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Abstract

Large-scale vision-language pre-training has
exhibited strong performance in various visual
and textual understanding tasks. Recently, the
textual encoders of multi-modal pre-trained
models have been shown to generate high-
quality textual representations, which often out-
perform models that are purely text-based, such
as BERT. In this study, our objective is to uti-
lize both textual and visual encoders of multi-
modal pre-trained models to enhance language
understanding tasks. We achieve this by gener-
ating an image associated with a textual prompt,
thus enriching the representation of a phrase
for downstream tasks. Results from experi-
ments conducted on four benchmark datasets
demonstrate that our proposed method, which
leverages visually-enhanced text representa-
tions, significantly improves performance in
the entity clustering task.'

1 Introduction

Recent advances in vision-language pre-training
have seen the successful alignment of visual and
linguistic inputs through the implementation of
cross-modal pre-training objectives, such as lan-
guage modeling and contrastive learning (Lu et al.,
2019; Radford et al., 2021). These pre-trained mod-
els have shown impressive performance on down-
stream vision-language tasks, validating their cross-
modal capabilities (Su et al., 2019).

While most previous studies focused on multi-
modal tasks, researchers have shown that pre-
trained cross-modal encoders are equally proficient
at uni-modal language understanding, matching
the performance of pre-trained text encoders. Lu
et al. (2022) were the pioneers in utilizing ma-
chine abstract imagination from pre-trained cross-
modal encoders, demonstrating improvement on
general NLU tasks. Yan et al. (2022) established
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that the text encoder of CLIP (Radford et al., 2021)
surpasses models designed for producing phrase
representations, including Phrase-BERT (Wang
etal., 2021) and UCTopic (Li et al., 2022a). They
hypothesized that the visual supervision during
pre-training empowers CLIP to produce visually-
grounded phrase representations, beneficial for
language-only tasks. Such a phenomenon aligns
with neuroscience studies, demonstrating that vi-
sual and linguistic semantic representations are co-
ordinated in the human brain (Popham et al., 2021).

Despite the strong performance of the previous
method, it only utilized the text encoder of a cross-
modal pre-trained model. In contrast, our study
aims to exploit its multi-modal representation ca-
pacity, incorporating both text and image encoders.
We introduce a visually-enhanced phrase under-
standing framework to exploit multiple modalities
for uni-modal tasks. Our framework comprises
a text-to-image generator and a text-image cross-
modal encoder. We employ a text-to-image gen-
erator to produce visual cues for a textual candi-
date. Subsequently, the generated image and the
textual prompt are processed by the cross-modal
encoder to create visually-enhanced phrase embed-
dings. Unlike Lu et al. (2022), our method does
not require supervised data for downstream tasks,
making it more scalable. Our approach also differs
from VOKEN (Tan and Bansal, 2020), as they gen-
erated visual cues in tokens and processed the sig-
nal solely on the language side, whereas we employ
representations directly from different modalities.
Therefore, our model can capture more abstract
concepts from images, enhancing generalizability.

We evaluate our approach on four benchmark
phrase understanding datasets. The experiments
demonstrate that our proposed visual enhancement
significantly outperforms all text-only baselines,
demonstrating that abstract visual concepts can pro-
vide complementary cues for text understanding.
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Figure 1: Illustration of the proposed framework.

2 Method

Our proposed method is illustrated in Figure 1,
where we first generate images associated with
phrases using a text-to-image diffusion model. Fol-
lowing this, we utilize pre-trained text and image
encoders to construct visually-enhanced phrase em-
beddings for downstream understanding tasks.

2.1 Text-To-Image Model

Recently, text-to-image models have attracted sig-
nificant interest. Among these, diffusion models
have played an important role in text-to-image gen-
eration, showing impressive performance. To more
effectively generate visual cues associated with
texts, this study adopts stable diffusion (Rombach
et al., 2022) as our image generation model.

During the training phase, an image auto-
encoder is trained using an extensive image
database. A time-conditional U-Net (Long et al.,
2015) forms the core of the diffusion model, learn-
ing to denoise image latent representations incre-
mentally.

In the sampling procedure, we first obtain a text
prompt and derive a text embedding from the text
encoder. Subsequently, we use Gaussian noise as
the latent representation, and progressively denoise
the latent representation via the diffusion model
and a scheduler algorithm. Ultimately, an image is
generated by reconstructing the latent representa-
tion through the image decoder.

