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Abstract

Lifelong learning (LL) is an important abil-
ity for NLP models to learn new tasks con-
tinuously. Architecture-based approaches are
reported to be effective implementations for
LL models. However, it is non-trivial to ex-
tend previous approaches to domain incremen-
tal LL scenarios since they either require ac-
cess to task identities in the testing phase or
cannot handle samples from unseen tasks. In
this paper, we propose Diana: a dynamic
architecture-based lifelong learning model that
tries to learn a sequence of tasks with a prompt-
enhanced language model. Four types of hi-
erarchically organized prompts are used in
Diana to capture knowledge from different
granularities. Specifically, we dedicate task-
level prompts to capture task-specific knowl-
edge to retain high LL performances and main-
tain instance-level prompts to learn knowledge
shared across input samples to improve the
model’s generalization performance. More-
over, we dedicate separate prompts to explic-
itly model unseen tasks and introduce a set
of prompt key vectors to facilitate knowledge
sharing between tasks. Extensive experiments
demonstrate that Diana outperforms state-of-
the-art LL models, especially in handling un-
seen tasks. We release the code and data
at https://github.com/AlibabaResearch/
DAMO-ConvAI/tree/main/diana.

1 Introduction

An essential ability of humans is to learn new tasks
continuously in their lifetime since our surrounding
world is ever involving (Thrun and Mitchell, 1995).
Humans need to learn inputs from unseen new tasks
everyday. However, neural network based NLP
models tend to rapidly lose previously acquired
knowledge when trained on new tasks. This phe-
nomenon is referred to as catastrophic forgetting

∗ Work done while the author was interning at Alibaba.
† Equal contribution.
‡ Corresponding author.

PLM

Question 𝑄: What is the first name of the 
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Figure 1: An overview of Diana. A pre-trained language
model is used to learn tasks in different formats with
hierarchically organized prompts.

(French, 1999), and it’s important to equip NLP
models with the lifelong learning (LL) ability to
alleviate this issue in advanced AI applications.

An effective method to build LL models is
the architecture-based approach (Chen et al.,
2016; Rusu et al., 2016; Fernando et al., 2017;
Wiwatcharakoses and Berrar, 2020), in which
task-specific components are used to isolate knowl-
edge for each separate task (Mancini et al., 2018).
Recently, to leverage the power of pre-trained
language model (PLM), some architecture-based
LL models convert NLP tasks into a unified
language modeling (LM) format (Sanh et al., 2021;
Xie et al., 2022) and learn these tasks using a PLM.
Separate prompts (Qin and Joty, 2022) or adapters
(Madotto et al., 2021b) are allocated for different
tasks to avoid the catastrophic forgetting issue.

However, despite the reported effectiveness,
most above models are designed for the task in-
cremental learning scenario, in which we assume
task IDs for testing samples are available (Wang
et al., 2022a,b). This setting limits the applica-
tion of LL models because practical applications
usually follow a more general domain incremental
learning scenario (van de Ven et al., 2022), i.e., we
cannot access the task IDs of most input samples.

There are generally two approaches to building
LL models for domain incremental learning. One is
to predict the task ID of each testing sample (Worts-
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man et al., 2020), and activate specified compo-
nents based on the prediction (Figure 2a). This
scheme achieves high LL performances if the pre-
dicted ID is correct (Madotto et al., 2021a). How-
ever, these models cannot handle samples from
unseen tasks since there are no components desig-
nated for these samples and thus no task IDs to be
predicted. This hinders the application of LL mod-
els because we often encounter samples from un-
seen tasks in practical situations (Dietterich, 2017).

Another approach to building domain incremen-
tal LL models is to organize model components
at the instance-level, i.e., a pool of fine-grained
components are dynamically combined in the for-
ward pass for each input instance (Figure 2b). This
approach avoids the trouble of explicitly determin-
ing task IDs. However, it usually yields low LL
performance because there are no dedicated compo-
nents for each task to capture task-specific knowl-
edge (Wang et al., 2022a).

In this study, we combine the advantages of
the above two approaches and propose Diana:
a dynamic architecture-based lifelong learning
model. We convert different NLP tasks into a uni-
fied LM format and propose to learn these tasks
using a prompt-enhanced PLM (Figure 1). Specif-
ically, Diana maintains four types of prompts to
capture task knowledge from different granulari-
ties: 1. A general prompt Pg is used for all tasks; 2.
The format prompts Pf are shared between tasks
in a similar format; 3. A task prompt Pt is as-
signed for each incoming task; 4. A pool of meta
prompts Pm are dynamically combined for each in-
put instance. These four types of prompts present a
hierarchical structure with a decreasing knowledge
granularity, i.e., Pg captures global knowledge be-
tween all tasks, while Pm captures local knowledge
that is shared between instances.

Diana can better generalize to unseen tasks while
achieving high LL performances since its compo-
nents are organized at both task and instance level.
Moreover, we also maintain key vectors for Pt and
Pm to better share task knowledge, and allocate
separate task prompts to explicitly model samples
for unseen tasks. Extensive experiments on bench-
mark NLP tasks indicate that Diana outperforms
state-of-the-art (SOTA) baselines, especially in han-
dling unseen tasks. Our main contributions are:

1. We propose Diana: a novel architecture-based
domain incremental LL model that uses hierarchi-
cally organized prompts to capture knowledge in

different granularities.
2. We are the first to consider unseen tasks in

the testing phase of LL models. Specific prompts
are designated in Diana to handle unseen tasks,
and prompt keys are built to facilitate sharing of
task knowledge.

3. Extensive experiments show that Diana out-
performed SOTA baselines.

2 Related Work

Lifelong Learning aims at incrementally ac-
quiring new knowledge without catastrophically
forgetting previously learned ones. Generally,
three categories of LL methods are proposed: 1.
Rehearsal-based methods (Rebuffi et al., 2017;
Shin et al., 2017; Sun et al., 2019a; Chaudhry
et al., 2019a; Buzzega et al., 2020) preserve past
knowledge by replaying data from learned tasks; 2.
Regularization-based methods (Kirkpatrick et al.,
2017; Zenke et al., 2017; Li and Hoiem, 2017;
Ritter et al., 2018; Farajtabar et al., 2020) consoli-
date model parameters that are important to previ-
ous tasks by introducing additional regularization
terms; 3. Architecture-based methods (Chen et al.,
2016; Rusu et al., 2016; Fernando et al., 2017; Mal-
toni and Lomonaco, 2019) add task-specific param-
eters to an existing base model for each task to
prevent forgetting.

Experiment settings of LL methods can be
generally classified into three scenarios based
on whether the task ID is provided for testing
samples and whether it must be inferred (van de
Ven and Tolias, 2019), i.e., task-incremental learn-
ing (Mallya and Lazebnik, 2018; Ebrahimi et al.,
2020), domain-incremental learning (Pu et al.,
2021; Gao et al., 2022), and class-incremental
learning (Zhang et al., 2020). In this work, we
focus on the domain-incremental learning setting,
where task ID is not provided for each testing
sample. One line of methods in this category
attempt to detect the task ID for each input
sample (Madotto et al., 2021a). However, these
methods fail to generalize to unseen tasks (Wang
et al., 2022a). Another line of methods try to build
a dynamic architecture for each input sample, for
example, maintaining a pool of prompts that can be
dynamically combined (Wang et al., 2022b). How-
ever, these methods yield sub-optimal performance
since no task-specific parameters are used. Our
model Diana is the first attempt to take advantage
of the two aforementioned types of methods.
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Figure 2: Different prompt organization schemes. (a)
Each task is assigned a separate prompt and the closest
prompt to the query vector is activated. (b) A pool of
prompts are maintained and the top-M ′ closest prompts
to the query vector are activated and combined. (c) Four
kinds of prompts are hierarchically organized and com-
bined based on the task format and distances between
the query vector and prompt keys.

