
Findings of the Association for Computational Linguistics: ACL 2023, pages 5961–5977
July 9-14, 2023 ©2023 Association for Computational Linguistics

Shielded Representations: Protecting Sensitive Attributes Through
Iterative Gradient-Based Projection

Shadi Iskander Kira Radinsky Yonatan Belinkov∗

shadi.isk@campus.technion.ac.il
kirar@cs.technion.ac.il belinkov@technion.ac.il

Technion – Israel Institute of Technology

Abstract

Natural language processing models tend to
learn and encode social biases present in the
data. One popular approach for addressing
such biases is to eliminate encoded informa-
tion from the model’s representations. How-
ever, current methods are restricted to remov-
ing only linearly encoded information. In this
work, we propose Iterative Gradient-Based Pro-
jection (IGBP), a novel method for removing
non-linear encoded concepts from neural repre-
sentations. Our method consists of iteratively
training neural classifiers to predict a particular
attribute we seek to eliminate, followed by a
projection of the representation on a hypersur-
face, such that the classifiers become oblivious
to the target attribute. We evaluate the effec-
tiveness of our method on the task of remov-
ing gender and race information as sensitive
attributes. Our results demonstrate that IGBP
is effective in mitigating bias through intrinsic
and extrinsic evaluations, with minimal impact
on downstream task accuracy.1

1 Introduction

The increasing reliance on natural language pro-
cessing models in decision-making systems has
led to a renewed focus on the potential biases that
these models may encode. Recent studies have
demonstrated that word embeddings exhibit gender
bias in their associations of professions (Bolukbasi
et al., 2016; Caliskan et al., 2017) and that learned
representations of language models capture demo-
graphic data about the writer of the text, such as
race or age (Blodgett et al., 2016; Elazar and Gold-
berg, 2018). Model decisions can be affected by
these encoded biases and irrelevant attributes, lead-
ing to a wide range of inequities toward certain
demographics. For example, a model designed to

∗Supported by the Viterbi Fellowship in the Center for
Computer Engineering at the Technion.

1Code is available at https://github.com/
technion-cs-nlp/igbp_nonlinear-removal.

Figure 1: Left: Non-linear decision boundary of a ReLU
2-layer neural network on a binary classification task.
Right: One iteration of IGBP algorithm produces clean,
indistinguishable samples.

review job resumes should not factor in the appli-
cants’ gender or race. Consequently, it is desirable
to be able to manipulate the type of data encoded
within text representations and to exclude any sen-
sitive information in order to create more fair and
equitable models.

Removing the presence of sensitive attributes
from the representations learned by deep neural
networks is non-trivial, as these representations are
often learned using complex and hard-to-interpret
non-linear models. Re-training the language model
can be a costly solution, therefore post-hoc re-
moval methods that work at the representation layer
have been proposed, such as linear projection of
the embeddings on a hyperplane that distinguishes
between the sensitive attribute (Bolukbasi et al.,
2016; Ravfogel et al., 2020). However, neural net-
works do not necessarily represent concepts in a
linear manner. To address this issue, Ravfogel et al.
(2022b) proposed kernelization of a linear minimax
game for concept erasure, but this approach is re-
stricted to the selection of kernel and the attribute
protection does not transfer to different types of
non-linear probes. Accordingly, Ravfogel et al.
(2022a,b) considered non-linear concept erasure to
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be an open problem.
In this paper, we propose a non-linear concept

erasure method, IGBP, to eliminate information
about the protected attribute from neural represen-
tations. We use a trained probe classifier that at-
tempts to predict the protected attribute and a novel
loss function suited for the task of concept removal.
Then, we leverage the gradients of this loss to guide
for projection of the representations to a hypersur-
face that does not contain information used by the
classifier regarding the sensitive-attribute. This is
done by projecting the representations to the sepa-
rating boundary of the classifier. Figure 1 illustrates
a 2-dimensional example.

Our approach supports the use of non-linear neu-
ral classifiers. When used with a linear classifier,
it is equivalent to Iterative Null Space Projection
(INLP), a popular linear concept removal method
(Ravfogel et al., 2020).

We perform an empirical evaluation of the pro-
posed method using: (1) intrinsic evaluation of
word embeddings measuring word-level gender
bias removal and (2) extrinsic fair classification
evaluation over tasks that uses contextualized word
representations. The empirical results show that
the proposed method is successful in sensitive-
attribute removal and mitigating bias, outperform-
ing competing algorithms with minimal impact on
the downstream task accuracy.

2 Related Work

Many studies (e.g., Caliskan et al., 2017; Rudinger
et al., 2018) investigated social biases in word em-
beddings and text representations. Recent work
have showed how applications that use pre-trained
representations reflect and amplify these kinds of
social biases (Zhao et al., 2018; Elazar and Gold-
berg, 2018).

The approaches tackling this problem can be cat-
egorized into three lines of work: pre-processing
methods which manipulate the input distribution
before training (e.g., Zhao et al., 2018; Wang et al.,
2019), in-processing methods which focus on learn-
ing fair models during training (e.g., Xie et al.,
2017; Beutel et al., 2017; Zhang et al., 2018; Orgad
and Belinkov, 2023) and post-hoc methods (e.g.,
Ravfogel et al., 2020; Wang et al., 2020; Ravfogel
et al., 2022a,b), which assume a fixed, pre-trained
set of representations from any encoder and aim to
learn a new set of unbiased representations.

