
Findings of the Association for Computational Linguistics: ACL 2023, pages 5701–5714
July 9-14, 2023 ©2023 Association for Computational Linguistics

Know What I don’t Know:
Handling Ambiguous and Unanswerable Questions for Text-to-SQL

Bing Wang†∗ , Yan Gao§, Zhoujun Li†, Jian-Guang Lou§

†State Key Lab of Software Development Environment, Beihang University, Beijing, China
§Microsoft Research Asia

{bingwang, lizj}@buaa.edu.cn, {yan.gao, jlou}@microsoft.com

Abstract

The task of text-to-SQL aims to convert a natu-
ral language question into its corresponding
SQL query within the context of relational
tables. Existing text-to-SQL parsers gener-
ate a “plausible” SQL query for an arbitrary
user question, thereby failing to correctly han-
dle problematic user questions. To formalize
this problem, we conduct a preliminary study
on the observed ambiguous and unanswerable
cases in text-to-SQL and summarize them into
6 feature categories. Correspondingly, we
identify the causes behind each category and
propose requirements for handling ambigu-
ous and unanswerable questions. Following
this study, we propose a simple yet effective
counterfactual example generation approach
that automatically produces ambiguous and
unanswerable text-to-SQL examples. Further-
more, we propose a weakly supervised DTE
(Detecting-Then-Explaining) model for error
detection, localization, and explanation. Exper-
imental results show that our model achieves
the best result on both real-world examples
and generated examples compared with vari-
ous baselines. We release our data and code at:
https://github.com/wbbeyourself/DTE.

1 Introduction

Text-to-SQL task aims to generate an executable
SQL query given a natural language (NL) ques-
tion and corresponding tables as inputs. It builds a
natural language interface to the database to help
users access information in the database (Popescu
et al., 2003), thereby receiving considerable inter-
est from both industry and academia (Guo et al.,
2019; Wang et al., 2020; Liu et al., 2021). Cor-
respondingly, a series of new model architectures
have been proposed, such as IRNet (Guo et al.,
2019), RAT-SQL (Wang et al., 2020), ETA (Liu
et al., 2021), etc. These models have achieved satis-

∗Work done during an internship at Microsoft Research
Asia.

Movie IMDB Rating Rotten Tomatoes Rating Content Rating

Titanic 7.9 86% 7.6

Avatar 7.8 87% 7.7

Ambiguous Question: Show me the top rating movie.
Previous: SELECT [Movie] ORDER BY [IMDB Rating] 
DESC LIMIT 1
Ours: Oops, this question has multiple answers. “rating” may 
refer to either “IMDB Rating”, “Rotten Tomatoes Rating”, or 
“Content Rating”.

Brand Sales Year

Toyota 1,933,099 2021

Ford 1,804,824 2021

Unanswerable Question: Show me model name sorted by sales.
Previous: SELECT [Brand] ORDER BY [Sales] DESC
Ours: Sorry, we can’t find an answer for you since “model 
name” cannot be mapped to any concepts in your table. 

(a) 

(b) 

Figure 1: Ambiguous and unanswerable examples in
text-to-SQL task as well as our explanations. Blue font
denotes the problematic question span and red font
means the “plausible” column name selected by pre-
vious models.

factory results on well-known benchmarks, includ-
ing Spider (Yu et al., 2018) and WikiSQL (Zhong
et al., 2017).

However, state-of-the-art models trained on the
leaderboard datasets still demonstrate inadequate
performance in practical situations, where user
queries are phrased differently, which can be prob-
lematic. Concretely, from our study with real-
world text-to-SQL examples (Sec. 2), it is found
that about 20% of user questions are problematic,
including but not limited to ambiguous and unan-
swerable questions. Ambiguous questions refer
to those which can have multiple semantic mean-
ings based on a single table. For instance, in Fig-
ure 1(a), the word “rating” in a user’s query could
be mapped to disparate columns, such as “IMDB
Rating”, “Rotten Tomatoes Rating”, or “Content
Rating”. On the other hand, unanswerable ques-
tions pertain to those that cannot be answered based
on the information provided by the tables. For ex-
ample, in Figure 1(b), there is no column about
“model name” in the table. State-of-the-art models

5701

https://github.com/wbbeyourself/DTE


are capable of generating “plausible” SQL queries,
even in the presence of ambiguous or unanswerable
questions.

This phenomenon reveals two problems of pre-
vious methods. Firstly, with regard to data, the
training samples utilized in these approaches lack
ambiguous and unanswerable questions. Current
training datasets gather queries by either using tem-
plates (Zhong et al., 2017) or by manually anno-
tating controlled questions and filtering out poorly
phrased and ambiguous ones (Yu et al., 2018). This
data-gathering approach ensures that a correct an-
swer exists within the table context. Secondly, in
regards to the model, end-to-end parsing models
ignore modeling questions in a fine-grained man-
ner, which results in an inability to precisely detect
and locate the specific reasons for ambiguous or
unanswerable questions.

To address the data shortage problem, we pro-
pose a counterfactual examples generation ap-
proach that automatically produces ambiguous and
unanswerable text-to-SQL examples using existing
datasets. Given the free-form nature of the text,
conventional natural language modification tech-
niques are not always accurate. In contrast to plain
text, tables exhibit well-defined structures, usually
consisting of rows and columns. Consequently, ta-
ble modification is more controllable. In light of
this, we propose to generate ambiguous and unan-
swerable examples by modifying the structured
table.

Furthermore, we propose a weakly supervised
model DTE (Detecting-Then-Explaining) for han-
dling ambiguous and unanswerable questions. To
locate ambiguous or unanswerable tokens in user
questions, we formulate the location process as a
sequence labeling problem, where each token in
the user question will be tagged as being related
to an ambiguous label, an unanswerable label, or
others (Sec. 4.1). Since there is no labeled data
for sequence labeling, we extract the set of column
names and cells appearing in the SQL query and
use this set as the weak supervision. In this way,
we could generate explicit explanations for ambigu-
ous and unanswerable questions to end users. Note
that the sequence labeling information is pseudo
and derived from our model, thus alleviating heavy
manual efforts for annotation.