Pre-trained LM is becoming the de facto stan-
dard component for NLP models. To encourage
knowledge sharing, existing approaches attempt to
cast all NLP tasks into a unified text-to-text for-
mat (McCann et al., 2019) and learn these tasks
by finetuning a PLM. A similar work compared to
ours is ProQA (Zhong et al., 2022a), in which dif-
ferent QA tasks are unified and a set of structured
prompts are used. However, ProQA only considers
two QA tasks and is limited to the task incremental
learning scenario, while our model is designed to
tackle more general NLP tasks in a more general
domain incremental learning scenario.

3 Method

3.1 Task Formulation

In this study, we aim to sequentially learn N
tasks T1, · · · , TN that are presented in L different
formats F1, · · · , FL, (L ≤ N). Each task Ti is
presented in a specific format Fj (such as “Clas-
sification” or “Summarization”), and each training
sample of Ti is a tuple of a context C, a question
Q, and an answer A: (C,Q,A). Note that the
format of each task can be easily inferred from the
context-question pair (C,Q). Our model gθ is built
to predict A based on C and Q. We also consider
a more challenging open domain lifelong learning
setting, i.e., the model needs to predict answers
for unseen tasks. Therefore, we collect another N ′

unseen tasks TN+1, · · · , TN+N ′ that are only used
for testing. We assume that all task identities of
inputs are not available in the testing phase.

3.2 Framework of Hierarchical Prompts

We follow previous approaches to serialize the con-
text C, question Q, and answer A into text se-
quences (Khashabi et al., 2020; Zhong et al., 2022a)
and use a prompt-enhanced encoder-decoder model
gθ to learn each task Ti in Diana. We use soft
prompts (Liu et al., 2021; Lester et al., 2021; Vu
et al., 2022) in our study, i.e., each prompt is a se-
quence of trainable embeddings that are randomly
initialized and learned in the training process. For
each training sample (C,Q,A) from task Ti, we
first construct a prompt P (C,Q) based on (C,Q).
Then the encoder takes in the concatenation of
P (C,Q), C, and Q and the decoder predicts A,
i.e., A = gθ([P (C,Q);C;Q]), in which “[; ]” de-
notes the sequence concatenation operation.

Four types of prompts are contained in P (C,Q),
i.e., P (C,Q) = [Pg;Pf (Fj);Pt(Ti);Pm(C,Q)]
(Figure 2c). Specifically, Pg is a general prompt,
Pf (Fj) is a format prompt (where Fj is the format
of task Ti), Pt(Ti) is a task prompt and Pm(C,Q)
is a combined meta prompt. These four types of
prompts are organized hierarchically so that they
are shared by samples in different granularities:

1. General Prompt Pg is shared for all training
tasks so that it encodes global task knowledge.

2. Format Prompt Pf (Fj) is shared between
tasks in the same format Fj so that it captures
format-related knowledge, i.e., knowledge that is
shared between tasks in the format Fj .

3. Task Prompt Pt(Ti) is specifically allocated
for the task Ti and it is only shared for samples
from Ti. We use Pt(Ti) to learn task-specific
knowledge. Moreover, to explicitly model sam-
ples from unseen tasks, we enlarge the set of task
prompts with L extra prompts P̂t(F1), · · · , P̂t(FL),
in which each prompt P̂t(Fj) models the unseen
task for a particular format Fj .

4. Meta Prompt Pm(C,Q) is a dynamic
combination of various instance-level prompts.
Specifically, we maintain M instance-level meta
prompts {P i

m}Mi=1 and dynamically combine these
prompts based on the (C,Q) to obtain Pm(C,Q).
Pm(C,Q) captures the knowledge shared between
similar training instances.

We expect these four types of prompts can cap-
ture knowledge from different granularities since
they are shared in different scopes. Moreover, to fa-
cilitate knowledge sharing, we allocate a key vector
kt(Ti) and kj

m to each task prompt Pt(Ti) and meta
prompt P j

m, respectively, and build a fixed text en-
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coder h to map a context-question pair (C,Q) to a
query vector q = h(C,Q). A two-stage learning
process is introduced in Diana to learn these keys
and P (C,Q). Specifically, the first stage focuses
on learning a representation space for prompt keys
so that we can determine proper prompts to con-
struct P (C,Q). The second stage optimizes the
constructed prompt P (C,Q) and the backbone lan-
guage model. These two stages are detailed in the
following sections.

3.3 Key Vector Space Learning
We first optimize key vectors assigned to each task
prompt and meta prompt to construct the prompt
P (C,Q) for each input (C,Q). Note that these key
vectors are only used to determine the task prompt
and meta prompt in P (C,Q) because the general
prompt Pg is shared by all tasks in Diana, and the
format prompt Pf (Fj) can be determined based on
the format of C and Q directly.

Task Prompt Keys help to determine the task
prompt in P (C,Q). Specifically, for a given input
(C,Q), we first calculate its query vector q and
then determine the most similar task prompt key
kt(Ti) to q. The task prompt Pt(Ti) associated
with kt(Ti) is used to construct P (C,Q).

Ideally, the key vector kt(Ti) for a task prompt
Pt(Ti) should be located near samples from task Ti

and distant to samples from other tasks Tj (j ̸= i).
Therefore, when learning each task Ti, we main-
tain a small memory bufferM for samples from
previously learned tasks Tj , (j < i), and design the
following exponential angular triplet loss (Ye et al.,
2021) to enforce the above property:

Lt =exp(||h(C,Q),kt(Ti)||+
max(1− ||h(Cn, Qn),kt(Ti)||, 0)),

(1)

in which the operator ||·, ·|| determines the distance
between two input vectors (here we use cosine dis-
tance), (Cn, Qn) is a negative sample extracted
from the memory bufferM:

(Cn, Qn) = argmin
(C′,Q′)∈M

||h(C′, Q′),kt(Ti)||. (2)

Meta Prompt Keys help to combine these
instance-level meta prompts {P i

m}Mi=1 to produce
Pm(C,Q). Specifically, for each input (C,Q), we
select M ′ meta prompt keys that are closest to its
query vector q = h(C,Q). Then Pm(C,Q) is ob-
tained by concatenating these M ′ meta prompts. In-
tuitively, the knowledge associated with (C,Q,A)
is distributed in these M ′ meta prompts.

(a) (b) (c)

Figure 3: Illustration of the diversity and locality prop-
erty. (a) The diversity property distributes key vectors
to the whole space. (b) The locality property cluster
similar keys to facilitate knowledge sharing. (c) Diana
aims to achieve a balance between diversity and locality

When learning meta prompt keys, we expect the
distribution of these keys to balance two properties:
diversity and locality (Figure 3). Specifically, the
diversity property aims to distribute these keys to
the whole vector space so that every meta prompt
can be involved in the training process. The locality
property aims to cluster similar meta prompts keys
so that the knowledge of each sample can be better
shared. For each input C and Q, we propose the
following loss to enforce the above two properties:

Lm =
∑

i∈S(C,Q)

max(0, ||ki
m, h(C,Q)|| − η)+

∑

i,j∈S(C,Q)

max(0, γ − ||ki
m,kj

m||)/M ′2,
(3)

where S(C,Q) is the index set of these M ′ meta
prompt keys that are closest to h(C,Q), η and γ
are scalar hyper-parameters for the distance margin.
Specifically, the first term in Eq. 3 enforces the
locality property by pulling these M ′ meta prompt
keys around the query vector. The second term
enforces the diversity property by pushing these
meta prompt keys away from each other to occupy
the whole vector space.

