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Abstract
Multilingual language models have recently
gained attention as a promising solution for rep-
resenting multiple languages in a single model.
In this paper, we propose new criteria to eval-
uate the quality of lexical representation and
vocabulary overlap observed in sub-word to-
kenizers. Our findings show that the overlap
of vocabulary across languages can be actu-
ally detrimental to certain downstream tasks
(POS, dependency tree labeling). In contrast,
NER and sentence-level tasks (cross-lingual
retrieval, NLI) benefit from sharing vocabu-
lary. We also observe that the coverage of
the language-specific tokens in the multilin-
gual vocabulary significantly impacts the word-
level tasks. Our study offers a deeper under-
standing of the role of tokenizers in multilin-
gual language models and guidelines for future
model developers to choose the most suitable
tokenizer for their specific application before
undertaking costly model pre-training.1

1 Introduction

Multilingual language models perform surprisingly
well in a variety of NLP tasks for diverse languages
(Devlin et al., 2019; Conneau and Lample, 2019;
Conneau et al., 2019). It has been observed that
the representation of the input sequence has a sig-
nificant effect on their effectiveness (Mielke et al.,
2021). In the widely used Transformer (Vaswani
et al., 2017) models achieving state-of-the-art re-
sults through diverse tasks, a large fraction of pa-
rameters are allocated in the input encoding layer.2

The popular language-independent approach to rep-
resent the input texts is to learn a vocabulary of fre-
quently appearing strings that may consist of words
or parts of words (Sennrich et al., 2016; Song et al.,
2021; Kudo and Richardson, 2018).

1The code is available at: github.com/tomlimi/
entangled_in_scripts.

2For instance, in XLM-RobertaBase, 192M out of 270M
parameters are in the input embedding layer (approximately
70%).
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Figure 1: Mapping the impact of vocabulary alloca-
tion and vocabulary overlap on language model perfor-
mance. The location of points corresponds to Spearm-
nan’s correlation between vocabulary measures and the
task score (see the details in Tables 3 and 5). High
vocabulary overlap benefits NER and sentence-level
tasks (NLI, sentence retrieval) and hinders POS and
dependency labeling performance. High vocabulary
allocation improves word-level tasks but leads to a de-
crease in masked language modeling scores. Masked
language modeling is measured only in language. Thus
it’s unaffected by vocabulary overlap. Analogically,
sentence retrieval is solely cross-lingual and unaffected
by vocabulary allocation.

In this work, we focus on the characteristics of
subword tokenization methods in a multilingual
setting. Our main contribution is the introduction
of the methods for measuring whether tokenizers
effectively represent meaningful language-specific
tokens in the vocabulary (vocabulary allocation)
and whether the units they learn are shared across
languages (vocabulary overlap). We posit the fol-
lowing questions:
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(Q1) How do sub-word tokenizers differ in
overlap and allocation of learned vocabularies?
To answer this question, we apply the metrics to to-
kenizers obtained with two widely used algorithms:
SentencePiece Unigram LM (Kudo and Richard-
son, 2018), and BPE (Sennrich et al., 2016). Fur-
thermore, we propose two methods of learning tok-
enizers on monolingual corpora and then combin-
ing them to allow the tokenization of multilingual
texts.

(Q2) Which properties of multilingual tok-
enizers affect the LM’s representation quality?
We address this question by training small language
models utilizing different tokenization methods.
We evaluate the models on masked word predic-
tion and a diverse set of downstream tasks: POS,
NER tagging, dependency tree labeling, NLI, and
cross-lingual sentence retrieval.

The proposed evaluation scheme offers a good
prediction of language models’ performance. No-
tably, we show that the system results significantly
improve when tokenizers allocate more vocabu-
lary units for specific languages. Our investiga-
tion shows that this aspect has a bigger influence
than the vocabulary overlap for word-level tasks
(see Figure 1). To the best of our knowledge, the
interactions between multilingual vocabulary al-
location and vocabulary overlap have not been
investigated in past research.

2 Multilingual Subword Tokenization

The majority of the currently deployed models use
subword tokenization as a way to pre-process the
input texts. The input is represented as a sequence
of units from a finite vocabulary, which can be
translated into numeric representation by an input
embedding layer.