Experimental results show that our approach
achieves the best results on both real-world ex-
amples collected from realistic applications and

automatically generated ambiguous and unanswer-
able examples, compared with various baselines.
Our contributions are as follows:

• We conduct a preliminary study on the am-
biguous and unanswerable questions in text-
to-SQL and summarize 6 featured categories.
We also identify the causes behind each cate-
gory and propose requirements that should be
met in explainable text-to-SQL systems.

• We propose a counterfactual examples gen-
eration approach that automatically produces
ambiguous and unanswerable text-to-SQL ex-
amples via modifying structured tables.

• We propose a weakly supervised model for
ambiguous and unanswerable question detec-
tion and explanation. Experimental results
show that our approach brings the model with
the best explainability gain compared with
various baselines.

2 Preliminary Study on Ambiguous and
Unanswerable Problem

To understand user behaviors in a real-world ap-
plication, we conduct a comprehensive user study
on our commercial text-to-SQL product. Firstly,
around 3,000 failed user questions in the product
are collected. They obtained over 30 data tables
from multiple domains, including education, fi-
nance, government, etc. Then, we manually group
these questions into multiple categories. At last,
we explore the causes and potential solutions to
deal with them. According to our analysis, nearly
20% of the questions are problematic, including
55% ambiguous and 45% unanswerable questions
respectively, revealing the importance of handling
problematic questions. In the following, we will
introduce their categories, causes, and potential
solutions for handling them.

2.1 Problem Categories
In this section, we formalize ambiguous and unan-
swerable questions and identify 6 sub-categories.

Ambiguous Problem In the text-to-SQL task,
ambiguity means that one user question could
have multiple semantic meanings (e.g., SQL query)
based on one table. Specifically, we can subdivide
them into two sub-categories, namely column ambi-
guity and value ambiguity, which account for 45%
and 10% of all problematic questions, respectively.

5702



Ambiguous Problem
Category Example Percentage

Column 
Ambiguity

Question: Show me the top rating movie.
Columns: Movie, IMDB Rating, Rotten Tomatoes Rating, Content Rating
Note: The token “rating” in question is ambiguous because there are 3 column names

containing “rating”.

45%

Value 
Ambiguity

Question: For Jack, show me the date of license issued and license expires.
Columns: Engineer, Constructor, License issued, License expires,  …
Values: Jack::Engineer, Jack::Constructor
Note:  The token “Jack” in question is ambiguous because both column “Engineer” 

and “Constructor”  have the same cell value “Jack”.

10%

Unanswerable Problem
Category Example Percentage

Column 
Unanswerable

Question: Show me model name by sales.
Columns: Brand, Sales, Year
Note: The span “model name” is unanswerable because no such a column named

“model name”.

30%

Value 
Unanswerable

Question: Count the total of Private hospitals.
Columns: NHHospitalCategory, State, Year, BenefitsPaid
Note: The span “Private hospitals” is unanswerable because no such value in

column “NHHospitalCategory”.

7%

Calculation 
Unanswerable

Question: What is the balance of trade of China ?
Columns: Country, Imports, Exports, …
Note: The span “balance of trade” is unanswerable, because model does not know the

calculation formula : Balance of Trade = Exports – Imports.

6%

Out of Scope

Question: Bar chart showing the Word count of every character.
Columns: ChapterNo, WordCount, ChScID, SceneName
Note: The span “Bar chart” is out of the model’s scope, the model does not support 

the graphic operation.

2%

Table 1: Ambiguous and unanswerable problem categories in text-to-SQL task. The red font with a dashed line
denotes the ambiguous or unanswerable question span. The green font means a related concept (columns or values)
to the red span. Note sentence explains why the example is ambiguous or unanswerable.

Column ambiguity means that some tokens in the
user question could be mapped to multiple columns.
For example in Table 1, we don’t know exactly
which “Rating” the user wants since there are three
rating columns. Value ambiguity means that some
tokens in the user question could be mapped to
multiple cell values in the table. For example in
Table 1, Jack in the user question can be mapped
to the name of either an “Engineer” or a “Construc-
tor”.

Unanswerable Problem The unanswerable prob-
lem can be classified into four categories: col-
umn unanswerable, value unanswerable, calcula-
tion unanswerable, and out-of-scope, which ac-
count for 30%, 7%, 6%, and 2% of all problematic
questions, respectively, as shown in the bottom part
of Table 1. (1) The column unanswerable means
that the concepts mentioned in the question do not
exist in table columns. In the first example, the
model name does not exist in the given columns,
but our product incorrectly associates it with the
irrelevant column “Brand”. (2) The value unan-
swerable indicates that the user question refers to
cell values that do not exist in the table. As the
second example shows, no such Private hospitals
value exists in the table. (3) The calculation unan-

swerable category is more subtle. It requires map-
ping the concept mentioned in the user question to
composite operations over existing table columns.
For example, the balance of trade is a concept de-
rived from “Exports− Imports”. Such mapping
functions require external domain knowledge. Our
product which is trained from a general corpus cap-
tures limited domain knowledge, and thus often
fails. (4) The out-of-scope category means that the
question is out of SQL’s operation scope, such as
chart operations.

2.2 Causes

Through communicating with end users and an-
alyzing the characteristic of questions as well as
corresponding table contexts, we identify three fun-
damental causes for ambiguous and unanswerable
questions: (1) end users are unfamiliar with the
content of the table and don’t read the table care-
fully, causing unanswerable questions; (2) ambigu-
ity arises due to the richness of natural language
expressions and the habitual omission of expres-
sions by users (Radhakrishnan et al., 2020); (3) the
emergence of similar concepts in the table tends to
cause more ambiguous questions. Note that around
95% of problematic questions are constructed un-

5703



Original Example

Schema: Date, Attendance, Record, Score

Question: What  is the score where record is  0–2   ?

Label:         O    O O COL O    COL  O  VAL O

Unanswerable Example

Schema: Date, Attendance, Record, Score

Question: What is the score where record is  0–2  ?

