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Abstract

Despite serving as the foundation models for
a wide range of NLP benchmarks, pre-trained
language models have shown limited capabili-
ties of acquiring implicit commonsense knowl-
edge from self-supervision alone, compared to
learning linguistic and factual knowledge that
appear more explicitly in the surface patterns
in text.

In this work, we introduce commonsense
knowledge transfer, a framework to trans-
fer the commonsense knowledge stored in a
neural commonsense knowledge model to a
general-purpose pre-trained language model.
It first exploits general texts to form queries for
extracting commonsense knowledge from the
neural commonsense knowledge model and
then refines the language model with two self-
supervised objectives: commonsense mask in-
filling and commonsense relation prediction,
which align human language with the under-
lying commonsense knowledge.

Empirical results show that our approach con-
sistently improves the model’s performance on
downstream tasks that require commonsense
reasoning. Moreover, we find that the improve-
ment is more significant in the few-shot set-
ting. This suggests that our approach helps
language models better transfer to downstream
tasks without extensive supervision by inject-
ing commonsense knowledge into their param-
eters.

1 Introduction

Recent advances in pre-trained language models
have transformed the landscape of natural language
processing. Self-supervised pre-training objectives
including masked language modeling (Devlin et al.,
2019) and masked span infilling (Lewis et al., 2020)
enable pre-trained models to acquire linguistic (He-
witt and Manning, 2019; Manning et al., 2020) and
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Figure 1: Illustration of the commonsense knowledge
transfer framework. We first extract commonsense
knowledge related to sentences in general text corpus
from a neural commonsense knowledge model. We
then use natural texts and the extracted commonsense
knowledge to form self-supervised training data to re-
fine a pre-trained model with commonsense knowl-
edge.

factual knowledge (Petroni et al., 2019) by mod-
eling the distribution of naturally occurring texts.
However, most of these objectives are limited to ex-
ploiting the surface form of human language, and
the lack of grounded supervision calls into question
how well these representations can ever capture
meaning (Bender and Koller, 2020), not to mention
the underlying commonsense knowledge which is
often reasoned implicitly and does not appear in
the surface form of human language (Merrill et al.,
2021; Zhou et al., 2020a; Hwang et al., 2021). On
the other hand, commonsense reasoning is impor-
tant for building generalizable models because it
enables the model to reason about a great num-
ber of events, causes, and effects, while observing
only a small fraction of them. The ineffectiveness
of self-supervised language model pre-training on
acquiring commonsense knowledge makes them
require a relatively large number of labeled exam-
ples to succeed in a downstream task and prune to
overfit task-specific correlations (Tu et al., 2020).
Therefore, equipping pre-trained language mod-
els with commonsense reasoning ability has at-
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tracted much attention. To this end, two distinct
lines of research focus on improving commonsense
reasoning ability of pre-trained language models.
The first one focuses on incorporating external com-
monsense knowledge graph for commonsense rea-
soning (Lin et al., 2019; Liu et al., 2021; Cui and
Chen, 2021) while the other attempts to inject com-
monsense knowledge into the parameters of pre-
trained models (Li et al., 2019; Zhou et al., 2021;
Klein and Nabi, 2021). In this work we focus on
the second type of method because it alleviates the
need for external knowledge bases for training and
inference on downstream tasks, thus simpler, more
efficient, and not limited by the coverage issue of
external knowledge bases.

Prior work injects commonsense knowledge into
pre-trained models either on symbolic common-
sense knowledge graphs with manually defined
rules (Li et al., 2019) or masked language mod-
eling (Hosseini et al., 2021) or on general text
corpus with concept-centric self-supervised objec-
tives (Zhou et al., 2021). The former method is
limited by the coverage of knowledge graphs and
human-written rules. It also fails to make use of
large-scale diverse natural text corpus. Therefore,
the training is limited to short and synthetic com-
monsense tuples, which affects its generalization
ability on diverse downstream tasks. The latter
method, however, only captures surface-level or-
der relations between concepts and fails to learn
commonsense relations between concepts such as
cause, effect, intent, requirement, etc., which are
crucial for commonsense reasoning but often im-
plicitly reasoned, thus do not appear in the surface
form of natural language.

In this work, we propose commonsense knowl-
edge transfer, an alternative framework to refine a
general purpose pre-trained model’s commonsense
reasoning ability. In contrast to previous work,
it aims to transfer the commonsense knowledge
stored in a neural commonsense knowledge model
(e.g., COMET (Bosselut et al., 2019)) to a general
purpose pre-trained model on large scale general
text corpus. In this way, our approach combines the
best of both worlds from prior art: the dense and
informative commonsense knowledge from com-
monsense knowledge graphs and the accessibility
of large-scale diverse general corpus.