Since re-training a model can be costly, a lot of

focus was given to post-hoc methods, which is the
main focus of this work.

The most common post-hoc approach to remove
sensitive information from word embeddings is to
use a linear projection. Bolukbasi et al. (2016)
identified a gender subspace, which is a subspace
spanned by the directions of embeddings that cap-
ture the bias, such as the direction “he” – “she”.
They suggested projecting all the gender-neutral
word embeddings on the gender subspace’s first
principle component to make neutral words equally
distant from male and female-gendered words.
However, Gonen and Goldberg (2019) showed that
this method only covers up bias and not fully re-
moves it from the representation. Another critical
drawback of the method is that it requires user se-
lection of a few gender directions.

Ravfogel et al. (2020) tried to overcome this
drawback of manually defining gender direction,
and presented the Iterative Null-space Projection
(INLP) method. It is based on training linear clas-
sifiers that predict the attribute they wish to re-
move, then projecting the representations on the
classifiers’ null-space. Ravfogel et al. (2022a)
aims to linearly remove information from neural
representations by using a linear minimax game-
based approach, and derive a closed-form solu-
tion for certain objectives. One of the limitations
of linear removal methods is their inability to re-
move non-linear information about the protected
attribute, which is often encoded in text representa-
tions through complex neural networks. In contrast,
our method is capable of removing both linear and
non-linear information, resulting in a more effec-
tive reduction of extrinsic bias (Section 4.4).

Ravfogel et al. (2022b) proposed a nonlinear
extension of the concept-removal objective of Rav-
fogel et al. (2022a). They identify the subspace
to be neutralized in kernel space by running a ker-
nelized version of a minimax game as in Ravfogel
et al. (2022a). Shao et al. (2023) also use kernels to
try and remove non-linear information While this
approach aims to remove non-linear information, it
can only choose data mapping from a pre-defined
set of kernels, and as shown in Ravfogel et al.
(2022a), the attribute protection does not transfer to
other non-linear kernels . Our approach uses a deep
neural network as the bias signal modeling, thus
has the potential to express any non-linear function.
Our empirical results (Section 4) show that our
method significantly outperforms these methods on
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a variety of tasks.

3 Approach

3.1 Problem Formulation
Given a dataset D = {xi, yi, zi}Ni=1 which consists
of triples of text representation xi ∈ X , down-
stream task label yi ∈ Y and a protected attribute
zi ∈ Z which corresponds to discrete attribute val-
ues, such as gender. Our goal is to eliminate the
information related to the protected attribute from
the representations while minimizing the effect on
other relevant information. To achieve this, we
intend to learn a non-linear transformation of the
representations such that the protected attribute zi
cannot be inferred from the transformed representa-
tions xcleani , while still preserving the information
with regard to the downstream task label yi.

3.2 Adversarial Approach Background
The core of our approach is to produce projection
of the representations such that any classifier is un-
able to distinguish between the protected attribute
groups. To gain some intuition about how such pro-
jections are generated, let us first consider a trained
probe classifier f that classifies the attribute label
z of each representation vector x. By assigning ad-
versarial perturbations and moving in the direction
of the gradient of the loss function with respect to
the input vector, the representations can be modi-
fied such that the classifier’s ability to predict the
protected attribute is hindered, while minimizing
the alteration of other relevant information:

xnew = x+ λ · ∇xL(f(x), z), (1)

where λ > 0. Elazar and Goldberg (2018) applied
a similar approach in removal of demographic at-
tributes from text data during training. In contrast,
we apply our method on the representation layer
post-training, with a specific loss function and λ.

We present a novel loss for L, to which we call
the projective loss. It is designed for removing
information from neural representation. It allows
for a single-step projection of the representations,
rendering the probe classifier f oblivious to the pro-
tected attribute. Before presenting the projective
loss, we explore why the common cross entropy
(CE) is not optimal for our task. The CE loss func-
tion is defined as:

LCE(p, y) =

{
−log(p) if y=1
−log(1− p) otherwise.

(2)

Figure 2: Cross entropy loss (black) and the projective
loss (red) behavior as a function of the probability of
the probe classifier given an embedding. The projective
loss emphasizes the well-classified, biased embeddings.

where y ∈ {±1} specifies the ground-truth class
and p ∈ [0, 1] is the model’s estimated probability
for the class with label y = 1. For the sake of
clarity, we formally define pt:

pt =

{
p if y=1
1− p otherwise.

(3)

and rewrite CE(p, y) = CE(pt) = −log(pt).
The CE loss can be seen in black in Figure 2. A
noteworthy characteristic of this loss is that exam-
ples which are considered to have a strong signal
of the protected attribute (i.e., are easily classified
with pt ≫ 0.5) yield low gradients. In Appendix B
we demonstrate mathematically that:

∇xLCE = ± (1− pt)∇xf
⊤ (4)

As pt approaches 1, ∇xLCE tends to 0 and the
adversarial perturbation associated with the most-
biased samples is vanishingly small. Hence, the use
of gradients of the CE loss for information removal
brings about a major disadvantage.