Label:         O   O O UNK O     COL   O VAL O

Ambiguous Example

Schema: Date, Attendance, Record, Score,
Our Score, Opponent Score

Question: What is the score where record is 0–2   ?

Label:         O    O O AMB O     COL   O VAL O

Figure 2: Ambiguous and unanswerable examples gen-
erated by our approach.

intentionally, revealing the importance of making
users conscious of being wrong.

2.3 Explainable Parser Requirements
Based on the findings and analysis above, to deal
with ambiguous and unanswerable questions, we
propose to make a text-to-SQL system know-what-
I-don’t-know. On one hand, a parsing system
should detect ambiguous and unanswerable ques-
tions. On the other hand, a parsing system should
locate the specific reasons and generate correspond-
ing explanations to guide the user in rectification.

Achieving know-what-I-don’t-know can benefit
from two aspects: (1) from model view: enhances
models’ ability to deal with problematic questions
and improve user trust; (2) from user view: makes
it clear to users which part of their questions are
problematic, guiding them to revise their questions.
In our user study experiments, we find that 90%
of the problematic questions can be corrected by
prompting users with explanations shown in Ta-
ble 1, and the remaining 10% of questions can only
be solved by injecting external knowledge into the
model. In the following, we will introduce how we
mitigate the challenges mentioned in Sec. 1

3 Counterfactual Examples Generation

To alleviate the data shortage issue, we propose a
counterfactual examples generation approach for
automatically generating problematic text-to-SQL
examples. In our approach, we mainly focus on
generating two major types of problematic exam-

NoisySP WikiSQL WTQ
Train
# ambiguous 4,760 0 0
# unanswerable 10,673 0 0
# answerable 0 56,350 7,696
# tables 4,861 17,984 1,283
Development
# ambiguous 1,581 0 0
# unanswerable 1,652 0 0
# answerable 0 8,142 1,772
# tables 1,232 2,614 325
Test
# ambiguous 2,332 0 0
# unanswerable 2,560 0 0
# answerable 0 15,362 0
# tables 1,993 5,031 0

Table 2: Dataset statistics of NOISYSP, compared to
the original WikiSQL and WTQ dataset.

ples: column ambiguity and column unanswerable,
which account for 75% 1 of all problematic exam-
ples based on our preliminary study. Note that the
counterfactual examples are generated via modi-
fying structured tables instead of natural language
questions. The reason is that conditional modifi-
cation on a structured table is more controllable
than unstructured text. Finally, 23k problematic
examples are obtained based on two text-to-SQL
datasets, i.e., WikiSQL (Zhong et al., 2017) and
WTQ (Shi et al., 2020). Next, we will introduce
the details of our approach.

3.1 Our Approach

Given an answerable text-to-SQL example that con-
tains a question Q = (q1, . . . , qm), a DB schema
(also a column set) C = {c1, . . . , cn} and a SQL
query S, our goal is to generate problematic exam-
ples, denoting as (Q, C′

, S) triplets. By removing
evidence supporting Q from C or adding ambigu-
ous ones, a new DB schema C′

is generated.

Unanswerable Examples Generation Specifi-
cally, we randomly sample a target column ct in
the SQL query S. Then we delete ct from C to
remove the supporting evidence for question spans
Qs = (qi, . . . , qj) that mentioned ct. At last, the
question span Qs is labeled as UNK. For instance,
in the unanswerable example of Figure 2, given an
original question “What is the score where record
is 0–2?”, the question span “score” is grounded
to the column “Score”. By deleting the column
“Score”, we obtain an unanswerable example.

1Proposal for handling the remaining 25% questions can
be found in Appendix

5704



Labels Description Example(Token:Label)

COL Column Mention sales: B-COL
VAL Value Mention godfather: B-VAL
AMB Ambiguous Span rating: B-AMB
UNK Unanswerable Span model: B-UNK
O Nothing the: O

Table 3: Labeling categories of question tokens

Ambiguous Examples Generation Similar to
unanswerable examples generation, we generate an
ambiguous example by firstly deleting a column
ct and then adding two new columns. The critical
point is that newly added columns are expected
to (1) fit nicely into the table context; (2) have
high semantic associations with the target column
ct yet low semantic equivalency (e.g. “opponent
score” is semantically associated with “score”, but
it is not semantic equivalent). To achieve this, we
leverage an existing contextualized table augmenta-
tion framework, CTA (Pi et al., 2022), tailored for
better contextualization of tabular data, to collect
new column candidates. We select target columns
from within the SQL, and typically choose 2-3 near-
synonyms for each column candidate. After that,
we rerank the column candidates by their length
and similarity with the column ct, and keep the
top 2 as our newly added columns. As shown in
the ambiguous example of Figure 2, we first delete
the original column “Score”, then add two domain-
relevant and semantically associated columns “Our
Score” and “Opponent Score”.

3.2 Dataset Statistic

Leveraging our counterfactual examples generation
approach, we obtain a dataset, called NOISYSP
based on two cross-domain text-to-SQL datasets,
i.e., WikiSQL (Zhong et al., 2017) and WTQ (Shi
et al., 2020). Consistent with our preliminary study,
we generate 20% of the original data count as prob-
lematic examples. Finally, we get 23k problematic
examples. Detailed statistics can be seen in Table 2.
To ensure the quality of the development set and
test set, we hired 3 annotators to check the can-
didate set of newly added columns for ambiguous
examples and then drop low-quality ones. Note that
the rate of low quality is only 5%, demonstrating
the effectiveness of our approach.

4 Model: DTE

In this section, we introduce our Detecting-Then-
Explaining (DTE) model to handle ambiguous and

unanswerable questions. To generate a fine-grained
explanation, we formulate it as a sequence labeling
problem, where each token in the user question will
be tagged as being related to an ambiguous label,
an unanswerable label, or others. Concretely, DTE
consists of three modules: concept prediction mod-
ule, grounding module, and sequence labeling mod-
ule. The grounding module generates pseudo-label
information to guide the training of the sequence
labeling module. The overall architecture of DTE
is shown in Figure 3.