Commonsense knowledge transfer is conceptu-
ally related to knowledge distillation (KD) (Hin-
ton et al., 2015) since they both aim to trans-

fer knowledge from a knowledge-rich model to
another model that lacks it. However, different
from conventional KD, in commonsense knowl-
edge transfer, the source model (i.e., neural com-
monsense model) and the target model (i.e., pre-
trained model) are heterogeneous. Moreover, in-
stead of simply mimicking the teacher model, com-
monsense knowledge transfer requires the target
model to learn specialized knowledge from the
source model while retaining its own capability.
This poses unique challenges since the knowledge
transfer can not be accomplished by simply match-
ing the logits or feature distribution between the
student and the teacher. To this end, we propose
to first extract commonsense knowledge in textual
form from the source model and then exploit the
extracted knowledge to form self-supervised train-
ing data for the target model. As illustrated in
Figure 1, commonsense knowledge transfer first
exploits general texts to form queries for retriev-
ing commonsense knowledge from the neural com-
monsense knowledge model. Then it refines a pre-
trained model with two self-supervised objectives
that align the surface form of human language with
its underlying commonsense inference: common-
sense text infilling and commonsense relation pre-
diction. The former objective concatenates natural
text with its commonsense inference to form an
input example, masks certain spans in it, and trains
the model to reconstruct the original input. The lat-
ter method instead trains the model to distinguish
valid commonsense inference from carefully con-
structed spurious commonsense inference given the
original text and commonsense relation. Refining
a pre-trained model by multi-tasking on both gen-
eration (former) and understanding (latter) tasks
enables the model to better adapt to different kinds
of downstream tasks.

We refine TS5 (Raffel et al., 2020) with common-
sense knowledge transfer and fine-tune the result-
ing model downstream tasks requiring common-
sense reasoning ability in both the fully supervised
setting and few-shot settings where only a percent-
age of labeled examples are available. Experimen-
tal results show substantial improvements in down-
stream tasks requiring commonsense reasoning, es-
pecially in the few-shot setting, demonstrating the
effectiveness of our approach.
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2 Methodology

Our proposed commonsense knowledge transfer
framework consists of a neural commonsense
knowledge model (e.g., COMET) and a pre-trained
model (e.g., T5). The goal of commonsense knowl-
edge transfer is to transfer the commonsense knowl-
edge from the neural commonsense knowledge
model (i.e., source model) to the pre-trained model
(i.e., target model) so that it can generalize bet-
ter to downstream tasks requiring commonsense
reasoning ability.

Compared to conventional knowledge transfer
methods such as knowledge distillation, common-
sense knowledge transfer faces a unique challenge:
the source model and the target model are hetero-
geneous because they are trained on different data
with different objectives. As such, we can not sim-
ply feed a batch of data to both of the models and
train the target model to match the source model’s
logits or feature distribution. To alleviate this prob-
lem, we propose a two-stage knowledge transfer
scheme as illustrated in Figure 1. To be specific,
we first use natural texts to form queries for re-
trieving commonsense knowledge (in text form)
from the neural commonsense knowledge model.
We then construct training data with two novel
commonsense-related self-supervised objectives
based on the retrieved commonsense knowledge
and the corresponding natural text. Finally, we
train the target model on the constructed training
data to inject commonsense knowledge retrieved
from the source model. We describe our method
to extract commonsense knowledge from a neural
commonsense knowledge model and the proposed
commonsense-related self-supervised objectives in
detail in this section.

2.1 Commonsense Knowledge Extraction

We first describe the source model, i.e., neural
commonsense knowledge model, in the common-
sense knowledge transfer framework. It is a trans-
former (Vaswani et al., 2017) language model
trained on commonsense knowledge graphs like
ATOMIC (Sap et al., 2019a) and ConceptNet (Speer
et al., 2017) with the objective of predicting the
object (i.e., commonsense inference) with the sub-
ject (i.e., natural text) and relation as input. For
example, given a commonsense tuple (s="take a
nap", r=Causes, o="have energy"), the neural com-
monsense knowledge model is trained to generate
o given s and r as inputs. After training, it can gen-

erate accurate, representative knowledge for new,
unseen entities and events.

To extract commonsense knowledge stored in a
neural commonsense knowledge model, we use a
natural sentence as the subject s (e.g., he wants to
cook a meal) and concatenate it with a randomly se-
lected commonsense relation 7 (e.g., xNeed) from
a pre-defined set to form a prompt (e.g., he wants
to cook a meal xNeed ). We then feed the prompt
to the neural commonsense knowledge model and
use it to generate a commonsense inference (e.g.,
to buy ingredients). In this way, the commonsense
knowledge generation process resembles the way in
which the neural commonsense knowledge model
is trained. As such, we can get commonsense infer-
ences of relatively high qualities.

Using a neural commonsense knowledge model
as a knowledge source has two advantages. On one
hand, compared to the previous method (Li et al.,
2019) using a symbolic commonsense knowledge
graph, a neural commonsense knowledge model
can generalize to unseen subjects, thus enabling us
to refine the target pre-trained model on large-scale
natural text corpus together with its commonsense
inferences. As such, the resulting model can better
adapt to downstream tasks which are formulated in
diverse natural texts. On the other hand, compared
to another method (Zhou et al., 2021) that only uses
plain text and is thus limited to the surface form of
naturally occurring text, the use of a neural com-
monsense knowledge model provides much denser
commonsense knowledge including a diverse set of
commonsense relations between natural texts and
the underlying commonsense knowledge.