3.3 Projective Loss

A more effective way to remove the entire signal
of bias in the representations would be projecting
them on the hypersurface where the classifier is
oblivious to the protected attribute. To achieve this,
we propose the projective loss:

LP (pt) =
1

2
(log(pt)− log(1− pt))

2 (5)

Figure 2 illustrates the behavior of the projective
loss compared to the more common cross entropy
loss. As can be observed, the projective loss gives
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higher weights to examples where the probe clas-
sifier can predict the protected attribute well. The
minimum occurs at pt = 0.5, where there is am-
biguity for the probe classifier in determining the
label. Eq. 1 is now modified as :

xp = x− λP · ∇xLP (f(x), z), (6)

The gradient of the projective loss can be expressed
as:

∇xLP = f(x)∇xf
⊤ (7)

We show in Appendix C that Eq. 6 with the
projective loss and a specific λP = 1

∥∇xf∥2 yields
a projection of the embedding vectors on the local
linear model of each embedding.

Special Case of a Linear Probe Classifier. We
now analyze the special case where f is a linear
classifier. Given a linear classifier f(x) = x⊤θ
where θ ∈ Rd and a logistic function σ(f) =

1

1+e−x⊤θ
to produce the probability pt, we calculate

the gradients of the projective loss as:

∇xLP = (x⊤θ)θ⊤ (8)

Normalizing θ by setting λP = 1
∥∇xf∥2 = 1

θ⊤θ
in Eq. 6 yields the orthogonal projection formula:

xp = x− (
x⊤θ
θ⊤θ

)θ⊤ (9)

This is also known as the null space projection
which is used in INLP (Ravfogel et al., 2020).
INLP is a special case of our method when using a
linear probe classifier. Unlike INLP, which obtains
the projected embeddings by identifying the null
space of a linear classifier, our method utilizes the
gradients of neural network classifiers to obtain the
projected embeddings.

INLP has been shown to be effective in
removing sensitive information from neural
representations (Ravfogel et al., 2020). However,
as highlighted by Kumar et al. (2022), a limitation
of this approach is that each step of the projection
operation decreases the norm of the representation,
leading to its eventual reduction to zero as the
number of steps increases. Our proposed method,
IGBP, addresses this issue by utilizing a non-linear
probe in the projection process, which does not
reduce the rank of the representations. Thus, the
removal of sensitive information is performed with
minimal loss of other information as demonstrated
in Section 4.4.

Algorithm 1 Iterative Gradient-Based Projection
(IGBP )
Input: Model representations X , protected at-

tribute Z, Stopping Criteria Sc

Output: New representations Xclean, probes list
F
X0 ← X
N ← 0
F ← [ ]
while (not Sc) do

f ←TrainClassifier(XN , Z)
F.append(f)
XN+1 ← {}
for x ∈ XN do

xp = x− ∇xLP (f(x),z)
∥∇xf∥2

XN+1 ← {xp} ∪XN+1

end for
N ← N + 1

end while
return XN , F

3.4 Iterative Gradient-Based Projection

In this section we present our algorithm, Iterative
Gradient-Based Projection (IGBP), for removing
information of a discrete2 attribute Z for a set of
vectors X. Algorithm 1 presents the IGBP algo-
rithm, which begins by training a classifier f1 on
the original representations X to predict a property
Z. The projected representations X1

p are obtained
by applying Eq. 6 to the original representations
X . Since there are often multiple hypersurfaces
that can capture sensitive attribute information, this
process is repeated iteratively, each time using a
newly trained classifier on the previous projected
representations. The optimal number of iterations
and the stopping criteria are determined with met-
rics such as accuracy or fairness. The relationship
between the number of iterations and these metrics
is explored in Section 5.2.

4 Experiments

In this section we compare competing methods for
bias removal with the IGBP algorithm in both in-
trinsic (Section 4.3) and extrinsic evaluations (Sec-
tion 4.4), which are common in the literature on
bias removal.

2This work primarily addresses the removal of discrete
protected attributes (e.g., gender) information. However, in
Appendix A we show it can be adapted for continuous at-
tributes (e.g., age).
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4.1 Compared Methods

We compare IGBP with several methods for bias
mitigation, including a baseline (Original) without
any concept-removal procedure.

INLP (Ravfogel et al., 2020), an iterative method
that removes the protected information by pro-
jecting on the null space of linear classifiers.

RLACE (Ravfogel et al., 2022a), which removes
linear concepts from the representation space
as a constrained version of a minimax game
where the adversary is limited to a fixed-rank
orthogonal projection.

Kernelized Concept Erasure (KCE) (Ravfogel
et al., 2022b), which proposes a kernelization
of a linear minimax game for concept erasure.

4.2 Setup

In each experiment, we utilize a a one-hidden layer
neural network with ReLU activation as the at-
tribute classifier for IGBP algorithm. Then we
perform 5 runs of IGBP and competing methods
with random initialization and report mean and
standard deviations. Further details on implemen-
tation and hyperparameter tuning are provided in
Appendix D.

4.3 Intrinsic Evaluation

We begin by evaluating our debiasing method on
GloVe (Pennington et al., 2014) word embeddings,
as it has been previously shown by Bolukbasi et al.
(2016) that these embeddings contain unwanted
gender biases. Our goal is to remove these biases.
We replicate the experiment performed by Gonen
and Goldberg (2019) and use the training and test
data of Ravfogel et al. (2020), where the word
vectors are labeled with their respective bias:
male-biased or female-biased. See Appendix D for
more details on the experimental setting.