4.1 Task definition
Given an input question Q = (q1, . . . , qm), a data
table (with a concept set C = c1, . . . , ck, con-
taining columns and cell values), the goal of se-
quence labeling is to output a labeling sequence
L = (l1, . . . , lm) for each token in Q. It can be rep-
resented by tagging each token in the question with
a set of BIO labels (Tjong Kim Sang and Veenstra,
1999). Specifically, we define 5 kinds of labels for
question tokens, namely COL, VAL, AMB, UNK,
and O. Their descriptions and examples are shown
in Table 3.

4.2 Preliminaries: ETA for grounding
In this work, we formulate problematic question
detection as a sequence labeling task, whose train-
ing process requires large-scale label annotations
as supervision. However, such annotations are ex-
pensive and time-consuming. To obtain label infor-
mation in an efficient and cheap way, we propose
to leverage the grounding result of the text-to-SQL
task and transform it into a pseudo-labeling se-
quence. Particularly, we use ETA (Liu et al., 2021),
a pretrained probing-based grounding model, as the
backbone of our approach. The major advantage
of ETA is that, compared with models relying on
expensive annotations of grounding, it only needs
supervision that can be easily derived from SQL
queries.

4.3 Sequence Labeling Module
To meet the requirements of detecting and locat-
ing ambiguous and unanswerable question spans,
we design a sequence labeling module, which is
intuitively suitable for our sequential modeling pur-
pose. The sequence labeling module consists of
a dropout layer, a linear layer, and a CRF layer,
following best practices in previous work (Yang
et al., 2018). Given a contextualized embedding
sequence (eq1 , . . . , eqm), the goal of the sequence

5705



Encoder

𝑞ଵ 𝑞ଶ 𝑞௠…

𝑒௤భ 𝑒௤మ
𝑒௤೘…

c𝑜𝑛𝑐𝑒𝑝𝑡ଵ 𝑐𝑜𝑛𝑐𝑒𝑝𝑡ଶ 𝑐𝑜𝑛𝑐𝑒𝑝𝑡௡…

𝑒௖భ 𝑒௖మ 𝑒௖೙…

Concept Prediction

[SEP]

𝑒[௦௘௣]

Grounding

…

𝒒𝟏 𝒒𝟐 𝒒𝒎…

𝒄𝒏

…

𝒄𝟐

𝒄𝟏

Sequence Labeling

0 1 … 1B-COL O O B-UNK … B-AMB

B-COL I-COL O B-UNK … B-AMB

Latent Label

Pseudo Label
weak supervision

Figure 3: The overall architecture of DTE.

labeling module is to output the label sequence
L = l1, . . . , lm with the highest likelihood proba-
bility.

4.4 Multi-Task Training

Our multi-task training process involves three steps:
(1) train the concept prediction module. (2) warm-
up grounding module to get alignment pairs. (3)
train the sequence labeling module with the pseudo
tag derived from the grounding module.

4.5 Response Generation

At the inference step, given a question and the table
information, DTE predicts labels for each question
token and outputs grounding pairs between ques-
tion tokens and table entities. If the AMB (or UNK)
label occurs, it means it is an ambiguous (or unan-
swerable) question. To generate corresponding in-
terpretations to end users, we carefully design two
response templates. More details about the tem-
plates could be found in Appendix A.3.

5 Experiments

In this section, we systematically evaluate the effec-
tiveness of DTE. Specifically, we examine DTE’s
performance in two aspects: (1) the performance of
the sequence labeling module in detecting ambigu-
ous and unanswerable tokens; (2) the grounding
performance for each label to provide evidence for
generating explainable responses to end users. In
addition, we report the evaluation results on text-
to-SQL tasks.

5.1 Experimental Setup

Datasets We conduct experiments based on
the following datasets: (1) NOISYSP with
23k automatically generated examples, (2) two
cross-domain text-to-SQL datasets, i.e., Wik-
iSQL (Zhong et al., 2017) and WTQ (Shi et al.,
2020)2, (3) 3,000 real-world examples collected
by us (Sec. 2). All models are trained with the
NOISYSP, WikiSQL, and WTQ datasets. Specifi-
cally, real-world examples are only used for testing.
Dataset statistics are shown in Table 2.

Evaluation Metric To evaluate sequence label-
ing performance, we report accuracy for each label
category. For grounding performance evaluation,
we report grounding accuracy for each label, except
for UNK and O, which have no grounding results.

Baseline Models We choose two types of repre-
sentative models for comparison: (1) the heuristic-
based method (Sorokin and Gurevych, 2018),
which is widely used in entity linking and ground-
ing tasks; (2) the learning-based method, ETA (Liu
et al., 2021), which is a strong grounding base-
line, leveraging the intrinsic language understand-
ing ability of pretrained language models. We up-
date them with a little modification to fit our task
because their vanilla version is not directly applica-
ble. More implementation details about the base-
line and DTE could be found in Appendix A.

2Note that we use the version with SQL annotations pro-
vided by Shi et al. (2020) , since the original WTQ (Pasupat
and Liang, 2015) only contains answer annotations.

5706



Models COL VAL AMB UNK O

Heuristic 61.7 66.8 57.8 60.7 72.1
ETA+BERT 83.4 87.9 75.6 70.2 80.9
ETA+BERTL 85.7 90.4 76.4 71.4 82.7

DTE +BERT 88.2 94.1 81.4 78.6 90.7
DTE +BERTL 89.4 95.7 83.2 80.3 92.4

Table 4: Sequence labeling accuracy of DTE compared
with baselines in NOISYSP test set.

Models COL VAL AMB

Heuristic 55.9 67.2 56.2
ETA+BERT 71.4 75.3 60.7
ETA+BERTL 72.4 77.8 62.4

DTE +BERT 73.4 78.2 79.8
DTE +BERTL 75.1 80.7 82.4

Table 5: Grounding accuracy of DTE compared with
baselines in NOISYSP test set.