2.2 CLIP (Contrastive Language-Image
Pretraining)

CLIP (Radford et al., 2021) is a large-scale vision-
language pre-training model using contrastive
learning, which achieves remarkable performance
in zero-shot image classification tasks. Given a

batch of data D, CLIP jointly trains an image en-
coder and a text encoder to maximize the similari-
ties of | D| paired text-image representations while
minimizing the similarities of other (| D|?—|D|) un-
paired text-image representations. Given the weak
alignment between texts and images, this study
employs the pre-trained CLIP text encoder Fyeqy
and image encoder Ej;,q4¢ to extract meaningful
cues from different modalities. Our experiments
focus on showing that the pre-trained CLIP en-
coders provide superior visual enhancement for
texts, compared to separately pre-trained text and
image encoders.

2.3 Visually-Enhanced Multimodal
Representation

Given a text sequence with an entity candidate
phrase p, we design our text prompt as “A photo
of <p>”, a proven effective default template
that delivers robust zero-shot classification perfor-
mance (Radford et al., 2021). As depicted in Fig-
ure 1, we initially use the text prompt to generate a
text-associated image with the text-to-image model
G. Following this, we employ the pre-trained text
and image encoders of CLIP to extract correspond-
ing representations 7;(p) and r(p) as follows.

Etert(“A photo of p”)
FEimage(G(“A photo of p”))

r(p) =
ri(p) =

Lastly, we concatenate the two embeddings origi-
nating from different modalities to create visually-
enhanced phrase embeddings, which potentially
capture richer and more comprehensive informa-
tion and thus benefit downstream tasks.
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CoNLL2003 | BCSCDR | W-NUT 2017 | MIT-Movie Average

ACC NMI | ACC NMI | ACC NMI | ACC NMI | ACC NMI

BERT-base 394 .021 | 711 201 | 252 .026 | .589 .014 || 486 .065
BERT-large 415 .020 | 551 005 | 318  .025 | .680 .013 || 490 .016
RoBERTa-base 633 362 | 519  .001 | 425 211 | .697 227 || .568 .200
RoBERTa-large .601 241 | 744 294 | 379 057 | 541 .005 || .566 .149

é LUKE-base .653 281 | 519 006 | 301 199 | 843 343 || 570 .207
5 LUKE-large .688 348 | 756 340 | 324 208 | .734 271 || .625 292
;éj Phrase-BERT (2021) | .619 339 | 597 .061 | 423 246 | 914 559 || .638 .301
UCTopic (2022a) .682 335 | 933 677 | 287  .140 | .807 307 || .677 .365

+ Contextual Prompt | .759 425 | 946 .710 | 391 387 | .601 .107 | .674 .407
CLIP Text (2022) 728 392 | 521 003 | 464 320 | 784 358 || .624 268

+ Contextual Prompt | .743 460 | .831 430 | 420 260 | .773 .340 || .692 .373

g Proposed Image 738 414 | 734 197 | 432 293 | 895 .525 | .698 .357
O Proposed Text-Image | .775 .457 | .800 .325 | 446 .338 | 937 .647 | .740 442

Table 1: Entity clustering results on four datasets. Proposed Image uses image representation. Proposed Text-Image
uses both text and image representations. The best scores are marked in bold and the second-best ones are underlined.

3 Experiments

To evaluate whether our visually-enhanced phrase
embeddings provide improved semantic cues, we
conduct a series of experiments focused on entity
clustering, as our primary task is to categorize en-
tity candidates with similar concepts only based on
phrase representations in an unsupervised fashion.

3.1 Setup

Our experiments are conducted on four diverse
datasets, each with annotated entities from various
domains:

* CoNLL2003 (Sang and De Meulder, 2003)
comprises 20,744 sentences, incorporating
four types of entities: persons (PER), orga-
nizations (ORG), locations (LOC), and mis-
cellaneous names (MISC).

* BC5CDR (Li et al., 2016) is formed from
1,500 PubMed articles and contains chemical
and disease entities.

* W-NUT 2017 (Derczynski et al., 2017) is
collected from public platforms, including
YouTube and Twitter, with a focus on iden-
tifying previously unseen entities in emerging
discussions. It includes six types of entities.

e MIT-Movie (Liu et al., 2013) contains 12,218
sentences featuring title and person entities.

Following previous research (Xu et al., 2017;

Li et al., 2022b; Yan et al., 2022), we implement
K-means clustering on the cross-modal representa-
tions to perform unsupervised phrase understand-
ing tasks. In this setup, the number of clusters is
set to the number of classes present in the dataset.