4.3.1 Embeddings Classification
After applying the debiasing methods, we follow
the evaluation approach proposed by Gonen and
Goldberg (2019) and train new classifiers, a linear
SVM and a non-linear SVM with RBF kernel, to
predict gender from the new representations. We
define leakage as the accuracy of these classifiers.
The results are shown in Table 1. As we can see,

Method
Leakage
Linear ↓

Leakage
Non-Linear↓

Original 100±0.00 100±0.00

INLP 55.03±1.29 94.42±1.85

RLACE 53.80±1.37 92.53±1.87

KCE 60.01±0.03 96.20±1.30

IGBP 56.56±4.25 69.89±2.81

Table 1: Gender leakage from GloVe word embeddings
using linear and non-linear classifiers.

all methods are effective at removing linearly en-
coded information, as the leakage is very low. How-
ever, when using non-linear classifiers, all compet-
ing methods fail to eliminate leakage, including
KCE.3 Even though the adversary classifier used
to calculate leakage (SVM-RBF) is different from
the ReLU MLP employed in IGBP, our method
is still the most effective at removing non-linearly
encoded information. The results demonstrate the
advantage of IGBP in eliminating non-linear infor-
mation in word embeddings over competing meth-
ods.

4.3.2 WEAT Analysis
The Word Embeddings Association Test (Caliskan
et al., 2017) is a measure of bias in static word
embeddings, which compares the association of
male and female related words with stereotypically
male or female professions. We follow Gonen and
Goldberg (2019) in defining the groups of male and
females associated words. We represent the gender
groups with three categories (1) art and mathemat-
ics; (2) art and science; and (3) career and family.
We present the results of the WEAT test in Ta-
ble 2, including the d-value and the p-value (refer
to Caliskan et al. (2017) for further information).
We found that IGBP has the most effective debias-
ing effect on word embeddings compared to other
methods.

4.3.3 Semantic Similarity Analysis
In addition to mitigating bias in word embeddings,
it is important to examine if any semantic content
was damaged. We perform a semantic evaluation of
the debiased word embeddings using SimLex999
(Hill et al., 2015), an annotated dataset of word

3Ravfogel et al. (2022b) also demonstrated that KCE’s
attribute protection fails against other type of adversaries, even
with the same kernel but different parameters.
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Method WEAT’s d↓ WEAT’s p↑
M

at
h-

ar
t

Original 1.57± 0.00 0.000± 0.00

INLP 1.10± 0.10 0.016± 0.00

RLACE 0.80± 0.01 0.062± 0.00

KCE 0.78± 0.01 0.067± 0.00

IGBP 0.73± 0.01 0.091± 0.00

Sc
ie

nc
e-

ar
t Original 1.63±0.00 0.000±0.00

INLP 1.08±0.00 0.011±0.00

RLACE 0.77±0.01 0.073±0.003

KCE 0.74±0.00 0.08±0.00

IGBP 0.19± 0.01 0.64± 0.01

Pr
of

-f
am

ily

Original 1.69±0.00 0.000±0.00

INLP 1.15±0.07 0.007±0.00

RLACE 0.78±0.01 0.072±0.00

KCE 0.73±0.01 0.090±0.05

IGBP 0.21± 0.00 0.330± 0.00

Table 2: WEAT test results.

pairs with human similarity scores for each pair.
As displayed in Table 3, IGBP and other methods
yield only a slight reduction in correlation. To qual-
itatively assess the impact of IGBP on semantic
similarity in GloVe word embeddings, we provide
a random sample of words and their nearest neigh-
bors before and after debiasing in Appendix D.2.
We observe minimal change to the nearest neigh-
bors.

4.4 Extrinsic Evaluation
In this section we focus on evaluating IGBP in the
context of classification tasks. We focus on tasks
where we want to eliminate a concept from the
representations to prevent the main classifier from
using it, thus ensuring fair classification.

4.4.1 Evaluation Metrics
To measure extrinsic bias, we calculate the True
Positive Rate Gap (TPR GAP) to measure the dif-
ferences in performance between the different pro-
tected attribute groups.

TPRz,y = P(Ŷ = y|Z = z,Y = y)

GAPz,y
TPR = TPRz,y − TPRz′,y

To assign a single bias measure across all values of
y, we follow Romanov et al. (2019) and calculate

Method ρ ↑

Original 0.400± 0.000

INLP 0.389± 0.001

RLACE 0.389± 0.001

KCE 0.393± 0.001

IGBP 0.387± 0.001

Table 3: Evaluation of semantic content using Simlex-
999 dataset. The scores shown are the Pearson correla-
tion coefficient between the similarity scores assigned
by humans and those computed using the embeddings.

the root mean square GAPz
TPR in order to obtain

a single bias score over all labels y:

GAPz
TPR =

√
1

|N|
∑

y∈N
(GAPz,y

TPR)
2 (10)

For example, in a sentiment analysis task, it is
important for the model to have equal performance
across all demographic groups, as measured by the
TPR. This ensures that the model’s predictions are
fair and not biased towards any particular group.

We report two common metrics for measuring
bias in representations: : (1) Leakage, as described
in Section 4.3; (2) Minimum Description Length
(MDL) Compression (Voita and Titov, 2020), which
serves as an indicator of the extent to which certain
biases can be extracted from a model’s representa-
tions (Orgad and Belinkov, 2022). A higher com-
pression score indicates that it is easier to extract
the protected attribute from the model’s represen-
tation. Orgad et al. (2022) found that this metric
highly correlates with extrinsic bias metrics. We
use a ReLU MLP of two-hidden layers of size 512
as the probe classifier. We provide more details
about these metrics in Appendix D.3.