Note that Eq. 3 only involves a single query
h(C,Q) from the current task. This may limit the
learned meta prompt keys since samples from pre-
viously learned tasks are not considered. In this
study, we extend Eq. 3 to better shape the distri-
butions of meta prompt keys with the help of the
memory buffer M, in which samples from pre-
viously learned tasks are contained. Specifically,
when learning the task Ti, we first calculate query
vectors for samples in M and then group these
query vectors into B clusters (we set B = 5× i in
our experiments, where i is the number of received
tasks). Centroids of these B clusters are denoted as
c1, · · · , cB . For each sample (C,Q) fromM, the
subsequent loss is optimized:

L′
m =

∑

i∈S(C,Q)

max(0, ||ki
m, ck|| − η), (4)
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where ck is the centroid to which (C,Q) belong.
The above loss enforces the global diversity by
scattering meta prompt keys to each centroid.

3.4 Model Training

Scheduled Sampling of Task Prompts When
training Diana, the task ID of each sample (C,Q)
is given so that we can directly get the task prompt
Pt(Ti). However, naively using golden truth task
IDs leads to an exposure bias issue, i.e., task IDs
inferred in testing may not always be correct.

In this study, we introduce a scheduled sampling
process to tackle the exposure bias issue. Specif-
ically, for a given sample (C,Q,A) in the k-th
training step, we toss a coin and use the golden
truth task ID with probability ϵk, or use the task ID
inferred based on task prompt keys with probabil-
ity 1 − ϵk (Bengio et al., 2015). Note that when
starting to learn each task, prompt keys are not well
optimized, and thus the selected task ID is not accu-
rate. Therefore, we set the value of ϵk to favor the
golden truth task ID at the beginning (i.e., when k
is small) and gradually switch to the inferred task
ID as the training proceeds (i.e., when k is large),
i.e., a linear decrement of ϵk is scheduled:

ϵk = max(0, α− kβ), (5)

in which α and β are scalar hyper-parameters.
Note that LL models may encounter another

source of exposure bias since we may receive
inputs from unseen tasks in the testing phase.
In this study, we use these L extra prompts
P̂t(F1), · · · , P̂t(FL) to explicitly model unseen
tasks. Specifically, for each training sample
(C,Q,A), we first determine its task format Fj

based on (C,Q), and allocate a small probability to
use P̂t(Fj) as its task prompt in P (C,Q). In this
way, we can capture general knowledge about all
tasks for a given format in P̂t(Fj) and expect the
knowledge to facilitate handling unseen tasks.

Train with LM Loss For each training sample
(C,Q,A), we first construct the prompt P (C,Q)
using approaches introduced above, and then opti-
mize P (C,Q) together with the encoder-decoder
model gθ using the following LM loss:

LLM = −log gθ(A|[P (C,Q);C;Q]). (6)

The overall loss that we optimize for Diana is:

L = Lm + L′m + Lt + LLM . (7)

After learning each task Ti, we select a small
number of samples from Ti based on the query
vector of each sample to update the memoryM.
This selection process aims to maintain diverse
samples inM. More details are in Appendix B.

See summarized training process in Algorithm 1.

3.5 Model Inference
When testing, we determine the prompt P (C,Q)
for each input context C and question Q, and use
the learned model gθ to predict the answer A.

Adaptive Decision Boundaries (ADB) are used
to select proper task prompts in the testing phase.
Specifically, for each task Ti, a scalar boundary δi
is constructed following the approach proposed by
Zhang et al. (2021). An input (C,Q) is regarded
as a sample from unseen tasks if its query vector
h(C,Q) falls outside the boundary of every task:

||h(C,Q),kt(Ti)|| > δi, ∀i ∈ [1, N ]. (8)

For samples from unseen tasks, we use the prompt
P̂t(Fj) as its task prompt in P (C,Q), where Fj is
the format of (C,Q).

Answer Prediction is performed with a greedy
decoding process:

A = argmax
A′

gθ(A
′|[P (C,Q);C,Q]). (9)

4 Experiments

4.1 Datasets
We use two sets of tasks to evaluate Diana:

1. decaNLP tasks: We follow Sun et al. (2019a)
to select 5 tasks from the decaNLP (McCann et al.,
2018) to train Diana. These tasks cover 3 different
formats: Span Extraction, Sequence Generation,
and Text Classification. We also collect N ′ = 3
additional tasks for each of these 3 format from
decaNLP to serve as unseen tasks in the testing
phase, i.e., our model is trained on N = 5 seen
tasks while tested on 8 tasks;

2. QA tasks: The second set focuses on question
answering (QA) benchmarks. Specifically, we use
8 QA datasets over 3 QA formats, i.e., Extractive
QA, Abstractive QA and Multiple-Choice QA to
train Diana. We also collect N ′ = 3 additional QA
datasets for each of these three formats as unseen
tasks, i.e., our model is trained on N = 8 seen
tasks while tested on 11 tasks.

Note that task IDs for all testing samples are not
available in our experiments. See Appendix C,J for
more details of our dataset settings.
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4.2 Evaluation Metrics

Individual tasks from above two task sets are eval-
uated following McCann et al. (2018) and Zhong
et al. (2022a), respectively (see Appendix C). To
evaluate the LL performance of Diana, we build a
performance matrix R ∈ RN×(N+N ′), where Ri,j

is the model performance on task Tj after learning
task Ti. The following LL metrics are computed:

1. Average Performance AN and AN ′ is de-
fined as the average performance of the final model
on N seen tasks and N ′ unseen tasks, respectively:

AN =
1

N

N∑

j=1

RN,j , AN′ =
1

N ′

N+N′∑

j=N+1

RN,j . (10)

2. Average Forget FN is defined as the aver-
age performance decrease of each task after it is
learned:

FN =
1

N − 1

N−1∑

j=1

max
i∈{1,··· ,N−1}

(Ri,j −RN,j). (11)

In our experiments, we perform five runs with
different random seeds and task orders. All re-
ported metric scores are averages of these five runs.
Ideally, we expect a strong LL model to yield high
AN and AN ′ scores, and low FN scores.

4.3 Implementation Details

We use T5-base (Raffel et al., 2020) to initialize
our encoder-decoder model, and set the lengths
of soft prompts Pg, Pf , Pt, Pm to 20, 40, 40, 20,
respectively. We maintain totally M = 30 meta
prompts, and for each sample (C,Q) we choose
M ′ = 5 meta prompts to construct Pm(C,Q). We
use the AdamW (Loshchilov and Hutter, 2017)
optimizer with a learning rate of 1e-4 and batch
size of 64. Each task is trained for five epochs. We
set η = 0.15 and γ = 0.3 in Eq. 3 and α = 0.9
and β = 3e− 4 in Eq. 5. We maintain 50 samples
from each learned task in the memory M. All
experiments are performed on 4 V100 GPUs, and
the computational cost of our model is analyzed in
Appendix G. See more details in Appendix A.