2.2 Commonsense Knowledge Injection

After commonsense knowledge extraction, we need
to inject the extracted commonsense knowledge
into the target model. A straightforward solution is
to use sequence-level knowledge distillation (Kim
and Rush, 2016) and continually train the student
to generate retrieved commonsense inference given
the original text and commonsense relation. How-
ever, this can be sub-optimal due to the domain dis-
crepancy between commonsense knowledge and
natural text, which introduces the catastrophic for-
getting problem (Kirkpatrick et al., 2017) and hurts
the performance on downstream tasks, which is
also recently confirmed by Cui and Chen (2021).
To better inject the extracted commonsense
knowledge into a pre-trained model without suf-
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Commonsense Text Infilling
subject object

he plans to cook a meal for himself ~ xNeed to buy ingredients
text masking
xNeed to buy ingredients ——————— plans to cook <s> meal

[he <mask> a <mask> for himself

he plans to cook a meal for

€ commonsense masking
himself xNeed to <mask> —

buy ingredients ]

[he plans to <mask> for himself  bidirectional masking
——

xNeed to buy <mask> cook a meal <s> ingredients|

[he plans to cook a meal for himself g|ation masking

<mask> to buy ingredients plans to ]

Figure 2: Illustration of the commonsense text infill-
ing objective. Given a commonsense tuple constructed
in the commonsense knowledge retrieval phase, we
randomly mask text spans in the commonsense tuple
following different patterns and train the pre-trained
model to reconstruct the masked spans. RL: Should
the <mask> be “xNeed”?

fering from catastrophic forgetting so that its ca-
pability on general NLP tasks is retained (or even
improved), we propose two commonsense-related
self-supervised objectives: commonsense text in-
filling and commonsense relation prediction. The
former objective is generative while the latter is a
discriminative objective. We refine the pre-trained
model by multi-tasking on both objectives so that
the model can better adapt to tasks requiring either
generative or discriminative commonsense reason-
ing ability.

Commonsense Text Infilling Commonsense
text infilling is a simple extension to the conven-
tional text infilling objective used for pre-training
BART and T5. It transforms each sentence to a
commonsense tuple similar to that in a common-
sense knowledge graph by appending the com-
monsense relation and the generated common-
sense inference. We then mask text spans in
the commonsense tuple by randomly selecting
one masking scheme among text masking, com-
monsense masking, bidirectional masking, and re-
lation masking. As illustrated in Fig 2, these
masking strategies selectively mask different com-
ponents in the input commonsense tuple and
lead to different optimization objectives. Specif-
ically, these masking schemes mask either spans
in natural text (P(s|S,7,0)), commonsense infer-
ence (P(ol|s,r,0)), natural text/commonsense in-
ference (P(s, 0|8, 1, 6)), or commonsense relation
(P(r|s, 7, 0)), respectively. We then train the model
to predict the masked spans autoregressively. The
diverse masking strategies provide more diverse
training signals compared to random masking, thus

Commonsense Relation Prediction

Input: he plans to cook a meal for himself, what is needed for that?

Options: (object) Subject: Relation
A to buy ingredients
B. to eat food xWant

C. to get prepared | don‘t want to fail the next exam

D. to find a job she wants to save money for a car

Output: A

Figure 3: Illustration of the commonsense relation pre-
diction objective. We train the pre-trained model to pre-
dict the correct commonsense inference given the sub-
ject and relation from three distractors generated with
either different subjects or relations as inputs.

enabling the model to better align the surface form
of human language and the underlying common-
sense knowledge.

In addition, unlike the conventional practice
in masked span infilling objective that randomly
masks text spans with the same probability, we pro-
pose to mask text spans including concepts (tokens
recognized as nouns or verbs by a Spacy POS tag-
ger) with a higher probability so that the model
will be trained to predict concepts more frequently
compared to non-content words that are generally
not related to commonsense reasoning.

Commonsense Relation Prediction While the
commonsense text infilling objective encourages
the pre-trained model to align natural texts and
their commonsense inferences, it is always trained
on valid commonsense tuples. This can be sub-
optimal because we also want the model to be ca-
pable of discriminating invalid commonsense infer-
ences, which is important for many commonsense-
related downstream tasks.