DIAL BIOS

Main Task Sentiment Profession

Attribute Race Gender

Size 100K/ 8K/ 8K 255K/ 39K/ 43K

Table 4: Dataset characteristics. Main classification task,
protected attribute, and sizes of training, development,
and test sets, in each dataset.
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BERT RoBERTa

Method Acc ↑ GAPTPR ↓ Leakage↓ C ↓ Acc ↑ GAPTPR ↓ Leakage ↓ C ↓

Original 79.89±0.06 15.55±0.16 99.32±0.11 30.81±0.18 79.08±0.05 19.26±0.40 97.25±0.11 11.09±0.00

INLP 75.65±0.03 13.52±0.13 95.77±1.42 7.76±0.60 76.75±0.05 10.71±0.05 81.29±1.04 1.78±0.03

RLACE 79.77±0.07 13.54±0.13 98.55±0.19 13.31±0.99 78.57±0.07 11.82±0.27 90.87±1.90 2.80±0.19

KCE 78.16±0.05 13.65±0.12 97.35±0.15 11.67±1.01 78.54±0.04 13.94±0.18 96.60±0.21 6.57±0.84

IGBP 78.80±0.19 9.87±0.25 69.72±2.56 1.66±0.08 77.49±0.04 9.45±0.04 65.71±0.44 1.54±0.01

(a) Frozen models

BERT RoBERTa

Method Acc ↑ GAPTPR ↓ Leakage↓ C ↓ Acc ↑ GAPTPR ↓ Leakage ↓ C ↓

Original 85.15±0.04 13.45±0.11 98.49±0.02 13.58±0.08 84.09±0.10 14.57±0.16 99.02±0.01 17.28±0.00

INLP 85.08±0.03 12.71±0.04 97.08±0.00 6.01±0.00 83.78±0.05 14.18±0.10 97.74±0.80 10.42±0.01

RLACE 85.12±0.04 12.93±0.14 98.26±0.05 8.87±0.01 83.85±0.10 14.21±0.05 98.84±0.02 11.31±0.01

KCE 84.86±0.03 12.81±0.12 98.70±0.04 9.43±0.01 83.94±0.04 14.30±0.08 98.33±0.02 13.04±0.02

IGBP 83.70±0.05 9.63±0.18 65.47±0.40 1.54±0.01 82.88±0.13 10.78±0.10 65.73±0.40 1.53±0.01

(b) Finetuned models

Table 5: Evaluation results on the test set in Bias in Bios dataset with BERT and RoBERTa as encoders. C is the
compression of the probing classifier. The best result is highlighted with bold if the difference over the next-best
method is statistically significant (based on T-test; p < 0.05).

4.4.2 Datasets
We experiment with the following two datasets
(Table 4 provides a brief summary):

Bios. The Bias in Bios dataset (De-Arteaga et al.,
2019) contains 394K biographies. The task is to
predict a person’s occupation (out of 28 profes-
sions) based on their biography. Gender anno-
tations are provided for each biography, and we
aim to eliminate any gender-related information
encoded in the representations. We split to training,
development, and test sets following De-Arteaga
et al. (2019). The pre-trained BERT model (Devlin
et al., 2019) is used as the encoder and the final
hidden layer’s [CLS] token is used as a represen-
tation for the biography. To ensure that the results
are not model-specific, the experiment is replicated
using the pre-trained RoBERTa model (Liu et al.,
2019) as the encoder. Additionally, the experiment
is conducted with fine-tuned models.

DIAL. Dialectal tweets (DIAL) is a corpus of
tweets collected by Blodgett et al. (2016), where
the task is to predict the sentiment of the tweet (pos-
itive or negative). Each tweet is associated with the
sociolect of the author (African American English
or Standard American English), which is a proxy

for the racial identity of the author. Following Rav-
fogel et al. (2020) setup, we filter the corpus and
split the data into training, development, and test
sets. We use The DeepMoji model (Felbo et al.,
2017) as an encoder to produce representations.

4.4.3 Results

Bios. The results from the Bias in Bios experi-
ment are summarized in Table 5. With both BERT
and RoBERTa frozen pre-trained models (Table
5a), it can be observed that while INLP reduces
TPR-GAP, it degrades overall performance in the
process. This may be due to INLP’s limitation of
decreasing representation’s rank each step. RLACE
and KCE lead to a reduction in the TPR-GAP but
the value remains elevated. On the other hand, our
proposed method IGBP significantly reduces TPR-
GAP while only causing a slight decrease in main
task accuracy. Furthermore, in terms of intrinsic
bias, IGBP is distinguished by its effectiveness at
decreasing non-linear leakage and compression. As
for the results with fine-tuned models (Table 5b),
it shows similar results. Other competing meth-
ods only exhibit minimal reduction in TPR-GAP,
whereas our approach, IGBP, succeeds in enhanc-
ing fairness and eliminating leakage.
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Method Accuracy↑ GAPTPR ↓ Leakage↓ C ↓

Original 73.89±0.04 30.19±0.02 75.67±0.11 2.14±0.00

INLP 69.59±1.14 17.59±0.77 62.28±1.24 1.63±0.00

RLACE 72.98±0.34 13.53±1.89 61.92±1.67 1.62±0.00

KCE 72.92±0.24 29.25±0.81 73.63±1.66 2.12±0.00

IGBP 72.87±0.31 9.23±0.04 56.53±3.57 1.43±0.00

Table 6: Evaluation results on the test set of DIAL. The
notation used here is consistent with Table 5.