The Hungarian algorithm (Papadimitriou and Stei-
glitz, 1998) is employed to optimally allocate each
cluster to a class.

To evaluate the quality of the representations and
compare them fairly with the previous work, we
employ accuracy (ACC) and normalized mutual
information (NMI) as our evaluation metrics. The
results reported are averages over five separate clus-
tering runs. For our proposed image and text-image
approaches, we conduct runs over three seeds for
diffusion models to generate images.

3.2 Baselines

We position our model in comparison to various
language models and phrase understanding models
to validate the effectiveness of our cross-modal
framework. The used representations are the same
as described in the prior work.

* BERT/RoBERTa are well-established pre-
trained language models (Devlin et al., 2019;
Liu et al., 2019) capable of distilling intrin-
sic patterns from input texts into meaningful
representations.”

e LUKE (Yamada et al., 2020) enhances
RoBERTa by introducing entity embeddings
to the input, as well as an entity-aware atten-
tion mechanism.’

¢ Phrase-BERT (Wang et al., 2021) refines
BERT using a contrastive objective to gen-

2We take the embedding of [CLS] with further processing
as phrase representations.

3We take the last layer of Transformer as our phrase-
associated representations.
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Proposed CoNLL2003 BC5CDR W-NUT 2017 MIT-Movie

ACC NMI ACC NMI ACC NMI ACC NMI
Image 738+.025 414+.028 | 734+£.033  .197£.069 | .4324+.024  .2934.035 | .8954+.034  .5254.056
Text-Image | .775+£.009 .457+.016 | .800£.031 .325+.070 | .446+.015 .338+.015 | .937+.001 .647+.013

Table 2: Entity clustering results with three diffusion model runs.
Text Encoder  Image Encoder CoNLL2003 | BC5CDR | W-NUT 2017 | MIT-Movie Average
ACC NMI | ACC NMI | ACC NMI | ACC NMI | ACC NMI

RoBERTa-base - .633 362 | 519 .001 | 425 211 | .697 227 | 568 .200
- ViT-B/32 .629 343 | 668 .109 | 380 .238 | .895 .523 | .643 .303
RoBERTa-base  ViT-B/32 656 361 | 668 .109 | .386 237 | .894 521 | .651 .307
CLIP Text - 728 392 | 521 .003 | 464 320 | 784 358 | .624 268
- CLIP ViT-B/32 | .749 423 | 757 197 | 426 279 | 928 .600 | .710 .375
CLIP Text CLIP ViT-B/32 | .771 451 | .844 406 | 434 .332 | 935 .641 | .746 458

Table 3: Comparison of the separately pre-trained encoders and CLIP over one diffusion model run. CLIP ViT-B/32
is the image encoder of CLIP where the architecture is the same as ViT-B/32. Best results are marked in bold.

erate more powerful phrase representations.*

* UCTopic (Li et al., 2022a) employs an un-
supervised contrastive learning strategy, with
LUKE serving as the foundational model, to
create robust and context-aware embeddings.’

e CLIP Text (Yan et al., 2022) leverages the
text encoder of CLIP for understanding.®

3.3 Results

The evaluation results are presented in Table 1.
Our proposed visually-enhanced representations
outperform all baselines on the CoNLL2003 and
MIT-Movie datasets, while achieving competitive
performance on the BCSCDR and W-NUT 2017
datasets. Moreover, solely utilizing image repre-
sentations encoded from generated images yields
a higher average ACC than all the baselines. This
suggests that the visual signal offers valuable cues
for enhanced phrase understanding. Hence, we
conclude that integrating different modalities can
effectively augment phrase representations. For a
more granular understanding, we provide detailed
scores across multiple turns in Table 2. The lower
standard deviation of our proposed text-image ap-
proach indicates superior stability.

3.4 Analysis of Different Encoders

To further investigate whether the CLIP encoders,
pre-trained jointly, are more effective for visual
enhancement, we compare them with image and

“We take the average of the last layer in Transformer as
our phrase-associated representations.

SWe take the pooling of the entity-associated vectors based
on https://github.com/Jiachengli1995/UCTopic.