5.2 Experimental Results on NOISYSP

Sequence Labeling Results As shown in Table 4,
we compare the performances of DTE with vari-
ous baselines on the test set of NOISYSP. DTE
outperforms previous baselines across all label cat-
egories, which demonstrates the superiority of our
DTE model. Compared with the heuristic-based
method, DTE significantly improves performances
by 25% average gains of all label categories, which
shows that our NOISYSP dataset is challenging
and the heuristic-based method is far from solv-
ing these questions. Besides, DTE consistently
outperforms the ETA+BERT baseline by a large
margin, not only improving the ambiguous and
unanswerable label accuracy by 7% and 11%, re-
spectively, but also improving column and value
detecting accuracy, demonstrating the effectiveness
of our approach for detection.

Grounding Results In order to identify the spe-
cific reasons for ambiguous questions, we need to
not only identify the target spans, but also estab-
lish grounding by finding the linked concept (col-
umn or value). As shown in Table 5, we compare
DTE’s grounding performance with various base-
lines. Note that the unanswerable span in question
does not require grounding to any concept, thus
we do not report the grounding result of it. We
observe that DTE consistently outperforms base-
lines across three label categories on grounding
performance, especially on the ambiguous ground-
ing whose linked concepts are more varied and
diverse.

55.3

70.8

52.4

43.6

66.3

62.4

75.4

63.6

54.8

74.6
71.4

80.8

75.2

70.2

87.5

40

45

50

55

60

65

70

75

80

85

90

95

COL VAL AMB UNK O

Heuristic ETA+BERT-Large DTE+BERT-Large

Figure 4: Sequence labeling accuracy of DTE compared
with baselines in realistic data.

50.7
48.7

43.9

59.4
56.7

52.4

70.2

65.8

76.4

40

45

50

55

60

65

70

75

80

85

COL VAL AMB

Heuristic ETA+BERT-Large DTE+BERT-Large

Figure 5: Grounding accuracy of DTE compared with
baselines in realistic data.

5.3 Generalization on Realistic Data
We verify the generalization ability of DTE by con-
ducting out-of-distribution experiments on 3,000
realistic datasets that we collected from our com-
mercial products. These datasets cover more than
30 data tables from multiple domains such as ed-
ucation, finance, government, etc. As shown in
Figure 4, our DTE model still outperforms all base-
lines consistently and achieves promising perfor-
mance in ambiguous and unanswerable detection
with 75.2% and 70.2% sequence labeling accuracy,
respectively. From Figure 5, we observe that our
DTE model outperforms other baselines by a large
margin in grounding accuracy of ambiguous spans.
These results indicate the generalization ability of
DTE for handling ambiguous and unanswerable
questions and the effectiveness of realistic data.

5.4 Text-to-SQL Results
To verify the influence of DTE on the text-to-
SQL task, we report the exact match accuracy
(Ex.Match) and execution accuracy (Ex.Acc) on

5707



Model
Dev Test

Ex.Match Ex.Acc Ex.Acc

ALIGN 37.8 56.9 46.6
ALIGN+BERT 44.7 63.8 51.8
ETA+BERT 47.6 66.6 53.8
DTE+BERT 48.1 66.5 54.2

Table 6: Ex.Match and EX.ACC of text-to-SQL results
on the dev and test set of WTQ.

Models COL VAL O

DTE w/ SL 75.1 80.7 90.5
DTE w/o SL 72.6 75.2 82.8

Table 7: Ablation study of DTE model with BERT-large
in the grounding accuracy on the test set of NOISYSP.
SL means sequence labeling module.

WTQ dataset. As shown in Table 6, compared
with ALIGN (Lei et al., 2020) and ETA (Liu et al.,
2021), DTE shows slightly better performance in
both exact match accuracy and execution accuracy.
It should be noted that all questions in this experi-
ment are normal questions, i.e., without ambiguous
and unanswerable questions. The result shows that
DTE can boost text-to-SQL performance instead
of damaging it.

5.5 Discussion

What are the remaining errors? We manu-
ally analyze 20% of the remaining errors in the
NOISYSP dataset and summarize four main er-
ror types: (1) wrong detection (25%) - where our
model either misses or over-predicts the ambiguous
or unanswerable label. (2) widened span (30%) -
where our model predicts a longer span than the
golden result. (3) narrowed span (25%) - where the
model infers a narrowed span than the golden result.
(4) other errors (20%) are caused by the ground-
ing module. This error analysis indicates the main
challenge of DTE is precise localization rather than
detection because the second and third errors (55%)
are caused by the wrong span boundary. More de-
tailed examples can be seen in Appendix B.

Can sequence labeling module benefit ground-
ing module? As a multi-task training approach,
it is critical to determine the effect of introducing
extra tasks on the models’ performance on original
tasks. To verify the influence of the sequence label-
ing module on grounding results, we conduct an
ablation study with or without the sequence label-

ing module. As we can see in Table 7, the ground-
ing module does achieve better performance on
columns and values alignment with the sequence
labeling module. Through our analysis, we find the
performance gain mainly comes from long concept
mention (with token length > 4). The reason is
that the CRF layer in the sequence labeling module
can strengthen the grounding module’s ability to
capture long-distance dependency. In summary, we
can conclude that the sequence labeling task can fit
in well with the grounding task.

6 Related Work

Problematic Question Detection. Existing
works on problematic question detection can be
classified into two categories: (1) heuristic-based
methods leverage elaborate rules to detect and
locate problematic questions span (Sorokin and
Gurevych, 2018; Li et al., 2020; Wu et al., 2020),
suffering from heavy human efforts on feature
engineering. Besides, some approaches (Dong
et al., 2018; Yao et al., 2019) estimate the
confidence of parsing results, relying on existing
parsing models; (2) on the contrary, learning-based
methods don’t rely on heuristic rules and parsing
models. For example, Arthur et al. (2015) jointly
transforms an ambiguous query into both its
meaning representation and a less ambiguous NL
paraphrase via a semantic parsing framework that
uses synchronous context-free grammars. Zeng
et al. (2020) trains a question classifier to detect
problematic questions and then employed a span
index predictor to locate the position. However,
the index predictor can only find one error span
per example, which limits its usage. In this work,
we propose a learning-based approach that could
handle multiple errors in problematic questions.