To this end, we introduce a commonsense re-
lation prediction task that trains the model to dis-
tinguish the correct commonsense inference corre-
sponding to the input sentence and the common-
sense relation from distractors. To be specific, the
commonsense relation prediction objective is for-
mulated as a multi-choice QA problem with an
input sentence as the context, a commonsense re-
lation as the question, and a set of four common-
sense inferences as options. The set of options
consists of one correct commonsense inference,
which is generated by the neural commonsense
model with the input sentence and commonsense
relation as input, and three carefully curated dis-
tractors (i.e., negative examples) generated by the
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Methods CSQA OBQA PIQA aNLI SOCIALIQA COPA

BERT-base 53.08(£0.16) 57.60(£0.8) 64.86(£0.52) 61.88(+£0.56) 64.3(£0.4)  67.3(£0.4)
ERNIE-base 54.06(£0.12) 58.90(£0.9) 66.47(£0.58) 63.04(£0.46) 65.1(£0.4)  68.9(£0.4)
KnowBERT 53.88(£0.15) 58.50(x£0.8) 66.61(£0.63) 63.18(£0.52)  65.4(£0.5) 69.4 (+£0.4)
COMET 45.32(£0.28) 51.20(£1.1) 60.73(£0.51) 57.63(£0.61)  60.2(£0.7)  69.1 (£0.5)
T5-base 61.88(£0.08) 58.20(£1.0) 68.14(£0.73) 61.10(£0.38)  65.1(£0.5)  71.4 (£0.7)
T5-base + TI 62.05(£0.17) 58.43(£0.8) 68.32(£0.66) 61.42(£0.32) 65.3(£0.4) 71.8(£0.8)
T5-base + SSM 62.37(£0.25) 58.60(£0.9) 68.48(£0.65) 61.57(£0.44)  65.5(£0.5)  72.1 (£0.6)
T5-base + KD 61.83(£0.42) 56.54(£0.7) 67.35(£0.63) 60.94(£0.66) 64.8(£0.5) 71.0(£1.0)
T5-base + CSKG (TI) 60.22(£0.40) 56.17(£0.8) 66.51(£0.57) 59.92(£0.47)  62.7(£0.7)  68.5 (£1.1)
T5-base + CSKG (Rule) 63.10(£0.35) 57.97(£0.8) 68.27(£0.71) 60.15(£0.51)  65.7(£0.4) 72.4 (£0.9)
CALM 63.32(£0.35) 60.90(x0.4) 71.01(£0.61) 63.20(£0.52)  66.0(£0.5)  72.2 (£0.8)
CKT-base 64.11(+0.31) 61.58(x+0.5) 72.26(+0.61) 64.37(+£0.49) 67.3(=0.4) 73.4 (+0.5)
CKT w/ GPT-2 60.39(£0.61) 56.95(£0.7) 68.48(£0.44) 60.14(£0.52) 66.2(£0.6) 72.8 (£1.0)

Table 1: Experimental results on base-size models. Best models are bold and second best ones are underlined
within each metric. Mean and standard deviation of 3 different runs with different random seeds are reported.

same neural commonsense knowledge model with
different inputs. As illustrated in Figure 3, among
the three distractors, one is generated with an in-
put composed of the same sentence and a different
commonsense relation, and another two are gener-
ated with an input composed of different sentences
with the same commonsense relation. In this way,
the model learns to align the natural texts with
valid commonsense knowledge while also distin-
guishing commonsense inferences that do not make
sense. Moreover, this objective is formulated as a
multi-choice QA task that closely resembles sev-
eral downstream commonsense-related tasks such
as CommonsenseQA and SOCIALIQA, thus en-
abling easier transfer especially when labeled train-
ing examples are scarce.

3 Experiments

3.1 Experimental Settings

Models In our experiments we apply common-
sense knowledge transfer to refine TS (Raffel et al.,
2019), a popular model pre-trained with the text
infilling objective. We experiment with both T5-
base and T5-large, which consist of 220 million
and 774 million parameters respectively, as the
target model in the commonsense knowledge trans-
fer framework. We do not experiment with ex-
tremely large models like T5-11B because of the
resource constraints and the fact that these models
are hard to deploy in real-world applications. We
use COMET-ATOMICZ), a state-of-the-art neural
commonsense knowledge model that can generate
accurate, representative knowledge for new, un-
seen entities and events, as the source model. It
is initialized with BART and continually trained

on ATOMIC3) (Hwang et al., 2021), a new general
purpose commonsense knowledge graph.

Data We randomly sample a subset consisting of
10 million sentences from the English Wikipedia
and the BookCorpus (Zhu et al., 2015), which is
used for pre-training BERT and its variants. We se-
lect a set of representative commonsense relations
including intent, reason, effect, need, want, and re-
act from relations used to train COMET-ATOMICZ).
For each sentence, we randomly sample two rela-
tions and retrieve the corresponding commonsense
explanation from COMETZ). We randomly select
one relation-explanation pair to form the input ex-
ample and leave another as the distractor for the
commonsense relation prediction objective.

Training We refine the pre-trained models on
the self-supervised examples constructed with the
sampled 10 million sentences for 100k steps with a
batch size of 1024, a maximum sequence length of
256, and a learning rate of 5e-5/2e-5 for base-size
and large-size models respectively with a linear
warm-up for the first 8,000 updates. After knowl-
edge transfer, we fine-tune the models on down-
stream tasks by formulating the tasks into text-to-
text problems. Pre-training and fine-tuning details
are included in the Appendix.