4.4 Baselines

We use the following competitive baselines cover-
ing all three types of LL models:

1. Regularization-based methods: EWC (Kirk-
patrick et al., 2017) adopts the elastic weight
consolidation approach to add regularization on
parameter changes; FLCB (Gao et al., 2022)

Task ID
in Test

Methods Buffer
Size

QA Tasks decaNLP Tasks

AN FN AN FN

Yes ProQA 0 50.69 12.10 66.70 10.54
ProQA+ER 50 54.00 7.27 71.26 5.33

No

Finetune 0 46.81 15.47 57.92 18.41
EWC 0 47.81 14.55 63.17 13.58
FLCB 0 47.50 14.98 63.86 13.36
AdapterCL 0 48.08 13.29 64.25 12.38
L2P 0 48.15 13.89 63.76 13.47
DualPrompt 0 48.54 13.66 64.47 12.49
ER 50 51.30 10.72 68.17 7.42
DER++ 50 52.01 10.05 69.10 6.86
AFPER 50 52.69 9.28 69.78 6.17

Diana w/o M 0 50.30 12.68 66.14 10.61
Diana 50 55.93 6.75 72.70 4.25

Multitask - 59.23 - 77.97 -

Table 1: Model performance on seen tasks. Best results
(except the upper bound Multitask) are bolded. Our
model Diana significantly outperforms other baselines
on all metrics with p-value<0.05 (t-test).

uses knowledge learned from previous tasks to
guide future task learning; 2. Rehearsal-based
methods: ER (Chaudhry et al., 2019b) replays
memory samples from previous tasks to con-
solidate learned knowledge; DER++ (Buzzega
et al., 2020) augments ER with a L2 loss on
the soft labels; AFPER (Mi et al., 2020) com-
bines ER with an adaptive elastic weight consol-
idation mechanism; 3. Architecture-based meth-
ods: AdapterCL (Madotto et al., 2021a) allocates
separate adapters for different tasks; L2P (Wang
et al., 2022b) attaches a group of prompts on a
pre-trained model to share fine-grained knowledge;
DualPrompt (Wang et al., 2022a) uses different
prompts to encode task-invariant and task-specific
knowledge; ProQA (Zhong et al., 2022a) uses a
unified structural prompt to implement LL models.
Note that ProQA is designed for task incremen-
tal learning that requires accessing task IDs in the
testing phase.

We combine ProQA and ER to implement a
stronger baseline ProQA+ER, in which samples
from previous tasks are replayed for the ProQA
model, and we also implement a variant of Diana
by removing the memory buffer Diana w/o M.
We further report the performance for sequentially
fine-tuning the LL model on all tasks (Finetune)
and multi-task learning (Multitask). Note that the
performance of Multitask is generally regarded
as the upper bound of LL models when only seen
tasks are considered.

All the above baselines are implemented follow-
ing the same settings of our model, including using
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the same backbone PLM, prompt size, and memory
size used for replay. Note that for the ProQA
baseline, we follow its original setting to provide
task IDs for testing samples when evaluating.

4.5 Experiment Results

Results on Seen Tasks Table 1 shows the result
on seen tasks from our two task sets. It can be
seen that Diana outperforms all competitive base-
lines. Specifically, in the more general domain
incremental learning scenario, i.e., when task IDs
are unavailable in testing, Diana outperforms the
best-performing baseline AFPER by a large mar-
gin. On QA tasks, Diana achieves 6.15% relative
improvement on the AN score and 27.26% relative
decrease on the FN score. Similar trend is also ob-
served on decaNLP tasks. This means that Diana
obtains higher performance with less forgetting in
the LL process compared with other baselines.

We can also observe that: (1) Diana even outper-
forms the ProQA+ER baseline, which leaks task
IDs in testing. This proves the superiority of our
model design. (2) When task IDs are unavailable,
Diana w/oM outperforms all baselines that do not
use the memory buffer. This demonstrates that Di-
ana’s hierarchical prompts help to improve the LL
performance even without the memory buffer.

Results on Unseen Tasks Table 2 shows the re-
sult on unseen tasks from our two task sets. Note
that we cannot compute the average forget score
for unseen tasks since these tasks are never learned.
Diana yields the best performances on all settings.
It also achieves a relative improvement of 9.49%
and 11.04% on the AN ′ score compared with the
best baseline DER++ on these two task sets.

We can also observe that: (1) WhenM is un-
available, models that share knowledge through
fine-grained components (i.e., Diana and L2P) gen-
erally obtain high performance, and our model that
allocates extra prompts for unseen tasks achieves
the best performance. This validates our approach
of using hierarchical prompts to explicitly model
unseen tasks. (2) It is interesting to see that Diana
even outperforms Multitask, which is usually re-
garded as the upper bound of traditional LL models
when only seen tasks are considered. This indicates
that traditional LL models have limited generaliza-
tion ability to unseen tasks and it also proves that
our model is effective in modeling unseen tasks.

See Appendix D for detailed experimental re-
sults of all tasks.

Task ID
in Test

Methods Buffer
Size

AN′

QA Tasks decaNLP Tasks

Yes ProQA 0 35.85 30.08
ProQA+ER 50 38.00 30.92

No

Finetune 0 35.51 28.08
EWC 0 36.07 29.76
FLCB 0 36.68 31.17
AdapterCL 0 36.84 30.32
L2P 0 37.60 31.19
DualPrompt 0 36.66 29.71
ER 50 37.80 30.05
DER++ 50 38.47 31.24
AFPER 50 36.79 30.22

Diana w/o M 0 39.22 33.19
Diana 50 42.12 34.69

Multitask - 40.62 32.72

Table 2: Model performance on unseen tasks. Best
results are bolded. Diana significantly outperforms other
baselines on all metrics with p-value<0.05 (t-test).

4.6 Ablation Studies

We conduct ablation studies on different compo-
nents of Diana. Specifically, three types of variants
are implemented:

1. Each of these four prompt types is ablated:
w/o general prompt, w/o format prompt, w/o
task prompt, w/o meta prompt.

2. Schemes to enhance task prompts are ablated:
w/o Sched. Sampling removes the scheduled sam-
pling scheme and only uses the ground truth task
IDs in training; w/o G.T. Identity is similar to the
above variant. Instead, it only uses predicted task
IDs in training; w/o Neg. Samples only uses pos-
itive samples to train task prompt keys, i.e., the
second term in Eq. 1 is removed; w/o ADB uses
fixed decision boundaries instead of ADBs to de-
tect unseen tasks.

3. Schemes to enhance meta prompts are ablated:
w/o Sample Dive. does not enforce the diversity
property of the meta prompt keys, i.e., the second
term in Eq. 3 is removed; w/o Memory Dive. does
not use samples from previous tasks to enhance
the diversity property, i.e., the loss L′m (Eq. 4) is
removed; w/o Loc. does not enforce the locality
property of the meta prompt keys, i.e., the first term
in Eq. 3 is removed; w/o Cluster does not cluster
samples inM, i.e., ck in Eq. 4 is replaced with the
query vector of each sample fromM.

Table 3 shows the performance of the above vari-
ants on QA tasks. It can be observed that Diana
outperforms all the above variants. We can also see
that: (1) “w/o Meta Prompt” lowers the LL perfor-
mance by a large margin. This indicates that these
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Categories Variants AN FN AN′

Prompt
Types

w/o General Prompt 55.47 6.93 40.74
w/o Format Prompt 55.11 7.03 40.59
w/o Task Prompt 53.87 8.50 39.66
w/o Meta Prompt 53.46 8.56 40.04

Task
prompt

w/o Sched. Sampling 55.15 7.43 42.00
w/o G.T. Identity 54.16 7.61 41.27
w/o Neg. Samples 54.97 7.66 41.78
w/o ADB 55.48 6.98 41.01

Meta
prompt

w/o Sample Dive. 55.24 6.91 41.23
w/o Memory Dive. 55.02 7.41 41.48
w/o Loc. 54.70 7.54 41.16
w/o Cluster 55.46 6.99 41.51

Diana 55.93 6.75 42.12

Table 3: Ablation studies of model components and
training strategies on QA tasks. Each result is an average
of 5 random runs.

fine-grained meta prompts are important in build-
ing lifelong models. (2) The scheduled sampling
scheme helps to learn better task prompts and thus
improves the LL performance. (3) ADB improves
model performance on unseen tasks (i.e., AN ′) by
a large margin. (4) Enforcing the diversity property
of meta prompt keys is important to obtain good
key representations and facilitates the learning of
each task.