The benefits of subword tokenization are the
ability to obtain numeric representation for mean-
ingful words frequently used in the resources and
handling less frequent words by splitting them into
subwords. The latter property mitigates the prob-
lem of out-of-vocabulary (OOV) words by break-
ing them down into smaller parts (sub-words) al-
ready present in the vocabulary. It is crucial in
handling multilingual texts, especially in languages
with large vocabularies and complex morphology.

In the following section, we describe two widely
used algorithms of subword tokenization:

2.1 Background: Subword Tokenization

Byte-pair encoding BPE: (Sennrich et al., 2016)
is a subword tokenization method that iteratively
replaces the most frequent pair of vocabulary units
in the input text with a single unit. The process
starts with taking unique characters of the training
text as the initial vocabulary. Subsequently, we take
the most frequent pair of vocabulary units, merge
the pair, and add it as a new unit to the vocabulary.
This process is repeated until a pre-set vocabulary
size N is reached.

Unigram LM: (Kudo, 2018) is the method of
obtaining subword vocabulary that was first in-
troduced as the underlying tokenizer of Senten-
cePiece algorithm (Kudo and Richardson, 2018).
The prerequisite is obtaining an extensive vocabu-
lary, e.g., consisting of all strings present in data
with at most, a predefined number of characters.
The expectation-maximization algorithm is used to
estimate the probability of vocabulary units. Af-
ter EM convergence, the portion of units with the
lowest contribution to the likelihood of the training
corpus is removed from the vocabulary. The proce-
dure is repeated until the pre-set vocabulary size is
obtained.

2.2 Combining Monolingual Tokenizers

Rust et al. (2021) observed that subword tokenizers
trained on monolingual data outperform multilin-
gual ones. The latter can overrepresent the sub-
words specific to languages constituting a large por-
tion of the training corpora (e.g., English). More-
over, their vocabulary is less likely to contain mor-
phemes important in modeling low-resource lan-
guages and instead prioritizes less meaningful char-
acter sequences appearing across languages.

To alleviate this issue, we suggest utilizing
monolingual tokenizers for multilingual tokeniza-
tion. First, the Unigram LM tokenizers are trained
on separate monolingual corpora. The tokenizers
are then combined to create a tokenizer suitable
for multilingual data. We propose two methods for
combining monolingual tokenizers:

Language-specific Tokenization NOOVER-
LAP: We train Unigram tokenizers for each of
L considered languages with the same vocabulary
size for each of the languages N

L . In multilingual
tokenization, we apply the tokenizer for a specific
language separately and produce a token with lan-
guage identification.3 The vocabulary consists of L

3Only the special tokens are shared across languages, e.g.,
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segments of total size N . Naturally, the tokenized
texts in different languages will consist of tokens
from distinct vocabulary segments. Noticeably, the
same character sequence in different languages can
be assigned different token ids.

Language-Mixed Tokenization TOKMIX: We
train Unigram LM tokenizers for each of L lan-
guages. Subsequently, we averaged vocabulary unit
probabilities across tokenizers, sorted them, and
trimmed the vocabulary to the pre-set vocabulary
size N keeping the units with the highest probabil-
ity. 4

θ̂ =
L∑

i=1

wiθi (1)

wi are weights assigned to each language. By de-
fault, we set the weights to be uniform and equal
to 1

L . Unlike NOOVERLAP, the same vocabulary
units coming from distinct monolingual tokenizers
are merged into one unit with averaged probability.

2.3 Tokenizer and Model Training Setting
We initially focused on a group of 6 languages vary-
ing both in the script and language family: Arabic,
Chinese, Greek, Turkish, Spanish, and English. In
subsequent experiments, we extend the method to
20 languages.

We download 10% of CC corpus available atv
https://data.statmt.org/cc-100/. Follow-
ing the methodology in (Conneau and Lample,
2019), we subsample each language’s data to en-
sure that the training corpus is well-balanced across
languages. An equation defines the sample size cl
for language l:

cl,α = cmin ·
( |Cl|
cmin

)α

(2)

Where cmin is the minimal sample size (defined
by the smallest language), and Cl is all data avail-
able for a language, α is the so-called “balancing
parameter”. In our experiments, we set cmin to 10
M characters, Cl is, e.g., 8.8 B characters for En-
glish. We set α to 0.25, which corresponds to a bal-
ancing factor picked for XLM-Roberta (Conneau
et al., 2019). The training data for the tokenizer
and the model are the same. The vocabulary size N
was set to 120,000. Appendix A contains technical
details about our approach.