Evaluation We evaluate the continual pre-trained
models on downstream tasks that require common-
sense reasoning including CommonsenseQA (Tal-
mor et al., 2018), OpenbookQA (Mihaylov et al.,
2018), PIQA (Bisk et al., 2020), aNLI (Bhagavat-
ula et al., 2020), COPA (Roemmele et al., 2011),
and SOCAILIQA (Sap et al., 2019b) In addition to
the conventional fully supervised setting, we also
test our approach in the few-shot setting by vary-
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Methods CSQA OBQA PIQA aNLI SOCIALIQA  COPA
T5-large 69.81(£1.02) 61.40(£1.0) 72.19(£1.09) 75.54(£1.22) 71.3(+0.8)  83.6(1.1)
CALM-large 71.31(£0.04) 66.00(£1.0) 75.11(£1.65) 77.12(£0.34)  72.7(£0.7)  84.9(%1.0)
CKT-large  72.15(£0.61) 66.70(=1.1) 76.07(=0.95) 77.94(+0.59) 73.8(£0.8) 86.0(=1.2)

Table 2: Experimental results on large-size models. Best models are bold and second best ones are underlined
within each metric. Mean and variance of 3 different runs with different random seeds are reported.

ing the percentage of labeled examples from the
original training set used for fine-tuning. The idea
is that limited labeled examples can only help the
model understand the task but are insufficient for
the model to acquire enough commonsense knowl-
edge to solve the task. As such, it requires the
model to store enough commonsense knowledge
in its parameters to succeed in the few-shot set-
ting. For both the settings, we report the results
on the official development set and tune the hyper-
parameters based on the models’ performance on
an in-house split dev set. We report the mean and
variance of 3 individual runs with different random
seeds because most datasets are relatively small,
which makes the variance in results non-negligible.

Baselines We compare our approach with meth-
ods that continually train a pre-trained model with
different objectives. We divide the baselines into
two categories based on the source of their super-
vision. The first category includes methods that
only exploit general text corpus, including (1) TS
+ TI that continually pre-trains the public check-
point of TS with the same text infilling objective for
more steps, (2) TS + SSM that also continual pre-
trains T5 with the text infilling objective, but use
salient span masking (Roberts et al., 2020) instead
of random masking for data construction, (3) (T5
+ KD) that uses sequence-level knowledge distilla-
tion (Kim and Rush, 2016) for knowledge transfer,
where the student model is trained with the teacher
output (i.e., P(o|s, r)), and (4) CALM (Zhou et al.,
2021) that uses novel self-supervised objectives
to construct concept-centric self-supervision from
general text corpus. The second category instead
exploits CSKG, including (5) TS + CSKG (TI)
train TS5 with the text infilling objective on tuples
in a CSKG, and (6) TS + CSKG (Rule) (Li et al.,
2019) that uses manually defined rules to construct
training examples from a CSKG. We also include
a COMET baseline where we directly fine-tune
the pre-trained COMET-ATOMIC2) model for the
downstream tasks to verify the necessity of com-
monsense knowledge transfer, and a CKT w/ GPT-

Commonsense QA OpenBook QA

Accuracy
Accuracy

TS — Ts
CALM A CALM
.~ CKT 7 .« CKT

Pérccnt of Training Data (%) Percent of Training Data (%)

Figure 4: Performance of compared base-size models
fine-tuned with different fraction of the datasets.

2 baseline where the commonsense inferences are
generated by a pre-trained GPT-2 large model to
verify whether the gain comes from transferring the
commonsense knowledge from COMET, or simply
from data augmentation from another generative
model. For a fair comparison, we use the same data
and training steps compared to our approach for
baselines from the first category and use ATOMIC3),
on which the teacher model in our framework
is pre-train on, as the commonsense knowledge
graph. For reference, we also include some popular
knowledge-enhanced pre-trained models including
ERNIE (Zhang et al., 2019) and KnowBERT (Pe-
ters et al., 2019).

3.2 Fully-supervised Results

We first present results in the fully-supervised set-
ting. Results on base-size models are presented in
Table 1. We can see that our approach yields sig-
nificant improvement compared to the TS baseline
(up to 4 absolute scores) and consistently outper-
form CALM, the state-of-the-art method of inject-
ing commonsense knowledge into PTLMs.

In addition, we observe that simply using con-
tinual training with the original text-infilling ob-
jective or its variant with salient span masking
only marginally improves the performance. Sur-
prisingly, training with text infilling on a common-
sense knowledge graph leads to degraded perfor-
mance compared to the TS5 baseline. We suspect
this is because the commonsense tuples in com-
monsense knowledge graphs are generally too short
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Methods CSQA OBQA PIQA aNLI SIQA COPA
T5-base 61.88 5820 68.14 61.10 65.1 71.4
CKT-base 64.57 62.77 7326 6475 683 73.4
Objective Analysis
CKT-base w/o CSTI 62.58 6097 70.61 62.11 66.5 72.0
CKT-base w/o text masking 6298 61.74 7255 63.81 67.7 72.8
CKT-base w/o commonsense masking  63.61 62.03 7283 6440 675 72.7
CKT-base w/o bidirectional masking 63.52  62.11 7230 6424 67.6 72.9
CKT-base w/o relation masking 64.12 6248 7331 6457 674 72.7
CKT-base w/o CSRP 63.12  62.07 7244 64.11 675 72.6
CKT-base w/ random distractors 64.04 6229 7295 6448 68.0 73.1
Multi-task versus Sequential Transfer
CKT-base (CSTI — CSRP) 64.69 6251 7335 6411 679 73.5
CKT-base (CSRP — CSTI) 6349 6133 7154 6341 670 72.0
Corpus Size
CKT-base w/ 10% data 64.18 6221 71.86 6431 67.7 73.1
CKT-base w/ 50% data 6445 62.66 73.10 6472 68.2 73.4