DIAL. Table 6 presents a summary of the results
obtained on DIAL dataset. The results show that ap-
plying IGBP leads to a significant reduction in the
TPR-GAP, with a statistically significant difference
compared to the other methods, while maintain-
ing a level of accuracy comparable to the original
model. In terms of intrinsic evaluation of the repre-
sentations, both INLP and RLACE, reduce leakage
and compression, but not to the same extent as
IGBP. While KCE fails to reduce bias.

On a whole, we found that our proposed method
outperforms competing methods empirically in
terms of reducing extrinsic and intrinsic bias, and
offers a more balanced accuracy–fairness tradeoff.

5 Analysis

We conduct a series of analyses of our proposed
method: an examination of probe’s complexity im-
pact on debiasing and an analysis of the effect of
number of iterations on performance.

5.1 Effect of Probe Complexity
IGBP proved to be superior to linear information-
removal methods in the experiments presented in
Section 4. To further investigate the potential of
reducing bias, we will explore the use of more
complex non-linear probes by varying the width
and depth of the neural network used as a probe
in IGBP 4. Figure 3 shows the TPR-GAP score af-
ter applying 50 iterations of IGBP on Bias in Bios
dataset5. As we can see, there is a noticeable re-
duction in TPR-GAP when using non-linear probes
instead of linear probe. Applying IGBP with a
growing complexity of probe classifiers (moving
from left to right) also result in a lower TPR-GAP.
However, the reduction is not significant. We also
report that the more complex the probe, the greater

4For further details on the probes architecture used, see
App.E.2

5In Appendix E we show similar results on DIAL dataset.

the accuracy drop, but not at a significant value:
The maximum accuracy drop was 1.20%. To con-
clude, based on the results in Section 4 and this
expirement, one-hidden layer probe is enough to
reduce bias related to gender and race in text repre-
sentation. Using more complex probes may offer
some additional benefits, but the improvement will
be limited.

Figure 3: The TPR-GAP results obtained by applying
IGBP with different probe classifier architectures on the
Bias in Bios dataset.

5.2 Perforamnce – Fairness Tradeoff

One of the key factors that influence the effective-
ness of our method is the number of iterations used.
Varying the number of iterations and measuring the
resulting changes in the TPR-GAP and downstream
task accuracy on the DIAL development set shows
that the number of iterations had a significant im-
pact on attribute removal in the early stages (Figure
4), but eventually reached a plateau. Increasing
the number of iterations also harmed downstream
task accuracy, but the decrease was gradual. A
similar experiment on Bias in Bios (Appendix E)

Figure 4: Mean accuracy and TPR-GAP results versus
number of iterations on DIAL dataset, averaged over 5
different random seeds.
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showed the same trend. The results suggest that the
balance between performance and fairness can be
controlled by adjusting the number of iterations or
by implementing appropriate stopping criteria.

6 Conclusion

We presented a gradient-based method for the era-
sure of non-linearly encoded concepts in text rep-
resentations. Its ability to remove non-linear infor-
mation makes it particularly useful for addressing
the complex biases that may be present in text rep-
resentations learned through complex models. We
empirically show the effectiveness of our approach
to mitigate social biases in representations, thereby
improving fairness in models’ decision-making.

Beyond mitigating bias, the Iterative Gradient-
Based Projection method has the potential to be
applied in a wide range of other contexts, such
as increasing model interpretability by applying
causal interventions, adapting models to new do-
mains by removing domain-specific information
and ensuring privacy by removing sensitive infor-
mation. In future work, we plan to explore these
and other potential applications of the proposed
method.

Limitations

The proposed method has limitations in its depen-
dence on the accuracy and performance of the
probe classifier as noted in (Belinkov, 2022), and
may be limited in scenarios where the dataset is
small or lacks sufficient information about the pro-
tected attribute. Additionally, this approach in-
creases inference time due to the use of a sequential
debiasing classifiers. In future work, we aim to find
a single probe that eliminates non-linear leakage.
Finally, the proposed method aims to eliminate
information about a protected attribute in neural
representations. While it may align with fairness
metrics such as demographic parity, it is not specif-
ically designed to ensure them.

Ethical Considerations

Ethical considerations are of utmost importance in
this work. It is essential to exercise caution and
consider the ethical implications when using this
method, as it has the potential to be applied in situ-
ations where fair and unbiased decision-making is
critical. It is important to thoroughly evaluate the
effectiveness of the method in the specific context
in which it will be used, and to carefully consider

the data, fairness metrics, and overall application
before deploying it. It is worth noting that our
method is limited by the fact that gender is a non-
binary concept and that it does not address all forms
of bias, and further research is necessary to identify
and address these biases. Additionally, it is impor-
tant to consider the potential risk of inadvertently
increasing bias through reversing the direction of
the debiasing operation in the algorithm. It is cru-
cial to be mindful of the potential impact of this
method and to approach its use with caution and
care.
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Appendix

A Continuous Attributes

While this work focuses on discrete attribute
information-removal, we explain briefly how it
can be adapted for regression problems, where the
attribute is continuous (e.g., age). In discrete at-
tribute classification tasks, Given that f is the clas-
sifier, IGBP is designed to transform each vector
x to x′ onto the decision boundary of f such that
f(x′) = 0. In the continuous case, where f is the
attribute regressor, IGBP aims to achieve a similar
result, with the goal of projecting each vector x
onto a point x′ such that f(x′) = 0. Hence, each
input, x, is regressed to a non-informative value
of zero, meaning that the input is stripped of its
information content.