“<s>” – the beginning of a sentence token.
4To account for possible overlaps between language-

specific vocabularies, we set their sizes above N
L

. It assures
that joint vocabulary will have at least N tokens.

3 Measuring Tokenizer Properties

This section presents our in-depth analytical ap-
proach to evaluate different aspects of multilingual
tokenization. We introduce non-parametric mea-
sures that describe the key properties of multilin-
gual tokenizers: quality of vocabulary representa-
tion for particular languages and lexical overlap
across languages.

We base our analysis on the empirical probability
distribution of vocabulary units v ∈ V computed
on training corpus for each language l:

dl,V(v) =
f(v, Cl)∑
v∈V f(v, Cl)

(3)

Function f(v, Cl) is the number of occurrences
of a vocabulary unit v in monolingual training cor-
pus Cl.

3.1 Vocabulary Allocation

We aim to quantify how well multilingual vocabu-
lary represents meaningful lexical units of partic-
ular languages. Our intuition is that a good lexi-
cal representation is obtained when: 1. It uses a
vast portion of multilingual vocabulary, and thus a
larger part of the embedding layer is devoted to the
language; 2. The text in the language is split into
longer and potentially more meaningful tokens.

Vocabulary Allocation: Average Rank To mea-
sure the number of vocabulary units available for
modeling specific languages, we propose an es-
timation of the average rank of vocabulary units
in distribution over a monolingual corpus.5 This
measure denotes how many tokens are typically
considered by a language model that has access to
language identity information but no context (prob-
abilistic unigram LM).

ARl,V =
∑

v∈V
rank(v, dl,V)dl,V(v) (4)

Our intuition is that model will have better infor-
mation about the language’s lexicon when vocabu-
lary is distributed over a larger number of tokens
as more parameters of the input embedding layer
would be allocated to represent language-specific
features. Moreover, larger vocabularies tend to
cover longer and more meaningful units.

5In this context, rank is the position of unit v in the vocab-
ulary V sorted in descending order by the probability distribu-
tion dl,V

5663

https://data.statmt.org/cc-100/


Vocabulary Allocation: Characters per Token
In line with previous intuition, longer tokens have
a more meaningful representation. Therefore, we
measure text fragmentation by computing the aver-
age number of characters for a vocabulary unit in
monolingual corpus Cl.:

CPTl,V =
|Cl|

|TV(Cl)|
(5)

TV(Cl) is the tokenization of the corpus with vo-
cabulary V; |Cl| is the size of the corpus measured
as the number of characters. We choose the num-
ber of characters as the unit to relate to because
it’s not susceptible to cross-lingual differences re-
garding word boundaries and the average length of
words. Still, the amount of information conveyed
by a single character varies largely with the writing
systems, e.g., texts written in logographic scripts
(e.g., Chinese, Japanese) tend to be shorter in the
number of letters than similarly informative ones
in the phonetical script (e.g., Latin) (Perfetti and
Liu, 2005).

3.2 Vocabulary Overlap

Another important property of multilingual vocab-
ulary is sharing lexical units across languages. Pre-
vious works claimed that vocabulary overlap im-
proves cross-lingual transfer for learning down-
stream tasks (Pires et al., 2019; Wu and Dredze,
2019). We measure overlap as the divergence be-
tween corpora distributions dl (defined in equa-
tion 3). We use the Jensen-Shanon divergence.6

We apply JSD because it is symmetric and appli-
cable for distribution with different supports. The
latter is often the case when distributions are esti-
mated for languages with distinct writing systems.

JSD(dl1,V ||dl2,V) =

=
1

2

∑

v∈V
dl1,V(v) log2

dl1,V(v)
ml1,l2,V(v)

+

+
1

2

∑

v∈V
dl2,V(v) log2

dl2,V(v)
ml1,l2,V(v)

(6)

where:

ml1,l2,V =
1

2
dl1,V +

1

2
dl2,V (7)

6In NLP literature, JSD is also known as “information
radius” (Manning and Schütze, 2001).