Table 3: Analysis of the proposed commonsense knowledge transfer framework. CSTI and CSRP denote the
commonsense text infilling objective and the commonsense relation prediction objective, respectively.

and simple, making the pre-trained model unable
to reason within relatively long contexts which is
crucial for most downstream tasks. Moreover, we
find that continually pre-training with training data
constructed with commonsense tuples in a com-
monsense knowledge graph following manually de-
signed rules leads to improvements in certain tasks.
However, the improvement is inconsistent across
different tasks and it even hurts the performance on
certain tasks, which may be because the rules for
constructing training data are tailored for certain
tasks like CSQA. The inferior performance of using
commonsense knowledge graphs as data sources
also confirms the need of using natural text corpus
during continual pre-training for better adapting to
diverse downstream tasks. We also find directly ap-
plying sequence-level KD and training the student
to mimic the teacher on the commonsense tuple
generation task fails to improve the performance
because the task is not general enough and thus
cannot transfer to diverse downstream tasks well.
Moreover, directly fine-tuning COMET or using
GPT-2 as the commonsense knowledge source re-
sults in very poor performance. This confirms the
necessity of commonsense knowledge transfer and
shows that it is actually transferring commonsense
knowledge instead of simple text augmentation.

To further confirm the effectiveness of common-
sense knowledge transfer, we apply it to T5-large
and compare it to competitive baselines in the base-

size experiments. The results are presented in Table
2. We can see that our approach consistently out-
performs T5-large and CALM-large. This suggests
that our approach can successfully generalize to
large-size pre-trained models.

3.3 Few-shot Results

Injecting commonsense knowledge into pre-trained
models is important because it enables the model
to reason and generalize to unseen examples while
observing only a few labeled examples. To this
end, we fine-tune the compared models with differ-
ent fractions of labeled training data to investigate
the transition of the behavior of our model and
baselines from the low-resource regime to the fully-
supervised setting (Fig. 4). We observe that the
performance improvement of our approach com-
pared to the baselines is more significant in the
low-resource regime. This shows that common-
sense knowledge transfer can successfully transfer
commonsense knowledge into pre-trained models
so that they can generalize well while seeing only
a small part of training data. This may also help
the model reduce the risk/tendency of fitting the
spurious correlations in the annotated datasets and
thus generalize better.

3.4 Analysis

To better understand the proposed commonsense
knowledge transfer framework and the role of its
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different components, we conduct an ablation study
about the impact of different proposed objectives,
the impact of multi-tasking the commonsense-
related self-supervised objective versus sequen-
tially training, and the impact of the size of natural
text corpus used for transfer (see Table 3).

Impact of Objectives We find that both the pro-
posed objectives contribute to the performance im-
provement of our approach. The commonsense
text infilling objective is shown to be more criti-
cal than the commonsense relation prediction task.
We suspect this is because commonsense text in-
filling resembles the vanilla text infilling objective
with which the T5 models are pre-trained, thus
preventing the model from catastrophic forgetting.
In addition, all four masking strategies are ben-
eficial, and their contribution varies for different
downstream tasks. This confirms the necessity of
a diverse masking scheme. Moreover, our strat-
egy for constructing distractors outperforms the
random counterpart, demonstrating the necessity
of hard negative examples for the commonsense
relation prediction task.

Multi-task versus Sequential Transfer As for
the training order between the two objectives, we
find that starting from the commonsense text infill-
ing task and then switching to the commonsense
relation prediction task performs similarly with our
multi-tasking strategy while significantly outper-
forming its counterpart training with the reverse
direction. We think this is because the common-
sense text infilling objective resembles the original
pre-training while the commonsense relation pre-
diction is more similar to downstream tasks. We
opt for the multi-tasking strategy for simplicity.
Impact of Corpus Size We find that common-
sense knowledge transfer significantly outperforms
both the TS5 baseline and the competitive CALM
method with only 10 percent of the full data used
for distillation. Nevertheless, the performance im-
provement also confirms that our approach can
benefit from the accessibility of large-scale nat-
ural texts. For base-size models, the performance
improvements seem to saturate after 10 million sen-
tence pairs. However, we anticipate that larger-size
models may still benefit from a larger amount of
data, and leave this for future work.

