and there is often much less noise in the
background. Thus, even the conventional method
like CRNN can achieve a high accuracy.

3.3 Ablation Study of Training Strategies

To check how the multitask learning influences the
final performance, we conduct an ablation study to
evaluate its effects. Specifically, the experiments
are conducted with the base-size OFA-OCR. We
provide experiments in 4 setups, which are training
from scratch (scratch), single-task finetuning (ft),
multitask-finetuning (mt), and multitask + single-
task finetuning (mt+ft), respectively. Experimental
results are shown in Figure 2. It can be found that
on average, the addition of the initialization of the
pretrained OFA model significantly boosts the per-
formance on the datasets. Surprisingly, multitask
finetuning alone can outperform single-task fine-
tuning on all 4 tasks, and the advantage in the web
dataset is the most obvious. We assume that this is
attributed to the small amount of supervised train-
ing data for downstream transfer. A mixture of
datasets of related subtasks can encourage perfor-
mance on all subtasks. Furthermore, the combi-
nation of multitask finetuning and single-task fine-
tuning is the best solution owing to its outstand-
ing performance, while multitask finetuning on the
mixture of datasets is the most cost-efficient.

3.4 Ablation Study of Data Augmentation

The preprocessing of images for this task can play
as data augmentation. To validate its effects, we
use a simple resizing to the specified resolution as
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Figure 2: Performance of OFA-OCR in different se-
tups. We validate the model performance on the 4
datasets in the setups of training from scratch (scratch),
single-task finetuning (ft), multitask-finetuning (mt),
and multitask + single-task finetuning (mt+ft). We ob-
serve consistent performance growth with the addition
of the pretrained weight initialization and multitask fine-
tuning.

a baseline. We also implement experiments on the
4 datasets, and for simplicity we implement the
experiments in the setup of single-task finetuning
on the base-size models. Results are demonstrated
in Table 2. We use “Aug.” to indicate the prepro-
cessing method mentioned in Sec. 2. The results
indicate that the introduced technique for data pre-
processing can effectively boost the performance.

3.5 Deployment

To construct an OCR system applicable in real-
world scenarios, a strong text recognition model
is not sufficient, and we need to build a pipeline
with both the text detection and text recognition
module. While the former one is not the focus of
this research, we directly use a light-weight model
from EasyOCR3 for detection. After detecting all
the bounding boxes which possibly contain texts,
we crop them with boxes to create a batch of new
images. The final step is to process the images
with OFA-OCR for the generation of text recogni-
tion results. Through our case study, we find that
the simple OCR pipeline based on OFA-OCR can
achieve competitive performance with the product-
level API. Examples are demonstrated in Sec. A.4.

4 Related Work

We focus on the review of text recognition methods
and multimodal pretraining. Conventional methods
based on CNN and RNN have demonstrated great

3https://github.com/JaidedAI/EasyOCR

Method w/o Aug. w/ Aug.

Scene 77.0 78.4
Web 72.3 73.4
Document 98.2 98.4
Web 60.4 62.8

Avg 81.0 82.1

Table 2: Performance comparison with or without
data augmentation for images. The experiments are
conducted in the setup of single-task finetuning on the
base-size model.

effectiveness (Shi et al., 2017a; Luo et al., 2019;
Shi et al., 2019; Yu et al., 2020; Li et al., 2019;
Fang et al., 2021). Recent methods have turned
to the use of Transformer and achieved improved
performance (Atienza, 2021; Li et al., 2021; Zhang
et al., 2022; Lyu et al., 2022). However, before
this work, we have not witnessed the direct trans-
fer of general-domain vision-language pretrained
models to text recognition. Vision-language pre-
training has proved a success as it has leveled up
the model performance on a series of downstream
tasks (Chen et al., 2019; Lu et al., 2019; Radford
et al., 2021; Wang et al., 2021), and the unified
models capable of both understanding and gener-
ation have become popular and achieved the best
performance (Wang et al., 2022a,b). Yet, there are
only a few unified multimodal pretrained models
in Chinese (Lin et al., 2021; Wang et al., 2022a).