Uncertainty Estimation. Recent works on un-
certainty estimation of neural networks explore di-
verse solutions, such as deep ensembles in predic-
tion, calibration, and out-of-domain detection (Liu
et al., 2020). However, these methods need net-
work and optimization changes, generally ignore
prior data knowledge (Loquercio et al., 2020), and
can only provide uncertainty in predictions without
identifying the reasons. In this work, we propose
the counterfactual examples generation approach
to adding prior knowledge to the training data and
then propose a weakly supervised model for prob-
lematic span detection and give explainable rea-
sons.

5708



7 Conclusion

We investigate the ambiguous and unanswerable
questions in text-to-SQL and divide them into 6
categories, then we sufficiently study the character-
istics and causes of each category. To alleviate the
data shortage issue, we propose a simple yet effec-
tive counterfactual example generation approach
for automatically generating ambiguous and unan-
swerable text-to-SQL examples. What’s more, we
propose a weakly supervised model for ambiguous
and unanswerable question detection and explana-
tion. Experimental results verify our model’s effec-
tiveness in handling ambiguous and unanswerable
questions and demonstrate our model’s superiority
over baselines.

Limitations

Among the six ambiguous and unanswerable prob-
lem categories in Table 1, our counterfactual ex-
ample generation approach can not cover the cal-
culation unanswerable and out-of-scope examples
generation. The reason is that our approach focuses
on the table transformation ways while generating
the calculation unanswerable and out-of-scope ex-
amples requires conditional NL modification tech-
niques. We leave this as our future work.

Ethics Statement

Our counterfactual examples generation approach
generates a synthesized dataset based on two main-
stream text-to-SQL datasets, WikiSQL (Zhong
et al., 2017) and WTQ (Shi et al., 2020), which
are free and open datasets for research use. All
claims in this paper are based on the experimental
results. Every experiment can be conducted on a
single Tesla V100. No demographic or identity
characteristics information is used in this paper.

Acknowledgements

This work was supported in part by the National
Natural Science Foundation of China (Grant Nos.
62276017, U1636211, 61672081), the 2022 Ten-
cent Big Travel Rhino-Bird Special Research Pro-
gram, and the Fund of the State Key Laboratory
of Software Development Environment (Grant No.
SKLSDE-2021ZX-18). We also would like to
thank all the anonymous reviewers for their con-
structive feedback and insightful comments.

References
Philip Arthur, Graham Neubig, Sakriani Sakti, Tomoki

Toda, and Satoshi Nakamura. 2015. Semantic pars-
ing of ambiguous input through paraphrasing and
verification. Transactions of the Association for Com-
putational Linguistics, 3:571–584.

Li Dong, Chris Quirk, and Mirella Lapata. 2018. Con-
fidence modeling for neural semantic parsing. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 743–753, Melbourne, Australia.
Association for Computational Linguistics.

Longxu Dou, Yan Gao, Xuqi Liu, Mingyang Pan,
Dingzirui Wang, Wanxiang Che, Dechen Zhan, Min-
Yen Kan, and Jian-Guang Lou. 2022. Towards
knowledge-intensive text-to-SQL semantic parsing
with formulaic knowledge. In Proceedings of the
2022 Conference on Empirical Methods in Natu-
ral Language Processing, pages 5240–5253, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao, Jian-
Guang Lou, Ting Liu, and Dongmei Zhang. 2019. To-
wards complex text-to-SQL in cross-domain database
with intermediate representation. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4524–4535, Florence,
Italy. Association for Computational Linguistics.

Wenqiang Lei, Weixin Wang, Zhixin Ma, Tian Gan,
Wei Lu, Min-Yen Kan, and Tat-Seng Chua. 2020.
Re-examining the role of schema linking in text-to-
SQL. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 6943–6954, Online. Association for
Computational Linguistics.

Yuntao Li, Bei Chen, Qian Liu, Yan Gao, Jian-Guang
Lou, Yan Zhang, and Dongmei Zhang. 2020. “what
do you mean by that?” a parser-independent interac-
tive approach for enhancing text-to-SQL. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
6913–6922, Online. Association for Computational
Linguistics.

Jeremiah Liu, Zi Lin, Shreyas Padhy, Dustin Tran, Tania
Bedrax Weiss, and Balaji Lakshminarayanan. 2020.
Simple and principled uncertainty estimation with
deterministic deep learning via distance awareness.
Advances in Neural Information Processing Systems,
33:7498–7512.

Qian Liu, Dejian Yang, Jiahui Zhang, Jiaqi Guo, Bin
Zhou, and Jian-Guang Lou. 2021. Awakening la-
tent grounding from pretrained language models for
semantic parsing. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 1174–1189, Online. Association for Computa-
tional Linguistics.

5709

https://doi.org/10.1162/tacl_a_00159
https://doi.org/10.1162/tacl_a_00159
https://doi.org/10.1162/tacl_a_00159
https://doi.org/10.18653/v1/P18-1069
https://doi.org/10.18653/v1/P18-1069
https://aclanthology.org/2022.emnlp-main.350
https://aclanthology.org/2022.emnlp-main.350
https://aclanthology.org/2022.emnlp-main.350
https://doi.org/10.18653/v1/P19-1444
https://doi.org/10.18653/v1/P19-1444
https://doi.org/10.18653/v1/P19-1444
https://doi.org/10.18653/v1/2020.emnlp-main.564
https://doi.org/10.18653/v1/2020.emnlp-main.564
https://doi.org/10.18653/v1/2020.emnlp-main.561
https://doi.org/10.18653/v1/2020.emnlp-main.561
https://doi.org/10.18653/v1/2020.emnlp-main.561
https://doi.org/10.18653/v1/2021.findings-acl.100
https://doi.org/10.18653/v1/2021.findings-acl.100
https://doi.org/10.18653/v1/2021.findings-acl.100


Antonio Loquercio, Mattia Segu, and Davide Scara-
muzza. 2020. A general framework for uncertainty
estimation in deep learning. IEEE Robotics and Au-
tomation Letters, 5(2):3153–3160.

Panupong Pasupat and Percy Liang. 2015. Composi-
tional semantic parsing on semi-structured tables. In
Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 1470–
1480, Beijing, China. Association for Computational
Linguistics.