4 Related Work

Knowledge-augmented Pre-trained Models A
number of recent works have examined the prob-

lem of incorporating world knowledge with the pre-
trained models. A number of works use an external
knowledge base to incorporate entity knowledge
with pre-trained models (Zhang et al., 2019; Peters
et al., 2019; Wang et al., 2020; Liu et al., 2020).
However, these approaches require specialized re-
sources like knowledge bases which are non-trivial
to seek, thus limiting the domain they can be ap-
plied to. Xiong et al. (2020) proposed a novel entity
replacement detection objective that incorporates
Wikipedia to encode world knowledge into a BERT-
like pre-trained model. He et al. (2020) proposed a
generative and discriminative framework that pre-
trains the model to complete and correct knowledge
spans. The aforementioned approaches generally
focus on factual knowledge of entities while our
work mainly focuses on commonsense knowledge.
Commonsense Reasoning for NLP Several re-
cent studies (Talmor et al., 2018; Sap et al., 2019b;
Zhou et al., 2020b; Lin et al., 2020; Xu et al., 2021)
evaluate the performance of several pre-trained
language models on tasks that require common-
sense reasoning and find that it is still very hard for
pre-trained language models to match or exceed
human-level performance. Therefore, approaches
to improve the commonsense reasoning ability of
pre-trained language models has attracted much
attention. These approaches can be divided into
two categories. The first category focuses on in-
corporating an external commonsense knowledge
graph for commonsense reasoning. For exam-
ple, Lin et al. (2019), Cui and Chen (2021), and Liu
et al. (2021) propose to exploit structured sym-
bolic commonsense knowledge graphs to perform
commonsense reasoning. The second one instead
attempts to inject commonsense knowledge into
the parameters of pre-trained models. For exam-
ple, Ye et al. (2019); Li et al. (2019) proposed
to use manually designed rules to construct com-
monsense related training examples from common-
sense knowledge graphs. Zhou et al. (2021) instead
only relies on general text corpus and proposed two
concept-centric self-supervised objectives to refine
pre-trained models with commonsense knowledge.

5 Conclusion

We introduce commonsense knowledge transfer,
a framework to transfer the commonsense knowl-
edge stored in a neural commonsense knowledge
model to a general-purpose pre-trained model. Our
method extracts commonsense knowledge from
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the source model to construct self-supervised train-
ing data for the target model. Empirical results
show that our approach consistently outperforms
previous methods for improving the commonsense
reasoning ability of pre-trained models that exploit
either symbolic knowledge graphs or texts alone.

Limitations

In our experiments, we use T5-base and T5-large
models as the target model since they are widely-
used, representative pre-trained seq2seq models
and use COMET-ATOMIC3) as the commonsense
knowledge source. However, there are other pre-
trained seq2seq models such as BART, and neu-
ral commonsense models such as COMET that
we did not experiment with. Moreover, we only
experimented with 10 million randomly sampled
sentences from the English Wiki and BookCor-
pus datasets. It would be interesting to investigate
whether continually pre-training with a larger scale
dataset can further improve the performance.

Ethical Considerations

Our work focuses on improving the commonsense
reasoning ability of pre-trained language models. It
probably does not introduce extra ethical concerns.
However, in commonsense knowledge extraction,
the neural commonsense knowledge model may
generate unexpected (e.g., biased) commonsense
inferences, and training with these inferences may
lead to additional bias in the pre-trained model.
Nevertheless, all pre-trained language models con-
tain bias and should be examined.
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A Pre-training and Fine-tuning Details

A.1 Pre-Training Details

We implement our models using Pytorch-
lightning (Falcon, 2019) and Hugginface’s Pytorch
Transformers (Wolf et al., 2019). For pre-training
phase, we use the AdamW optimizer with maxi-
mum sequence length 256, train batch size 8, gradi-
ent accumulation 8, warmup steps 8000, weight de-
cay 0.01 and adam epsilon le-6. We train the mod-
els with 8 V100 GPUs and FP32 precision. The
model is pre-trained for 10 epochs. We searched
for the best learning rate for our model out of [5e-6,
2e-5, 5e-5, le-4].

A.2 Fine-Tuning Details

For fine-tuning, we use 4 V100 GPUs and use FP32.
For all tasks, we use the AdamW optimizer with
learning rate from [le-5, 2e-5, 5e-5, le-4, 2e-4],
maximum sequence length 256, batch size from [4,
8, 16, 32]. For all tasks, we use a warmup fraction
of 0.01, and max epoch of 20.

B Additional Analysis
B.1 Qualitative Analysis

To better understand the proposed method, we
present a case study in Figure 5. We can see that
both the objectives introduced in the CALM model
and the salient span masking (SSM) strategy fail to
exploit the underlying commonsense rationale be-
yond the surface form of texts while our approach
directly aligns texts with the corresponding com-
monsense inferences with different commonsense
relations. That explains why commonsense knowl-
edge transfer can effectively improve a pre-trained
model’s performance on downstream tasks requir-
ing commonsense reasoning ability.