B Reversal Gradient of Cross Entropy

Let us consider a non-linear model f(x) followed
by a logistic function to obtain the probabilty p =

1
1+ef(x)

. Then the gradient of LCE(pt) when y = 1
is :

∇xLCE =
∂LCE

∂pt

∂pt
∂f

∂f

∂x

=
−1
pt

pt(1− pt)∇xf

= −(1− pt)∇xf

(11)

and ∇xLCE = +(1− pt)∇xf when y = −1.

C Local Linear Model Projection

We will now show how the projective loss update
step projects each sample to its local linear model
boundary. This will facilitate the probe being obliv-
ious to the protected attribute.

Local Linearity. First, we will show that a
trained ReLU neural net probe divides the embed-
ding space into sub-regions, where in each sub-
region it behaves as a linear model. We will demon-
strate that we can obtain the local linear model
for each embedding. Let us consider a non-linear
probe composed of one-hidden layer with ReLU as

an activation function:6

z = x⊤W,

h = ReLU(z),

f = h⊤θ,

p =
1

1 + e−f(x)

(12)

The activation function ReLU acts as an element-
wise scalar (0 or 1) multiplication, hence h can be
written as:

h = a⊙ z (13)

where a is a vector with (0,1) entries indicating the
slopes of ReLU in the corresponding linear regions
where z fall into. Let us define a diagonal matrix
D:

D = diag(a) (14)

Then,
h = Dz (15)

since doing element wise multiplication with a vec-
tor a is the same as multiplication by the diagonal
matrix D. It is now possible to express the output
in each sub-region in matrix form as follows:

f = h⊤θ

= (DWx)⊤θ

= x⊤(DW )⊤θ

(16)

D expresses the ReLU function, so naturally
it depends on Wx, but since the weights of the
probe are frozen/constant and we are doing the
calculation for the sub-region where the slope of
the ReLU function is constant, we can assume that
D is not dependent on x in this sub-region.Thus,
in each sub-region r defined by the classifier, the
local linear model for this sub-region is θr defined
bellow :

θr = (DW )⊤θ (17)

We can obtain the vector θr with the gradient of f :

∇xf = (DW )⊤θ (18)

6The extension for multiple hidden layers and different
piece-wise linear activation functions is straightforward.
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Applying the chain rule with LP (pt) as in Eq. 11
for each sub-region:

∇xLP =
∂LP

∂pt

∂pt
∂p

∂p

∂f

∂f

∂x

=
log( pt

1−pt
)

pt(1− pt)
(−1)yp(1− p)∇xf

⊤

= (−1)−yf(x)(−1)y∇xf
⊤

= f(x)∇xf
⊤

= x⊤(DW )⊤θ((DW )⊤θ)⊤(Using Eq. 16,18)

= (x⊤θr)θ⊤r
(19)

Again, we can obtain θr from the gradient and di-
vide the term with 1

θ⊤r θr
to get the linear projection

of each sub-region to its linear model null space

xp = x− (
x⊤θr
θ⊤r θr

)θ⊤r (20)

D Experiment

This section provides additional details on the ex-
perimental setup and results.

D.1 Implementaion details
IGBP stopping criteria. In order to balance the
trade-off between reducing extrinsic and intrinsic
bias while preserving accuracy (as can be seen in
Section 5.2), we have established a stopping crite-
rion for our proposed method, IGBP . The criterion
is based on two factors: the accuracy of a newly
trained probe classifier on the protected attribute,
and the main task accuracy on the development set.
Specifically, we run Algorithm 1 until the newly
trained probe classifier acheives within 2% above-
majority accuracy, or until the main task accuracy
on the development set drops below a threshold of
0.98 of the original main task accuracy. Through
empirical analysis on the development set, we have
determined that this threshold yields good results
for all extrinsic evaluation experiments. However,
it is worth noting that this stopping criterion may
be adjusted based on specific requirements for each
case.

IGBP classifier type. For all experiments, we
use a a ReLU MLP as the attribute classifier with
a single-hidden layer of the same size as the in-
put dimension. We train the classifier with AdamW
optimizer (Loshchilov and Hutter, 2018) with learn-
ing rate of 2e−4 and batch size of 256.

Applying the algorithm for training on DIAL
dataset takes about 0.5-1 hour and 1-3 hours on
Bias in Bios on NVIDIA GeForce RTX 2080 Ti.

Compeing methods implementation and hyper-
parameters. For competing methods, we follow
their implementations that can be found here7. We
run the algorithms until the specific type of leakage
they were trying to eliminate was no longer present.
For KCE we choose RBF kernel following their
selection in their paper for Bias in Bios task. We
tried multiple kernels but found that RBF yeilds
better results. The results of RLACE are different
than those in the original paper because they used
only the first 100K of training samples and applied
a PCA transformation to reduce dimensions down
to 300 due to the high computation time. However,
we wanted to make fair comparison so we did not
reduce the size of training set or the dimensionality.

Models. We used the pre-trained BERT and
RoBERTa base models by Huggingface that have
110M and 123M parameters. They were fine-tuned
on the proffesion prediction task in Bias in Bios us-
ing a stochastic gradient descent (SGD) optimizer
with a learning rate of 5e−4, weight decay of 1e−6,
and momentum of 0.90. We trained for 30, 000
batches of size 10.