4.7 More Analysis

4.7.1 Task ID Detection Performance

Diana needs to detect task IDs of input samples
when determining the task prompt to be used. To
verify the performance of the task ID detector
implemented in Diana (Section 3.3 and 3.5), we
compare the approach used in Diana with other
task ID detectors: (1) Perplexity-based detector
implemented in baseline “AdapterCL” determines
the task IDs based on the perplexity of the PLM
when different adapter modules are activated. (2)
Distance-based detector implemented in our variant
“w/o Neg. Samples” determines the task identity
based on the distance between each key and query
vectors. (3) Advanced distance-based detector im-
plemented in our variant “w/o ADB” utilizes nega-
tive samples based on the above detector. Note that
we do not apply ADB in the above two distance-
based detectors. On our testing data, the above
three approaches achieve a task ID detection accu-
racy of 59.84%, 52.72%, and 63.43%, respectively,
while Diana reaches a task ID detection accuracy
of 66.97%. This verifies the effectiveness of our
approaches to optimize task prompt keys in detect-
ing task IDs. More detailed comparisons of these

Criteria Models Z=2 Z=3 Z=5 Z=10

Locality
w/o Sample Dive. 0.73 0.72 0.70 0.48
w/o Memory Dive. 0.74 0.72 0.69 0.63
Diana 0.74 0.73 0.70 0.66

Diversity
w/o Sample Dive. 0.63 0.61 0.59 0.40
w/o Memory Dive. 1.00 0.89 0.77 0.53
Diana 1.00 0.96 0.89 0.63

Table 4: Quantitative analysis of the locality and diver-
sity for meta prompt keys on QA tasks.

task ID detectors can be found in Appendix E.

4.7.2 Distribution of Meta Prompt Keys
We also analyze the distribution of meta prompt
keys K = {kj

m}Mj=1 constructed in Diana, which
are expected to balance the locality and diversity
property. Specifically, we introduce two metrics
to quantify these two properties. For the diversity
property, we follow Mansoury et al. (2020) to mea-
sure whether these meta prompt keys cover the
whole vector space:

Diversity = | M∪
j=1

NZ(k
j
m,M)|/(Z ·M), (12)

where NZ(k
j
m,M) represents the set of top-Z

nearest samples inM around kj
m, and | · | returns

the sample count of a set. High diversity scores are
received if we can scatter meta prompt keys near
every query vector fromM. For the locality prop-
erty, we follow Scellato et al. (2010) to measure
whether there are keys clustered around each query
vector q inM:

Locality =
∑

q∈M

∑

k∈NZ(q,K)

(1− ||q,k||)/(Z ·|M|). (13)

High locality scores are received if meta prompt
keys in K are tightly clustered.

On the QA tasks, we compare the above two
metrics between Diana and our ablation variants for
meta prompts under different values of Z. As can
be seen from Table 4, the strategies we introduced
in Diana (Section 3.3) help to enforce the locality
and diversity properties of meta prompt keys.

5 Conclusion

We propose Diana, a novel LL model for the do-
main incremental learning scenario. Diana converts
different NLP tasks into a unified sequence gener-
ation format and uses a prompt-enhanced PLM
to learn these tasks. We introduce four types of
hierarchically organized prompts in Diana to cap-
ture knowledge in different granularities. These
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prompts are shared between different scopes of
samples and are dynamically combined based on
a set of key vectors. The space of key vectors is
learned with several distance-based regularization
terms. Dedicated components are also allocated in
Diana to model samples from unseen tasks. Exper-
iments and empirical analysis on two sets of tasks
show that Diana outperforms SOTA LL models,
especially in handling samples from unseen tasks.

Limitations

One major limitation of this study is its input modal-
ity. Specifically, our model is limited to textual
inputs and ignores other modalities (e.g., vision
and audio). Open and domain incremental life-
long learning across modalities is more realistic
and challenging. Fortunately, we can obtain robust
features of different modalities via multi-modal
pre-training models (Xu et al., 2021; Huo et al.,
2021). For future work, we will try to tackle multi-
modal tasks in an open (including out of distribu-
tion data (Lang et al., 2022, 2023a,b)) and domain
incremental lifelong learning scenario with better
approaches.

Ethics Statement

This work does not raise any direct ethical issues.
In the proposed work, we seek to develop a model
for domain incremental lifelong learning in an open
world, and we believe this work leads to intellec-
tual merits that benefit from a realistic and efficient
lifelong learning model. All experiments are con-
ducted on open datasets.
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A More Implementation Details

We use T5-base (Raffel et al., 2020) to initial-
ize our encoder-decoder model (12 layers, 768 di-
mensional hidden size, and 12 attention heads),
and set the lengths of soft prompts Pg,Pf ,Pt,Pm

to 20, 40, 40, 20, respectively. We use a fixed
T5-base encoder with an average pooling layer
to obtain the query vector. We maintain a pool
of M = 30 meta prompts, and for each sample
(C,Q) we choose M ′ = 5 meta prompts to con-
struct Pm(C,Q). We use the AdamW (Loshchilov
and Hutter, 2017) optimizer for training. All hyper-
parameters are tuned according to the average score
on validation datasets of NarQA, RACE, OBQA,
SIQA and Dream. We tried epoch number of
{2, 3, 4, 5, 6, 7, 8} and learning rate of {1e−5, 5e−
5, 1e− 4, 5e− 4, 1e− 3}. We finally set the learn-
ing rate to 1e-4 and the number of training epochs
to 5. We set η = 0.15 and γ = 0.3 in Eq. 3 and
α = 0.9 and β = 3e − 4 in Eq. 5. For η and
γ, we have a grid search between 0 and 0.5 with
an interval of 0.05. For α and β, α is searched
among {0.9, 0.7, 0.5}, while β is searched among
{1e − 5, 3e − 5, 1e − 4, 3e − 4, 1e − 3}. All ex-
periments are performed on 4 V100 GPUs (32GB).
The batch size is set to 64. In each set of tasks,
We perform 5 runs with different task orders by
setting the random seed to {42, 43, 44, 45, 46} re-
spectively. In this way, we report the average score
of each method. Note that we only use the random
seed 42 for tuning hyper-parameters.

In order to train extra task prompts
{P̂t(F1), · · · , P̂t(FL)} for unseen tasks, we
allocate a small probability ω = 5% for each
training sample (C,Q,A) to use P̂t(Fj) as its task
prompt in P (C,Q), where Fj is the task format of
(C,Q,A). To implement variant “w/o ADB” for
ablation study, we use a fixed decision boundary
instead of ADB. If for any task Ti, the distance
||h(C,Q),kt(Ti)|| > 0.35, we regard the sample
is from unseen tasks.

The adaptive decision boundary for each task
is determined following the approach proposed
by Zhang et al. (2021). We use AdamW optimizer
with a learning rate of 0.02 to learn each decision
boundary. To obtain the ROUGE-L score, we use
the NLTK package for sentence tokenization, and
python rouge-score package for evaluation.

B Memory Update

After learning task Ti, we select E diverse samples
(we set E = 50 in our experiments) from Ti to
update the memoryM based on the query vector
of each sample. Specifically, our selection criteria
are built based on the distance of these prompt keys
and query vectors. For each meta prompt key kj

m

(j = 1, · · · ,M ), we select top-⌈ EM ⌉ samples (⌈·⌉
is the ceiling function), whose query vectors are
closest to kj

m. After accumulating M⌈ EM ⌉memory
samples selected by M meta prompt keys, we rank
these samples based on their distance to the cor-
responding meta prompt keys, and choose top-E
samples with the smallest distance to be fed into
M. In this way, the memoryM we constructed
can expand to the whole space of prompt keys.