JSD is bounded in the range 0 to 1. The lower
the value, the larger the overlap across corpora.

Another possibility to quantify overlap is to
count unique vocabulary units appearing in tok-
enized texts across languages. The advantage of
divergence is that it reflects the frequency of shared
tokens across corpora. It is also less affected by the
choice of the data size used for estimating empiri-
cal probability distributions (dl).

4 Evaluating Language Modeling and
Downstream Tasks

In this section, we present the tasks and measures
for evaluation of multilingual language models
trained with different tokenizers.

4.1 Language Modeling
We evaluate the masked language modeling perfor-
mance with mean reciprocal rank:

MRR =
1

N

N∑

i=1

1

rank(xi, P̂ (·|X \ xi))
(8)

where P̂ (·|X \ xi) is the probability over vocab-
ulary of predicting token xi by the model given its
context: X \ xi.

4.2 Downstream Evaluation
The downstream tasks are taken from the XTREME
(Hu et al., 2020), which is the collection of diverse
datasets with predefined splits used to evaluate mul-
tilingual models’ representation.

We probe the models’ output representation to
evaluate how useful the learned representation is
for the downstream tasks. Only an additional linear
layer is trained for the task, while the base model
representation is frozen. The approach is suitable
for evaluating how well the pre-trained model en-
codes linguistic phenomena as it does not change
parameters learned in pre-training in contrast to reg-
ular fine-tuning (Conneau et al., 2018a; Belinkov,
2022).

Word-level Tasks The first set of tasks covers
classification on a single word or word pair level.
The probe is a linear layer taking word represen-
tations on input and outputting one of the classes.
For word representations, we take the model’s out-
put embedding of the first subwords. We evaluate
the results with an F1 score averaged across classes
(macro-average).
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ar tr zh el es en

AR

Unigram 2129 2719 5919 2070 1439 1513
BPE 2972 3226 4294 2907 2220 2143
NoOverlap 2537 2653 2090 2065 1661 1597
TokMix 3485 4167 3961 2639 1999 1898

CPT

Unigram 3.16 4.01 1.84 3.5 3.88 3.91
BPE 3.7 4.19 2.03 3.97 4.34 4.22
NoOverlap 3.53 4.19 1.56 3.81 4.15 4.15
TokMix 3.7 4.45 1.73 3.9 4.24 4.18

Table 1: Values of vocabulary allocation measures for
4 tokenizers trained on the small language set. The
highest values for each language are bolded.

We test syntactic tasks: Part of Speech and
Dependency labeling on Universal Dependencies
(de Marneffe et al., 2021) and Named Entity
Recognition on Wikiann dataset (Pan et al., 2017).
In dependency labeling, we use edge probe (Ten-
ney et al., 2019) on top of the representation of two
words connected by the dependency arc.

Sentence-level Tasks In this set of tasks, we ex-
amine whether the model learns sentence-level rep-
resentations that capture its semantics and can be
transferred across languages. To obtain this sen-
tence embedding, we average the model’s output
representation across all the tokens in the sentence.

We evaluate Natural Language Inference on
XNLI dataset (Conneau et al., 2018b) and Sentence
Retrieval on Tatoeba bitext corpus (Artetxe and
Schwenk, 2019). For NLI, we use edge probing.
Sentence retrieval is solved by an unsupervised
algorithm matching sentences based on their cosine
similarity. In Appendix A.3, we provide details of
the datasets and probe training.

4.2.1 In-language vs. Cross-lingual Transfer
For all the downstream tasks, except sentence re-
trieval, we compute in-language performance by
training the probe and evaluating it on held-out
test data in the same language. We quantify cross-
lingual transfer by training a probe on one language
(source) and evaluating it on the test set for another
language (target).