Xinyu Pi, Bing Wang, Yan Gao, Jiaqi Guo, Zhoujun
Li, and Jian-Guang Lou. 2022. Towards robustness
of text-to-SQL models against natural and realistic
adversarial table perturbation. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
2007–2022, Dublin, Ireland. Association for Compu-
tational Linguistics.

Ana-Maria Popescu, Oren Etzioni, and Henry A. Kautz.
2003. Towards a theory of natural language inter-
faces to databases. In IUI ’03, pages 100–112. IEEE.

Karthik Radhakrishnan, Arvind Srikantan, and Xi Vic-
toria Lin. 2020. ColloQL: Robust text-to-SQL over
search queries. In Proceedings of the First Work-
shop on Interactive and Executable Semantic Parsing,
pages 34–45, Online. Association for Computational
Linguistics.

Tianze Shi, Chen Zhao, Jordan Boyd-Graber, Hal
Daumé III, and Lillian Lee. 2020. On the poten-
tial of lexico-logical alignments for semantic pars-
ing to SQL queries. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
1849–1864, Online. Association for Computational
Linguistics.

Daniil Sorokin and Iryna Gurevych. 2018. Mixing con-
text granularities for improved entity linking on ques-
tion answering data across entity categories. In Pro-
ceedings of the Seventh Joint Conference on Lexical
and Computational Semantics, pages 65–75, New
Orleans, Louisiana. Association for Computational
Linguistics.

Erik F. Tjong Kim Sang and Jorn Veenstra. 1999. Rep-
resenting text chunks. In Ninth Conference of the
European Chapter of the Association for Computa-
tional Linguistics, pages 173–179, Bergen, Norway.
Association for Computational Linguistics.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2020. RAT-SQL:
Relation-aware schema encoding and linking for text-
to-SQL parsers. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 7567–7578, Online. Association for
Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Zhiyong Wu, Ben Kao, Tien-Hsuan Wu, Pengcheng Yin,
and Qun Liu. 2020. PERQ: Predicting, Explaining,
and Rectifying Failed Questions in KB-QA Systems,
page 663–671. Association for Computing Machin-
ery, New York, NY, USA.

Jie Yang, Shuailong Liang, and Yue Zhang. 2018. De-
sign challenges and misconceptions in neural se-
quence labeling. In Proceedings of the 27th Inter-
national Conference on Computational Linguistics,
pages 3879–3889, Santa Fe, New Mexico, USA. As-
sociation for Computational Linguistics.

Ziyu Yao, Yu Su, Huan Sun, and Wen-tau Yih. 2019.
Model-based interactive semantic parsing: A unified
framework and a text-to-SQL case study. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 5447–5458, Hong
Kong, China. Association for Computational Linguis-
tics.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2018. Spider: A large-scale human-labeled
dataset for complex and cross-domain semantic pars-
ing and text-to-SQL task. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3911–3921, Brussels, Bel-
gium. Association for Computational Linguistics.

Jichuan Zeng, Xi Victoria Lin, Steven C.H. Hoi, Richard
Socher, Caiming Xiong, Michael Lyu, and Irwin
King. 2020. Photon: A robust cross-domain text-
to-SQL system. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics: System Demonstrations, pages 204–214,
Online. Association for Computational Linguistics.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries from
natural language using reinforcement learning. arXiv
preprint arXiv:1709.00103, 1:135–154.

5710

https://doi.org/10.3115/v1/P15-1142
https://doi.org/10.3115/v1/P15-1142
https://doi.org/10.18653/v1/2022.acl-long.142
https://doi.org/10.18653/v1/2022.acl-long.142
https://doi.org/10.18653/v1/2022.acl-long.142
https://doi.org/10.18653/v1/2020.intexsempar-1.5
https://doi.org/10.18653/v1/2020.intexsempar-1.5
https://doi.org/10.18653/v1/2020.findings-emnlp.167
https://doi.org/10.18653/v1/2020.findings-emnlp.167
https://doi.org/10.18653/v1/2020.findings-emnlp.167
https://doi.org/10.18653/v1/S18-2007
https://doi.org/10.18653/v1/S18-2007
https://doi.org/10.18653/v1/S18-2007
https://aclanthology.org/E99-1023
https://aclanthology.org/E99-1023
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.1145/3336191.3371782
https://doi.org/10.1145/3336191.3371782
https://aclanthology.org/C18-1327
https://aclanthology.org/C18-1327
https://aclanthology.org/C18-1327
https://doi.org/10.18653/v1/D19-1547
https://doi.org/10.18653/v1/D19-1547
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/2020.acl-demos.24
https://doi.org/10.18653/v1/2020.acl-demos.24


A Implementation Details

A.1 Baselines Implementation
We modified ETA since the vanilla version (Liu
et al., 2021) does not support ambiguous and unan-
swerable span detection. For a fair comparison,
we update the vanilla ETA in two ways. Firstly, in
the original inference part, the vanilla version of
ETA applies the greedy linking algorithm to only
keep the top 1 confidence score-related schema
item (column or value). We change the selection
process by allowing the top 3 candidates to be cho-
sen, whose confidence score should be greater than
the threshold. We consider those spans with multi-
grounding results as ambiguous spans. Second, to
enable ETA to handle unanswerable questions, we
add a UNK column to the schema part and train the
model to enable unanswerable span to get closer
to the UNK column. We consider those linked
with the UNK column as unanswerable spans. The
heuristic-based baseline (Sorokin and Gurevych,
2018) is n-gram matching via enumerating all n-
gram (n ≤ 5) phrases in a natural language ques-
tion and links them to schema items by fuzzy string
matching. We consider a span as an ambiguous one
when it can fuzzy match multiple results. Similarly,
if a noun phrase span can match no results, it is
considered to unanswerable span.