B.2 Experimental Results on GLUE

To verify that commonsense knowledge transfer
is suitable for general-purpose pre-trained mod-
els, we fine-tune our model on the GLUE bench-
mark (Wang et al., 2019). Specifically, we test
on MRPC (Dolan and Brockett, 2005), QQP' and
STS-B (Conneau and Kiela, 2018) for Paraphrase
Similarity Matching; SST-2 (Socher et al., 2013)
for Sentiment Classification; MNLI (Williams
et al., 2018), QNLI (Rajpurkar et al., 2016) and
RTE (Wang et al., 2019) for the Natural Language

"https://www.quora.com/q/quoradata/

Commonsense Text Infilling
SSM

he plans to <mask> for

himself xNeed to buy <mask> he plans to <mask> for himself

plan cook meal

lbidirectionel masking lconcept to sentence l salient span masking

cook a meal <s> ingredients he plans to cook a meal for himself  cook a meal

he bought a ski board at a store  he bought a store at a ski board
last week xWant to <mask> last week

he bought a <mask >at a store
last week

lcommonsense masking concept order recovering lsalient span masking

cook a meal <s> ingredients he bought a ski board at a store

ski board
last wesk

Figure 5: Performance on the CSQA dataset w.r.t. the
size of training data used for commonsense knowledge
transfer.

CKT

Performance

100

" Percent of '“l,“rainirh;g Data (%)

Figure 6: Performance on the CSQA dataset w.r.t. the
size of training data used for commonsense knowledge
transfer.

Inference; CoLA (Warstadt et al., 2019) for Lin-
guistic Acceptability.

The results are shown on Table 4, we can see
that after commonsense knowledge transfer, the
resulting model’s general natural language under-
standing ability is comparable with the original
T5-base model. This shows that our approach does
not affect the model’s general transfer ability and
thus can be applied to general-purpose language
models.

B.3 Experiments with BART

To demonstrate the versatility of commonsense
knowledge transfer for different backbones, we
conduct additional experiments using BART as the
backbone model. The results are shown in Table

First—-Quora-Dataset—-Release-Question-Pairs 5. We can see that commonsense knowledge trans-
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Methods CoLA MNLI MRPC OQNLI QQP RTE SST-2 SST-B Meta Score

BERT-base  58.9 84.7 89.6 912 900 714 93.0 90.0 83.6
T5-base 55.9 84.5 90.3 905 902 762 928 87.8 83.5
CKT-base 57.4 84.4 90.6 909 899 768 925 88.4 83.9

Table 4: Experimental results of base-size models on the GLUE benchmark.

Methods CSQA OBQA PIQA aNLI SocIiALIQA COPA

BART 72.31 65.80 74.12 78.27 71.6 85.6
CKT-BART 73.14 6820 7695 79.52 73.3 87.2

Table 5: Experimental results (mean of 3 random runs) with BART.

fer also consistently improves the BART model,
demonstrating the versatility of our approach.

Methods BLEU-4 METEOR CIDEr SPICE

TS-base 24.90 31.20 1299 3240
CALM-base  26.40 31.40 13.88  33.00
CKT-base 26.20 31.40 13.65  33.10

Table 6: Experimental results (mean of 3 random runs)
with BART.

B.4 Experiments on CommonGEN

We also experiment on the CommonGEN dataset, a
generative commonsense reasoning dataset where
the model is required to take several keywords as
inputs and output a sentence that makes sense. The
results are shown in Table 6. We can see that our ap-
proach performs similarly with the CALM model,
which includes the CommonGEN task objective as
one of the pre-training tasks.

B.5 Impact of Pre-training Data Size

We also conduct experiments to investigate the
sample-efficiency of commonsense knowledge
transfer. We present the trend of performance
improvement in Figure 6. We can see that our
method achieves significant performance improve-
ment upon the TS5 baseline with only 10% of the
total training data, which confirms the sample-
efficiency of commonsense knowledge transfer.

5958



ACL 2023 Responsible NLP Checklist

A For every submission:
¥ Al. Did you describe the limitations of your work?
limitation
¥ A2. Did you discuss any potential risks of your work?

ethical statement

¥ A3. Do the abstract and introduction summarize the paper’s main claims?
abstract and introduction

A4. Have you used Al writing assistants when working on this paper?
Left blank.

B ¥ Did you use or create scientific artifacts?

experiment

¥/ B1. Did you cite the creators of artifacts you used?
experiment

B2. Did you discuss the license or terms for use and / or distribution of any artifacts?

they’re commonly used datasets

X B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research

purposes should not be used outside of research contexts)?
they’re commonly used datasets

B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps

taken to protect / anonymize it?
they’re commonly used datasets

X B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and

linguistic phenomena, demographic groups represented, etc.?
they’re commonly used datasets

B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may

be significant, while on small test sets they may not be.
they’re commonly used datasets

C ¥ Dpid you run computational experiments?

experiment

¥ C1. Did you report the number of parameters in the models used, the total computational budget

(e.g., GPU hours), and computing infrastructure used?
experiment

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on Al writing

assistance.

5959


https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

v C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
experiment

v C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
experiment

v C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
experiment

D Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
Left blank.

D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?

Left blank.

[0 D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?

No response.

0 D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

0] DS. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

5960