We take [EOT] of the last Transformer layer’s output as
phrase representations.

text encoders that have been pre-trained individ-
ually. Table 3 presents the experimental results,
where we substitute the text and image encoders
of CLIP with RoBERTa-base and ViT-B/32 respec-
tively. We notice that phrase representations aug-
mented by ViT-B/32 outperform textual represen-
tations, which suggests the richness of informa-
tion drawn from multiple modalities. It is evident
that CLIP encoders surpass individually pre-trained
encoders, implying that text and image encoders,
when pre-trained together, can more effectively en-
rich phrase representations by integrating text and
image at the representation level.

3.5 Contextual Prompt

Previous work (Yan et al., 2022) demonstrated that
enriching phrase candidates with a large pre-trained
language model can yield more domain-specific
keywords for textual prompts. Specifically, given
a phrase p, the prompt “p is a [MASK]” is fed into
a language model, which in turn returns the top
K predictions {m1,ma, ..., mg} for the [MASK]
token. Subsequently, we formulate the contextual
prompt as “A photo of p, a mi, ma,...,mg.” In
this paper, we set K to 3 for the contextual prompts.
Table 1 shows that the addition of such contex-
tual prompts enhances the performance of text-only
baselines.

We further probe into whether a contextual
prompt can boost our performance and present the
results in Table 4. Our observation is that utiliz-
ing contextual prompts for text embeddings yields
comparable performance, indicating that our visual
cues already encompass the domain-specific sig-
nal. We hypothesize that generating images from
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Approach Text Input  Image Input CoNLL2003 | BCS5CDR | W-NUT 2017 | MIT-Movie Average
ACC NMI | ACC NMI | ACC NMI | ACC NMI | ACC NMI
Proposed Text-Image | Vanilla G (Vanilla) J71 451 | 844 406 | 434 332 | 935 641 | 746 458
Proposed Text-Image | Contextual ~G(Vanilla) 766 445 | 853 429 | 424 308 | 937 .643 | 745 456
Proposed Text-Image | Contextual G(Contextual) | 742 406 | 872 503 | 409 236 | .888 .487 | .728 408
CLIP Text Contextual - 743 460 | .831 430 | 420 260 | .773  .340 | .692 373

Table 4: The utility of contextual prompt. Vanilla: “A photo of p.”; Contextual: “A photo of p, a m1, ma, ms.” (pis

the entity and m, mo, ms are the keywords of p.)

S
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Figure 2: Our generated images with the associated phrases.

contextual prompts may introduce more noise, re-
sulting in difficulty encoding effective visual repre-
sentations for phrase understanding. Notably, our
baseline setting already achieves significantly im-
proved performance compared with earlier work
utilizing additional keywords, demonstrating the in-
formativeness of our cross-modal representations.

3.6 Qualitative Analysis

To further examine how our visual cues enhance
text understanding, we present several generated
images along with their understanding results in
Figure 2. Previous work, CLIP Text, incorrectly
classifies “Mpumulanga” and “Golan” as PER (per-
sons). However, with the visual cues generated in
our model, shown in Figure 2(a-b), we can correctly
classify them as LOC (locations). The images gen-
erated by our model, displayed in Figure 2(c-f),
further enrich the phrase representations and better
understand the concepts. This demonstrates the
effectiveness of our multi-modal framework.
However, there are cases where the generated

image may lead to incorrect categorization, as is
the case with “BAYERISCHE VEREINSBANK”
in Figure 2(g). The image misled the categorization
process, changing the cluster from the correct clas-
sification (ORG, or organization) to an incorrect
one (LOC, or location). Figure 2(h) displays an in-
stance where the generated image does not provide
useful visual information for an unusual entity, and
the incorrect classification (group) persists. There-
fore, there is still room for enhancement in future
work.

4 Conclusion

This work presents a multi-modal framework that
leverages a text-to-image model to bridge between
language and visual modalities for enhancing text
comprehension. The model effectively transforms
text inputs into coherent images, enriching phrase
representations by merging outputs from different
modalities. Experimental results show our frame-
work surpassing robust phrase understanding mod-
els across diverse domains.

5883



Limitations

Due to the maximum input length constraint of
both the CLIP text encoder and the text-to-image
model, we are unable to process long texts. We are
interested in exploring alternative prompt configu-
rations to circumvent this limitation. Our methodol-
ogy is readily extendable to these settings, making
it an intriguing area of study.