Note that, the memory bufferM is optional in
Diana. WithoutM, the loss in Eq. 4 is not opti-
mized, and the second term in Eq. 1 is removed.

C Detailed Dataset Setting and
Evaluation Metrics

For the decaNLP task set, 8 benchmarks over
3 formats are covered, i.e., (1) Span Extrac-
tion, including SQuAD (Rajpurkar et al., 2016),
QA-ZRE (Levy et al., 2017), QA-SRL (He
et al., 2015); (2) Sequence Generation, includ-
ing WOZ (Wen et al., 2017), WikiSQL (Zhong
et al., 2017), CNN/DM (Hermann et al., 2015);
(3) Text Classification, including SST (Socher
et al., 2013) and MNLI (Williams et al., 2018).
For the QA task set, 11 QA benchmarks over
3 QA formats are covered, i.e., : (1) Extrac-
tive QA, including SQuAD (Rajpurkar et al.,
2016), NewsQA (Trischler et al., 2017), and
Quoref (Dasigi et al., 2019); (2) Abstrac-
tive QA, including NarQA (Kocisky et al.,
2018), NQOpen (Kwiatkowski et al., 2019), and
Drop (Dua et al., 2019); (3) Multiple-Choice QA,
including RACE (Lai et al., 2017), OBQA (Mi-
haylov et al., 2018), MCTest (Richardson et al.,
2013), SIQA (Sap et al., 2019), and Dream (Sun
et al., 2019b). The statistics of the above datasets
are summarized in Table 5. We follow the pre-
process scheme released by Khashabi et al. (2020)
to tackle these datasets. Some of these datasets do
not contain a validation set, thus we only use the
validation sets of NarQA, RACE, OBQA, SIQA
and Dream in the QA task set to search hyper-
parameters.

The evaluation for each single task follows Mc-
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Task set Dataset Train set size Val set size Test set size

decaNLP

SQuAD 87k - 10k
QA-ZRE - - 12k
QA-SRL 6.4k - 2.2k
WikiSQL 56k - 15k

WOZ 2.5k - 1.6k
CNN/DM - - 11k

SST 6.9k - 1.8k
MNLI - - 20k

QA

SQuAD 87k - 10k
NewsQA 76k - 4.3k
Quoref - - 2.7k
NarQA 65k 6.9k 21k

NQOpen 9.6k - 10k
Drop - - 9.5k

RACE 87k 4.8k 4.9k
OBQA 4.9k 500 500
MCTest 1.4k - 320
SIQA 33k 1.9k 2.2k
Dream - 2.0k 2.0k

Table 5: Dataset Statistics of the decaNLP task set and
the QA task set.

Cann et al. (2018); Zhong et al. (2022b). Among
the decaNLP tasks, we compute F1 score for QA-
SRL and QA-ZRE, Exact Match (EM) score for
SQuAD, MNLI and SST, ROUGE-L for CNN/DM.
For WOZ, we adopt turn-based dialogue state ex-
act match (dsEM). For WikiSQL, we use exact
match of logical forms (lfEM). For the QA task set,
we compute the accuracy of option selection for
all Multi-Choice QA tasks and use EM score for
all Extractive QA tasks. Among Abstractive QA
tasks, we use F1 score for Drop and NQOpen, and
ROUGE-L (Lin, 2004) for NarQA.

D Detailed Experimental Results

We provide the detailed performance of Diana un-
der each single task compared with competitive
baselines. The results under five seen tasks of the
decaNLP task set, and eight seen tasks of the QA
task set are shown in Table 6 and Table 7. The re-
sults of unseen tasks for the decaNLP task set and
the QA task set are shown in Table 8 and Table 9.

E More Analysis of Task Identity
Detection Performance

Architecture-based LL models need to detect task
identities of input samples when these identities are
unavailable in the testing phase. To verify the per-
formance of the task identity detector implemented
in Diana, we compare our approach with other task
identity detectors: (1) Perplexity-based detector
implemented in baseline “AdapterCL” determines
the task identities based on the perplexity of the
PLM when different adapter modules are activated.
(2) Distance-based detector implemented in our

variant “w/o Neg. Samples” determines the task
identity based on the distance between each key
and query vectors. (3) Advanced distance-based
detector implemented in our variant “w/o ADB”
utilizes negative samples based on the above detec-
tor. Note that we do not apply ADB in the above
two distance-based detectors.

The above approaches are trained and evaluated
with the QA tasks under two scenarios: (1) In
Closed-world: detectors are only required to de-
tect samples from seen tasks. Note that in this
setting, the Advanced distance-based detector used
in “w/o ADB” is the same as the task identity de-
tector implemented in Diana. (2) In Open-world:
detectors are required to handle unseen task sam-
ples as well. When tested in the open-world sce-
nario, these two distance-based detectors adopt a
fixed decision boundary of 0.35 (see Appendix A).
The perplexity-based detector adopts a perplexity
threshold of 4, i.e., samples with a perplexity score
above 4 are regarded as unseen task samples. This
perplexity threshold is selected based on the model
performance on the validation set.

We report the task identity detection accuracy
and Marco F1 scores for seen samples and unseen
samples separately in Table 10. we can observe
that: (1) The task identity detector used in Diana
achieves the best performance in both scenarios.
This proves the effectiveness of our task prompt
keys in detecting task identities. (2) Negative sam-
ples used in Advanced distance-based detector sig-
nificantly improve the task identity detection per-
formance on seen tasks. (3) ADB is effective in
improving the task identity detection performance
on unseen tasks.

F More Analysis of Scheduled Sampling

We perform a more detailed analysis of the sched-
uled sampling scheme introduced in Diana. Specif-
ically, in the ablation variant “w/o G.T. Identity”,
the model only uses predicted task identities in
training. This scheme helps to alleviate the discrep-
ancy between training and testing with the cost of
the model coverage speed. In the ablation variant
“w/o Sched. Sampling”, the model only uses golden
truth task identities in the training process. This
scheme leads to the discrepancy between training
and testing. The above two schemes under-perform
our model Diana.

In this section, we analyze the task identity de-
tection accuracy yield by the above schemes in
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Task-ID Methods Buffer RN,j AN FN

in Test Size SQuAD WikiSQL SST QA-SRL WOZ

Available ProQA 0 71.09 37.39 92.16 75.68 57.17 66.70 10.54
ProQA+ER 50 75.57 50.98 91.67 76.74 61.33 71.26 5.33

Unavailable

Finetune 0 68.09 19.70 90.45 69.43 41.91 57.92 18.41
EWC 0 70.57 35.97 89.79 71.19 48.34 63.17 13.58
FLCB 0 70.96 33.35 90.03 74.71 50.23 63.86 13.36
AdapterCL 0 71.82 35.14 90.95 72.83 50.53 64.25 12.38
L2P 0 70.18 34.62 90.39 72.57 51.02 63.76 13.47
DualPrompt 0 70.99 35.33 90.91 73.92 51.18 64.47 12.49
ER 50 73.65 47.96 92.20 74.17 52.88 68.17 7.42
DER++ 50 74.18 49.27 92.34 75.11 54.61 69.10 6.86
AFPER 50 75.27 48.90 91.56 76.34 56.82 69.78 6.17

Diana w/o M 0 71.94 36.25 91.03 74.59 56.90 66.14 10.61
Diana 50 76.93 51.09 92.74 77.69 65.06 72.70 4.25

Multitask - 79.68 53.65 93.59 80.38 82.57 77.97 -

Table 6: Model performance on seen tasks in decaNLP. Best results (except the upper bound Multitask) are bold.
Our model Diana significantly outperforms other baselines on all metrics with p-value<0.05 (t-test).