A.2 DTE Implementation
Our DTE model consists of a BERT encoder, and
three task modules, namely the concept prediction
module, grounding module, and sequence label-
ing module. We implement the first two modules
following the implementation details mentioned in
Liu et al. (2021) and use the same hyperparame-
ters. In addition, the sequence labeling module is
built by a dropout layer, a linear layer, and a CRF
layer which is based on the open-source repository
pytorch-crf3. The response template for ambigu-
ous questions is “Oops, this question has multiple
semantic meanings. X may refer to either "con-
cept1", "concept2", or "c3"”. What’s more, we
design the template for unanswerable questions as “
Sorry, we can’t find an answer for you since "X"
cannot be mapped to any concepts in your table”.
Examples can be seen in Figure 1.

A.3 Response Templates
The response template for ambiguous questions is
“Oops, this question has multiple semantic mean-

3https://github.com/kmkurn/pytorch-crf

ings. X may refer to either "concept1", "concept2",
or "c3"”. What’s more, we design the template for
unanswerable questions as “ Sorry, we can’t find
an answer for you since "X" cannot be mapped to
any concepts in your table”. Examples can be seen
in Figure 1.

A.4 Training Hyper-parameters
For all experiments, we employ the AdamW opti-
mizer and the default learning rate schedule strat-
egy provided by Transformers library (Wolf et al.,
2020). The learning rate of other non-BERT layers
is 1× 10−4. The max training step is 100,000 and
our training batch size is 35. The training process
last 6 hours on a single 16GB Tesla V100 GPU.

B Examples of NOISYSP dataset

In this section, we demonstrate some good and bad
cases of our DTE model prediction. Good case
examples are shown in Table 8 and Table 9. Bad
case examples are shown in Table 10 and Table 11.

Ambiguous Good Case of NoisySP

Q:   What is the minimum population of the parish with a 750.51  km area     ?
Gold: O     O O O B-AMB O  O O O O B-VAL I-VAL I-VAL O
Pred: O     O O O B-AMB O  O O O O B-VAL I-VAL I-VAL O

Schema: Official Name  || Area km 2 || foreign-born population || total estimated population
Description: correct prediction

Q:      Which  name has  a  state      of  Yan      ?
Gold:  O       B-AMB O   O B-COL  O  B-VAL O
Pred:  O       B-AMB O   O B-COL  O  B-VAL O

Schema: State || Type || born name || first name || Title || Royal house || From
Description: correct prediction

Table 8: Ambiguous good cases by DTE on the
NOISYSP data.

Unanswerable Good Case of NoisySP

Q: Which players college is Tennessee ?
Gold:   O      B-UNK B-COL  O  B-VAL  O
Pred:   O      B-UNK B-COL  O  B-VAL  O

Schema: Pick # || NFL Team || Position || College
Description: correct prediction

Q: What prefecture is listed in the map as number  39         ?
Gold:   O    B-UNK O  O O O B-COL O  B-COL  B-VAL  O
Pred:   O    B-UNK O  O O O B-COL O  B-COL  B-VAL  O

Schema: Number in map || Area (km²) || Population (2001) || Pop. density (/km²)
Description: correct prediction

Table 9: Unanswerable good cases by DTE on the
NOISYSP data.

5711



Ambiguous Bad Case of NoisySP

Q:       I  want the date of    appointment for manner of       departure being sacked
Gold: O  O O B-AMB O         O O B-COL  I-COL  I-COL O       B-VAL
Pred: O  O O B-UNK  I-UNK I-UNK O   B-COL  I-COL  I-COL O       B-VAL

Schema: Team || Manner of departure || busy date || date of vacancy
Description: widened span error

Q: What is the winning score on  Feb      12         ,         1978   ?
Gold: O  O O O B-AMB O   B-VAL I-VAL I-VAL I-VAL O
Pred: O  O O B-AMB  I-AMB   O   B-VAL I-VAL I-VAL I-VAL O

Schema: home team score || score || Margin of Victory || Runner(s)-up || Date || Tournament
Description: widened span error

Table 10: Ambiguous bad cases by DTE on the
NOISYSP data.

Unanswerable Bad Case of NoisySP

Q: How many hectars of         land       is  in Kaxholmen ?
Gold: O     O B-UNK I-UNK I-UNK O  O B-VAL       O
Pred: O     O O O B-UNK   O  O B-VAL       O

Schema: Urban area (locality) || Municipality || Population || Density (inh./km²) || Code
Description: narrowed span error

Q: What was the elimination number of the fighter who fought within 26:15   ?
Gold: O     O O B-UNK         I-UNK O  O O O O O B-VAL O
Pred: O     O O O O O O O O O O B-VAL O

Schema: Wrestler || Entered || Eliminated by || Method of elimination || Time
Description: wrong detection error

Table 11: Unanswerable bad cases by DTE on the
NOISYSP data.

C Proposal for remaining 25%
problematic questions

The remaining categories are (1) Value Ambiguity
(10%); (2) Value Unanswerable (7%); (3) Calcu-
lation Unanswerable (6%); and (4) Out of Scope
(2%). Although our data generation method does
not cover these categories, our DTE model trained
with our generated dataset NoisySP can generalize
to questions of these categories (results are shown
in Sec. 5.3), especially for Value Ambiguity and
Value Unanswerable. This is because columns and
values are treated as concepts that share the same
pattern.

For the Calculation Unanswerable category, for-
mulaic knowledge is needed to inject the model
with the necessary background information. Exist-
ing works, such as KnowSQL (Dou et al., 2022),
are intended to solve this kind of problem.

As for the Out of Scope problem, which usually
calls for graphic operation or other unsupported
operations, it can be easily handled with a blacklist
or a simple classifier.

5712



ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

Limitations

�7 A2. Did you discuss any potential risks of your work?
Left blank.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
abstract, introduction

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
4.2

�3 B1. Did you cite the creators of artifacts you used?
4.2

�3 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Ethics Statement

� B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Not applicable. Left blank.

�3 B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
3

�7 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Left blank.

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Left blank.

C �3 Did you run computational experiments?
5

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
A

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

5713

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/


�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
5, A

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
5.2, 5.3, 5.4

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
5

D �3 Did you use human annotators (e.g., crowdworkers) or research with human participants?
3

�3 D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
3

�7 D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
China

�7 D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
no

�3 D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
3

�7 D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
no

5714