D.2 GloVe Word Embeddings Experiment

We provide details about the experimental settings
in the static word vectors experiment 4.3. We fol-
low Ravfogel et al. (2020) and use uncased GloVe
word embeddings of 150,000 most common words.
We project all vectors on h⃗e− ⃗she direction, and se-
lect the 7500 most male-biased and female biased
words. Using the same training–development–test
split as Ravfogel et al. (2020), we subtract the
gender-neutral words and end up with a training set
of 7350, an evaluation set of 3150, and a test set of
4500.

D.2.1 Additional intrinsic evaluation
We evaluate bias-by-neighbors which was proposed
by (Gonen and Goldberg, 2019) and the list of pro-
fessions from (Bolukbasi et al., 2016). We deter-
mine the correlation between bias-by-projection
and bias-by-neighbors by calculating the percent-

7https://github.com/shauli-ravfogel/nullspace_
projection
https://github.com/shauli-ravfogel/rlace-icml
https://github.com/shauli-ravfogel/
adv-kernel-removal
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age of top 100 neighboring words for each pro-
fession that were originally biased-by-projection
towards a specific gender. Our results show mean
correlation of 0.598, which is lower than the pre-
vious correlation of 0.852. In comparison, after
applying INLP we find a correlation of 0.73. This
suggests that while some bias-by-neighbors still re-
mains, the debiasing effect of IGBP is significant.

D.2.2 Nearest Neighbors
We demonstrated in Section 4.3.3 that debiasing
using IGBP did not cause significant harm to the
GloVe word embedding space as per the Sim-
Lex999 test results. To further support this, in Table
7, we present the closest neighbors to 10 randomly
sampled words from the vocabulary, both before
and after our debiasing procedure, as a qualitative
illustration.

Word Neighbors Before Neighbors After

period periods,during,time periods,during,time

actual exact,any,same exact,any,same

markers marker,marking,pens marker,marking,pens

photoshop adobe,illustrator,indesign adobe,illustrator,indesign

commands command,execute,instructions command,execute,scripts

adapted adaptation,adapting,adapt adaptation,adapting,adapt

called known,which,that known,which,also

vital crucial,important,essential crucial,important,essential

heritage cultural,historic,historical cultural, historic,historical

mood moods,feeling,feel moods,feeling,feel

Table 7: 3-neighbors of random words in GloVe embed-
ding space before and after IGBP debiasing.

D.3 Extrinsic Evaluation Experiments

D.3.1 Metrics
We provide additional details on the metrics used
in Section 4.4

Main task model. We use sklearn’s SVM (Pe-
dregosa et al., 2011) for the main task predictions
on DIAL experiment, and sklearn’s logistic regres-
sion for Bias in Bios which is a multi-label classifi-
cation task.

Leakage and MDL Compression. MDL is an
information-theoretic probing which measures how
efficiently a model can extract information about
the labels from the inputs . In this work, we employ
the online coding approach (Voita and Titov, 2020)
to calculate MDL. We estimate MDL following
Voita and Titov’s online coding Lonline and calcu-
ate the compression, C, which is compared against

uniform encoding Luniform which does not require
any learning from data.

C =
Luniform

Lonline

We evaluate our models using an online code probe,
which is trained on fractions of the training dataset:
[2.0, 3.0, 4.4, 6.5, 9.5, 14.0, 21.0, 31.0, 45.7, 67.6,
100]. Then we calculate leakage as the probe’s ac-
curacy on test set when trained on the entire train-
ing set. We use a MLP with two-hidden layer of
size 512 and ReLU activation as the probe classifier.
This decision was made to stay consistent with pre-
vious work which employed MDL (Mendelson and
Belinkov, 2021) and to have a different and more
powerful adversary than the one used in IGBP .

E Analysis

E.1 Biographies representation

We present the t-SNE (Van der Maaten and Hinton,
2008) projections of the biographies representa-
tions of BERT before and after applying IGBP.

Figure 5: The t-SNE projections of BERT represen-
tations for various professions, including Professors,
Accountants, and all proffesions, before and after apply-
ing IGBP.

E.2 Benefits of Non-Linear Information
Removal

We present the probe architectures we use in our
expirement Section 5.1. These include a linear
probe with one layer, and several non-linear probes
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that use ReLU activations. From left to right: one-
hidden layer of the same size as the input dimen-
sion, two-hidden layers with the same size as the in-
put dimension, one-hidden layer with size of twice
the input dimension, three-hidden layers with size
of input dimension, one-hidden layer with size of
three times the input dimension. Figure 6 shows the
results of Section 5.1 experiment on DIAL dataset.
We observe the same trend. The maximum accu-
racy drop is 1.32%.

Figure 6: The TPR-GAP results obtained by applying
IGBP with different probe classifier architectures on the
DIAL dataset.

E.2.1 Number of Iterations
We conduct the same experiment of Section 5.2 on
DIAL dataset and show the result in Figure 7.

Figure 7: Mean accuracy and TPR-GAP results versus
number of iterations on Bias in Bios dataset with Bert
as encoder, averaged over 5 different random seeds.

5975



ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

Limitation section

�3 A2. Did you discuss any potential risks of your work?
Ethical consideration section

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
1

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
4

�3 B1. Did you cite the creators of artifacts you used?
4

�7 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
It is publicly available

�3 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
4.4.2

�7 B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
these datasets are publicly available and they are collected from the web. We are investigating gender
bias and names might have a crucial part.

�3 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
4.4.2

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Table 3 in section 4.4.2

C �3 Did you run computational experiments?
4

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Appendix D.1

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

5976

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/


�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Appendix D.1

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
4.2

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Appendix D.3

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

5977