Task-ID Methods Buffer RN,j AN FN

in Test Size SQuAD NewsQA NarQA NQOpen RACE OBQA MCTest SIQA

Available ProQA 0 67.66 38.73 37.96 37.72 53.75 43.73 68.27 57.73 50.69 12.10
ProQA+ER 50 71.20 40.17 41.94 39.00 57.09 47.00 77.94 57.67 54.00 7.27

Unavailable

Finetune 0 57.58 35.84 33.74 34.49 50.28 42.20 65.67 54.72 46.81 15.47
EWC 0 59.84 36.44 34.88 35.14 50.54 43.43 66.52 55.68 47.81 14.55
FLCB 0 58.73 36.97 34.27 34.90 51.63 41.53 66.60 55.39 47.50 14.98
AdapterCL 0 59.64 37.31 37.42 36.70 49.57 41.80 66.67 55.54 48.08 13.29
L2P 0 62.98 36.23 35.79 36.49 49.00 41.93 66.98 55.77 48.15 13.89
DualPrompt 0 62.60 36.36 34.35 36.53 52.10 42.67 67.57 56.26 48.54 13.66
ER 50 65.08 38.72 39.07 36.48 55.90 43.53 74.31 57.29 51.30 10.72
DER++ 50 67.08 39.03 39.91 36.93 56.42 44.13 74.77 57.77 52.01 10.05
AFPER 50 68.14 40.79 40.16 38.89 55.08 46.60 75.33 56.52 52.69 9.28

Diana w/o M 0 65.51 37.78 37.35 37.41 54.14 46.27 68.50 57.41 50.30 12.68
Diana 50 74.44 42.91 43.16 40.05 59.08 48.47 78.44 60.92 55.93 6.75

Multitask - 80.22 44.74 47.30 41.72 64.05 51.00 83.44 61.41 59.23 -

Table 7: Model performance on seen QA tasks. Best results (except the upper bound Multitask) are bold. Our model
Diana significantly outperforms other baselines on all metrics with p-value<0.05 (t-test).

Methods Buffer RN,j AN′

Size CNN/DM QA-ZRE MNLI

ProQA 0 13.25 37.58 39.42 30.08
ProQA+ER 50 14.18 38.42 40.17 30.92
Finetune 0 10.61 36.50 37.12 28.08
EWC 0 11.78 37.62 39.88 29.76
FLCB 0 12.98 40.02 40.52 31.17
AdapterCL 0 13.23 37.88 39.84 30.32
L2P 0 13.09 40.16 40.31 31.19
DualPrompt 0 12.92 37.04 39.18 29.71
ER 50 13.04 38.06 39.04 30.05
DER++ 50 14.67 39.74 39.32 31.24
AFPER 50 12.14 38.66 39.85 30.22

Diana w/o M 0 14.94 43.95 40.69 33.19
Diana 50 15.80 44.74 43.53 34.69

Multitask - 15.98 42.12 40.07 32.72

Table 8: Model performance on unseen tasks in de-
caNLP. Best results (except Multitask) are bold. Diana
significantly outperforms other baselines on all metrics
with p-value<0.05 (t-test).

Figure 4 when learning the last task TN in the in-

Methods Buffer RN,j AN′

Size Quoref Drop Dream

ProQA 0 33.40 18.29 55.85 35.85
ProQA+ER 50 35.87 19.78 58.35 38.00
Finetune 0 33.08. 18.10 55.36 35.51
EWC 0 33.43 18.14 56.65 36.07
FLCB 0 34.85 18.31 56.88 36.68
AdapterCL 0 35.47 17.83 57.21 36.84
L2P 0 36.22 19.18 57.40 37.60
DualPrompt 0 35.22 18.52 56.25 36.66
ER 50 35.14 18.56 59.71 37.80
DER++ 50 36.15 19.08 60.17 38.47
AFPER 50 35.26 18.83 56.29 36.79

Diana w/o M 0 37.95 20.32 59.39 39.22
Diana 50 40.42 22.91 63.03 42.12

Multitask - 36.27 22.99 62.60 40.62

Table 9: Model performance on unseen QA tasks.
Best results (except Multitask) are bold. Diana signifi-
cantly outperforms other baselines on all metrics with
p-value<0.05 (t-test).

put task sequence of QA task set. We can observe
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Scenario Methods Scores on Seen Tasks Scores on Unseen Tasks Overall Scores

F1 Accuracy F1 Accuracy F1 Accuracy

Closed-world
Perplexity-based 44.92 52.20 - - 44.92 52.20
Distance-based 43.18 63.34 - - 43.18 63.34
Advanced distance-based 54.37 75.35 - - 54.37 75.15

Open-world

Perplexity-based 33.15 58.64 26.14 62.98 32.37 59.84
Distance-based 38.51 50.53 21.98 58.48 36.67 52.72
Advanced distance-based 44.12 64.86 24.17 59.67 41.90 63.43
Diana 47.06 68.81 35.70 62.16 45.80 66.97

Table 10: Task identity detection performance of different models under the QA tasks.
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Figure 4: The task identity detection accuracy for sam-
ples from the last task TN when learning TN of the QA
task set.

that the task identity detection accuracy achieved
by “w/o G.T. Identity” is extremely low in ear-
lier iterations, which hinders task prompts from
sharing task-specific knowledge in the early train-
ing stage. The scheduled sampling process intro-
duced in Diana effectively compromises between
detecting correct task identities and alleviating the
train-test discrepancy, and thus it results in the best
LL performance among these variants. Note that
the task identity detection accuracy in “w/o Sched.
Sampling” is almost zero in the first 1,000 iterations
when learning task TN . This is because the task
prompt keys for previous N − 1 tasks are already
well learned. The randomly initialized prompt key
for task TN needs to be pulled to the query vector
space before starting to be functional.

G More Analysis of Computational Cost

We analyze the computational cost of Diana when
learning the QA tasks, including the number of tun-
able parameters, time used for training and testing,
and size of required memories retained from previ-
ous tasks. As indicated in Table 11, Diana does not
introduce too much computation overhead.

Methods
Tunable

Parameters
Memory

Size
Train Time
Per Batch

Test Time
All Tasks

Lower Bound 222.90M 0 0.55 523
EWC 222.90M 0 0.93 596
FLCB 222.90M 0 0.59 591
AdapterCL 262.25M 0 0.73 5852
L2P 223.39M 0 1.01 1013
DualPrompt 223.17M 0 0.93 1147
ER 222.90M 50 0.58 541
DER++ 222.90M 50 0.68 604
AFPER 222.90M 50 0.95 630
ProQA 223.43M 0 0.86 863

Diana 223.84M 50 1.05 1108
Diana w/o M 223.84M 0 0.97 1123

Table 11: Computational cost of Diana and baselines
for the QA task set. “Train Time” is the average time
cost for each batch. “Test Time” is the total time cost
to evaluate all 11 tasks. Both train and test times are in
seconds.

PLM Size Method AN FN AN′

T5-small DER++ 41.78 15.69 26.62
Diana 46.50 10.42 31.95

T5-base DER++ 52.01 10.05 38.47
Diana 55.93 6.75 42.12

T5-large DER++ 59.97 9.50 46.71
Diana 64.19 6.85 51.28

Table 12: Performance with different sized PLMs on
QA tasks.

Method AN FN AN′

Prompt tuning 46.76 4.71 32.87
Full tuning 55.93 6.75 42.12

Table 13: Performance with different training methods
on QA tasks.