Ethics Statement

Our approach leverages a pre-trained text-to-image
model to visually enhance representations. How-
ever, the text-to-image model may carry over bi-
ases and improper content from its training data.
This necessitates additional analyses to safeguard
against any undue influence of these biases on our
method.
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A Datasets

* CoNLL2003: This dataset comprises 20,744
sentences with four distinct types of enti-
ties - persons (PER), organizations (ORG),
locations (LOC), and miscellaneous names
(MISC). Our experiments utilize 30,027 enti-
ties that are labeled as PER, ORG, or LOC.

* BCSCDR: This dataset features 1,500
PubMed articles that are populated with chem-
ical and disease entities, adding up to a total
of 28,354 entities.

* W-NUT 2017: This dataset is an accumula-
tion of data collected from public platforms
like YouTube and Twitter, with a focus on dis-
tinguishing previously unseen entities within
emerging discussions. It includes six types
of entities: person, location, group, corpora-
tion, creative_work, and product. The dataset
contains a total of 3,890 entities.

* MIT-Movie: This dataset includes 12,218 sen-
tences populated with title and person entities,
accounting for a total of 9,920 entities.

B Implementation Details

In our work, we use the Huggingface models to
generate all the representations:
¢« BERT/RoBERTa: We take pooler_output
as the representations, where pooler_output
is the classification token after processing
through a linear layer and an activation func-
tion.” The linear layer weights are learned by
next sentence prediction during pre-training.
e LUKE: entity_last_hidden_states is
used as the representation, which is the last
hidden states of the input entity.®
* Phrase-BERT: Phrase representations can be
easily acquired by calling model . encode ().’
* UCTopic: We obtain the phrase representa-
tions with the released source code.!?
e CLIP: pooler_output is taken as the repre-
sentation for both the text encoder!! and the
image encoder.'?

C Pre-trained Models

For the pre-trained CLIP model, we adopt the ver-
sion ViT-B/32, which consists of a ViT-B/32 image
encoder and a 12-layer Transformer text encoder.

"https://huggingface.co/docs/transformers/
main_classes/output#transformers.modeling_
outputs.BaseModelOutputWithPooling.pooler_output

8https://huggingface.co/docs/transformers/
model_doc/luke#transformers.LukeModel

https://huggingface.co/whaleloops/
phrase-bert
10https://github.com/JiachengLi1995/UCTopic/
blob/main/clustering.py#L43
Uhttps://huggingface.co/docs/transformers/
model_doc/clip#transformers.CLIPTextModel
2https://huggingface.co/docs/transformers/
model_doc/clip#transformers.CLIPVisionModel
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Approach Inference steps CoNLL2003 | BCSCDR | W-NUT 2017 | MIT-Movie Average
ACC NMI | ACC NMI | ACC NMI | ACC NMI | ACC NMI
10 746 420 | 722 153 | 446 308 | 932 615 | 712 374
Proposed Image 30 745 420 | 759 198 | 435 285 | 929 .604 | 717 377
50 749 423 | 757 197 | 426 279 | 928 .600 | .715  .375
10 783 474 | 824 348 | 427 315 | 940 .652 | 744 447
Proposed Text-Image 30 J71 450 | 849 430 | 443 341 | 937 646 | 750 467
50 772 AS51 | 844 406 | 434 332 | 935 641 | 746 458

Table 5: Comparison on different inference steps of stable diffusion. The reported numbers are run over one Stable
Diffusion seed.

For the text-to-image diffusion model, we use sta-
ble diffusion v2-base'? trained on the subset of
LAION-5B (Schuhmann et al., 2022) in our experi-
ments.

D Inference Details

We conduct our experiments on single V100 GPU.
* Generation time of stable diffusion v2-base
with respect to inference steps is elaborated in
Appendix E.
* Each clustering experiment takes no more
than 10 minutes to run.

D.1 Licenses

BERT (Apache License Version 2.0)

RoBERTa (MIT License)

LUKE (Apache License Version 2.0)

Phrase-BERT (T License)

* UCTopic (MIT License)

e CLIP (MIT License)

* vit-base-patch32-224-in21k (Apache License
Version 2.0)

* stable-diffusion-2  (CreativeML  Open

RAIL++-M License)

L]

E Efficiency vs. Efficacy

Results over different inference steps of stable dif-
fusion v2-base are shown in Table 5. It took 0.84
seconds per image for inference step 10, 2.02 sec-
onds per image for inference step 30, and 3.24
seconds per image for inference step 50. The bal-
ance between efficiency and efficacy depends on
application usage.

Bhttps://huggingface.co/stabilityai/
stable-diffusion-2-base
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