5 Conclusion

In this work, we propose a simple method called
OFA-OCR, which leverages the unified multi-
modal pretrained model and transfers it to text
recognition by image captioning. To be more
specific, we utilize the Chinese multimodal pre-
trained model OFA without pretraining on OCR
data and transfer it to text recognition with multi-
task + single-task finetuning. Through extensive
experiments, we demonstrate that OFA-OCR can
achieve state-of-the-art performance on the Chi-
nese text recognition benchmark. Additionally, we
build a pipeline of OCR by integrating an exis-
tent simple text detection module and OFA-OCR.
The deployed pipeline achieves competitive per-
formance in comparison with a product-level API.
We hope that this research sheds light on the appli-
cation of general-domain multimodal pretraining,
and also helps OCR practitioners.
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Limitations

This section discusses the limitations of this work
for more insights on the research in this track.
Though OFA-OCR achieves high accuracy on mul-
tiple text recognition datasets, its costs are larger
than the non-Transformer baselines. In practice, it
is difficult to deploy such large models. Thus in
our future work, we will discover how to distill or
compress OFA-OCR to a light-weight model with
high efficiency.

Ethics Statement

Our method is essentially based on a generation
model, and thus the OCR results should be taken
as AI-generated contents. As the generated re-
sults should be aligned with the input, we have
not noticed deliberate harmful contents, e.g., hate
speech, bias, etc. However, the model maintains
such ability, which might be triggered. Although
after finetuning on the public datasets the risk of
such phenomena is extremely low, we still take it
into account. In the future research, besides fo-
cusing on improving downstream performance, we
will study how to increase the controllability on the
generation.
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A Appendix

A.1 Datasets

The Chinese text recognition benchmark consists
of 4 subtasks, which are scene, web, document, and
handwriting. The scene dataset consists of multi-
ple datasets, including RCTW (Shi et al., 2017b),
ReCTS (Liu et al., 2019), LSVT (Sun et al., 2019),
ArT (Chng et al., 2019), and CTW (Yuan et al.,
2019). It consists of 509,164 samples for training,
63,645 for validation, and 63,646 for testing. The
web dataset is derived from MTWI (He et al., 2018),
and it has 112,471 samples for training, 14,059 for
validation, and 14,059 for testing. The document
dataset is constructed with synthetic data created
with Text Renderer4, and it has 400,000 samples
for training, 50,000 for validation, and 50,000 for
testing. The handwriting dataset is collected from
SCUT-HCCDoc (Zhang et al., 2020), and it has
74,603 samples for training, 18,651 for validation,
and 23,389 for testing.

A.2 Evaluation

We calculate the ratio of exact match as the ac-
curacy for the evaluation. For the average score
on the 4 subtasks, we calculate the average score
weighted by the number of testing samples (Lyu
et al., 2022).

A.3 Implementation Details

For single-task, multitask, and multitask + single-
task finetuning, we finetune the pretrained base-
size and large-size OFA for 100 epochs. We use the
AdamW (Loshchilov and Hutter, 2019) optimizer
for training. For the base-size model, the batch size
is 256 and the peak learning rate is 5× 10−5, and
for the large-size model, the batch size is 512 and
the peak learning rate is 2× 10−5.

Here we provide more details about the prepro-
cessing for images. The specified resolution is
480× 480, and as the pretrained models were pre-
trained on images of the resolution of 224 × 224,
we apply interpolation to the positional embedding.

As to the data augmentation, we demonstrate the
process with the pseudo code below.

import torch
from torchvision.transforms import

InterpolationMode
from torchvision.transforms import functional

as F

4https://github.com/Sanster/text_renderer
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Figure 3: A Case study of different OCR demos. We compare a product-level API (a) with OFA-OCR (b).
Through the case study, we find that OFA-OCR can reach a competitive performance.

def ocr_resize(img, resolution=480,
is_document=False):
img = img.convert("RGB")
width, height = img.size

if width >= height:
new_width = max(64, resolution)
new_height = max(64, int(resolution *

(height / width)))
top = random.randint(0, resolution -

new_height)
bottom = resolution - new_height - top
left, right = 0, 0

else:
new_height = max(64, resolution)
new_width = max(64, int(resolution *

(width / height)))
left = random.randint(0, resolution -

new_width)
right = resolution - new_width - left
top, bottom = 0, 0

img_new = F.resize(
img,
[new_height, new_width],
interpolation=InterpolationMode.BICUBIC,

)

img_new = F.pad(img_new, padding=[left, top,
right, bottom], padding_mode="edge")

return img_new

A.4 Case Study
Here we evaluate the performance of the con-
structed simple OCR pipeline. For comparison,
we use a product-level API5 as the baseline. Fig-
ure 3 demonstrates the cases comparison. It can be
found that on the 3 cases while the baseline makes
mistakes by different extents, OFA-OCR makes the
correct prediction of all characters, even if there are
missing strokes or the text is in hard-to-recognize
handwriting style.

5https://www.paddlepaddle.org.cn/modelsDetail
?modelId=17
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