H Effect of PLM Size

We evaluate Diana and the best-performing base-
line DER++ on different sized PLM using QA
datasets. As shown in Table 12, Diana obtains
better performance with larger PLM size, and con-
sistently outperforms the baseline.
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I Analysis of Training Method

During training, we follow a full tuning scheme
that updates parameters of the backbone language
models (T5) along with prompts. We also investi-
gate the performance of prompt tuning, which fixes
the backbone language model and only updates the
prompts. As indicated in Table 13, prompt tun-
ing dramatically degenerates the performance of
Diana.

J Cases

We list some samples for tasks we modeled from
the decaNLP task set and the QA task set respec-
tively, shown in Table 14 and Table 15.

K Training Process

Details about the training process of Diana are
shown in Algorithm 1.
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Format Dataset Case

Span Extraction

SQuAD
Context: (Private_school) Private schooling in the United States has been...
Question: In what year did Massachusetts first require children to be educated in schools?
Answer: 1852

QA-SRL
Context:the race is in mixed eights , and usually held in late february / early march.
Question:when is something held ?
Answer:in late february / early march

QA-ZRE
Context:travis hamonic ( born august 16 , 1990 ) is a canadian professional ice hockey...
Question:what team does travis hamonic belong to ?
Answer:new york islanders

Sequence Generation

CNN/DM
Context:( cnn ) governments around the world are using the threat of terrorism...
Question:what is the summary ?
Answer:amnesty ’ s annual death penalty report catalogs encouraging signs...

WOZ
Context:what is the phone number and postcode of a cheap restaurant in the east part of town ?...
Question:what is the change in state ?
Answer:price range : cheap , area : east ; phone , postcode

WikiSQL
Context:the table has columns player , no . , nationality , position , years in toronto...
Question:what is the translation from english to sql ?
Answer:select nationality from table where player = terrence ross

Text Classification

SST
Context:no movement , no yuks , not much of anything .
Question:is this review negative or positive ?
Answer: negative

MNLI

Context:premise:yeah i i think my favorite restaurant is always been the one closest you...
Question:hypothesis:i like him for the most part , but would still enjoy seeing someone beat him.
- - entailment , neutral , or contradiction ?
Answer: entailment

Table 14: Samples extracted from different decaNLP tasks. Each task contains a context, a question and an answer.
Note that SQuAD is in the QA task set as well.
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Format Dataset Case

Extractive

SQuAD
Context: (Private_school) Private schooling in the United States has been...
Question: In what year did Massachusetts first require children to be educated in schools?
Answer: 1852

NewsQA
Context:ABECHE, Chad (CNN) – Most of the 103 children that a French charity...
Question:WHO ARE UNDER ARREST IN CHAD?
Answer:Three French journalists, a seven-member Spanish flight crew and one Belgian

Quoref
Context:(Blast of Silence) Frankie Bono, a mentally disturbed hitman from Cleveland...
Question:What is the first name of the person who follows their target to select...?
Answer:Frankie

Abstractive

NarQA
Context:The play begins with three pages disputing over the black cloak usually worn by the actor...
Question:WHO NORMALLY DELIVERS THE OPENING PROLOGUE IN THE PLAY?
Answer:THE ACTOR WEARING THE BLACK CLOAK

NQOpen
Context:- cartilage - cartilage cartilage is a resilient and smooth elastic tissue , a rubber...
Question:where is each type of cartilage located in the body?
Answer:many other body components

Drop
Context:Hoping to rebound from their loss to the Patriots, the Raiders stayed at home for a Week...
Question:How many field goals did both teams kick in the first half?
Answer:2

Multiple-Choice

RACE

Context:It’s cool, and it’s hot, and everyone is doing it. People talk about it often, and friends...
Question:A blogger is a person _ .
(A) who teaches kids bad words (B) who posts songs from the latest bands
(C) who got drunk last weekend (D) who writes diaries online
Answer: who writes diaries online

OBQA

Context:Null
Question:Frilled sharks and angler fish live far beneath the surface of the ocean, which is why they are
known as (A) Deep sea animals (B) fish (C) Long Sea Fish (D) Far Sea Animals Deep sea animals
Answer:Deep sea animals

MCTest

Context:It was Jessie Bear’s birthday. She was having a party...
Question:Who was having a birthday?
(A) Jessie Bear (b) no one (C) Lion (D) Tiger
Answer:Jessie Bear

SIQA

Context:Tracy didn’t go home that evening and resisted Riley’s attacks
Question:What does Tracy need to do before this?
(A) make a new plan (B) Go home and see Riley (C) Find somewhere to go
Answer:Find somewhere to go

Dream

Context:M: How long have you been teaching in this middle school? W: For ten years...
Question:What’s the woman probably going to do?
(A) To teach a different textbook. (B) To change her job. (C) To learn a different textbook.
Answer:To change her job.

Table 15: Samples extracted from different QA tasks. Each task contains a context, a question and an answer.
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Algorithm 1 Training process of Diana
Input: prompt-enhanced model gθ, datasets {(Cj , Qj , Aj)}ni

j=1 for each task Ti (i=1, · · · , N ), mem-
ory buffer M, general prompt Pg, format prompts {Pf (Fj)}Fj=1, task prompts {Pt(Ti)}Ni=1 ∪
{P̂t(Fj)}Fj=1, meta prompts {P i

m}Mi=1, task prompt keys {kt(Ti)}Ni=1, meta prompt keys
{ki

m}Mi=1

1: Initialize:M← ∅
2: for Each task Ti, i = 1, · · · , N do
3: ifM ≠ ∅ then
4: Calculate cluster centroids c1, · · · , cB ofM
5: end if
6: for number of training epochs do
7: for Each mini-batch I ∈ {(Cj , Qj , Aj)}ni

j=1 ∪M do
8: Obtain ϵk by Eq. 5
9: for (C,Q,A) ∈ I do

10: Obtain format Fj of (C,Q,A)
11: Sample ϵ, ζ from U(0, 1)
12: if ζ < ω then
13: Pt(C,Q)← P̂t(Fj) {Use task prompt P̂t(Fj) for unseen tasks}
14: else if ϵ < ϵk then
15: Pt(C,Q)← Pt(Ti) {Use the golden truth task identity to select task prompt}
16: else
17: Pt(C,Q)← Pt( argmin

Tτ∈{T1,··· ,Ti}
(||q,kt(Tτ )||)) {Use the inferred task identity to select task

prompt}
18: end if
19: S(C,Q)← indexes of M ′ meta prompt keys that are closest to q
20: Pm(C,Q)← {P j

m}
j∈S(C,Q)

21: P (C,Q)←[Pg;Pf (Fj);Pt(C,Q);Pm(C,Q)]
22: Calculate per sample loss LLM on gθ and P (C,Q) by Eq. 6
23: Obtain negative sample (Cn, Qn) fromM by Eq. 2
24: Calculate per sample loss Lt on kt(Ti) by Eq. 1
25: Calculate per sample loss Lm on {ksj

m}(sj ∈ S(C,Q)) by Eq. 3
26: if (C,Q,A) ∈M then
27: Calculate per sample loss L′m on {ksj

m}(sj ∈ S(C,Q)) by Eq. 4
28: end if
29: end for
30: Update gθ and prompts with accumulated LLM
31: Update task prompt keys {kt(Ti)}Ni=1 with accumulated Lt
32: Update meta prompt keys {ki

m}Mi=1 with accumulated Lm and L′m
33: end for
34: end for
35: UpdateM with {(Cj , Qj , Aj)}ni

j=1 according to details in Appendix B
36: end for
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