5 Experiments and Results

We train four tokenizers for the smaller set of
diverse 6 languages (en, es, tr, el, zh, ar) using
existing methods: Unigram, BPE, and our meth-
ods for monolingual tokenizer merging: NOOVER-
LAP, TOKMIX. Using these tokenizers, we then
train four models7 following the settings of XLM-

7Details about the pretraining and probing procedures are
described in Appendix A.2
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Figure 2: Vocabulary overlap measure: Jensen-Shanon
divergence for four tokenization methods. Orange
square in the bottom right groups the languages with the
same script (Latin).

Roberta (Conneau et al., 2019) which we then use
for the probing experiments.

In Section 5.1, we analyze the distribution of
learned vocabulary units and compute vocabulary
allocation and vocabulary overlap measures de-
scribed in Section 3. Then in Section 5.2, we eval-
uate the models’ performance measures introduced
in Section 4 and compare them with the measures
for tokenizers.

Subsequently, we repeat the analysis for the
broader set of 20 diverse languages (including six
mentioned earlier and: he, ka, ur, hi, mr, th, ta, te,
bg, ru, sw, vi, fr, de) with three tokenization meth-
ods used in three pre-trained models. In this set-
ting, we do not use NOOVERLAP tokenizer, which
cannot be trained effectively due to the necessity
of constraining vocabulary for each language to
N
L = 6, 000.

5.1 Evaluation of Tokenizers’ Properties
Vocabulary allocation largely varies through-
out languages and tokenization methods. Ta-
ble 1 shows that the average rank noticeably dif-
fers across languages. The highest AR is observed
for Chinese, which is caused by the fact that lo-
gographic scripts require an extensive vocabulary
capacity to encode all characters.

Multilingual vocabulary allocation is highly de-
pendent on the tokenization method used. Vocabu-
lary learned with Unigram underperforms BPE and
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V. Allocation MLM NER POS Dep. labeling NLI
(AR) (CPT) (MRR) (F1) (F1) (F1) (Acc)

Unigram 2042 3.17 42.0 62.8 ±0.1 57.1 ±0.2 48.1 ±0.4 53.4 ±0.5

BPE 2193 4.47 35.6 70.4 ±0.1 68.9 ±0.2 58.7 ±0.4 53.3 ±0.3

NoOverlap 1829 3.16 42.7 69.4 ±0.1 69.2 ±0.2 58.8 ±0.3 53.0 ±0.4

TokMix 2198 3.34 38.7 70.2 ±0.1 67.3 ±0.1 57.3 ±0.4 53.3 ±0.4

(a) 6 languages

V. Allocation MLM NER POS Dep. labeling NLI
(AR) (CPT) (MRR) (F1) (F1) (F1) (Acc)

Unigram 623 2.89 52.6 58.9 ±0.2 54.0 ±0.4 43.7 ±0.4 53.2 ±0.3

BPE 809 3.43 40.5 66.3 ±0.2 67.3 ±0.4 54.5 ±0.5 53.5 ±0.3

TokMix 689 3.23 44.8 65.4 ±0.3 66.5 ±0.4 53.9 ±0.5 52.3 ±0.3

(b) 20 languages

Table 2: Avearged results of evaluation for in-language properties and tasks. Each probing result is an average of 5
random seeds (for 6 languages) and 3 random seeds (for 20 languages). The best value in each metric is underlined,
and bolded results are closer than the sum of standard deviations from the optimal value.

V. Allocation MLM
(AR) (CPT) (MRR)

CPT 0.790 - -
MRR -0.723 -0.913 -
NER 0.394 0.657 -0.745
POS 0.320 0.724 -0.754
Dep l. 0.266 0.675 -0.695
NLI 0.56 0.388 -0.437

Table 3: Spearman correlations between task coeffi-
cients for in-language results and tokenizer measures.
Statistically significant correlations (p < 0.01) are
bolded. Computed for 20 languages.

TOKMIX in both average rank and character per to-
ken. Table 7 presented in the Appendix shows that
this trend exists throughout languages except for
Chinese. This suggests that our vanilla Unigram is
a suboptimal multilingual vocabulary learner.

It is important to note that NOOVERLAP scores
even lower than Unigram in the vocabulary alloca-
tion measures due to the limited vocabulary size for
each language and disallowing overlap. However,
as shown in the next sections, LM trained with this
tokenizer can achieve good results on some tasks.

The choice of tokenization method affects vo-
cabulary overlap. Figure 2 shows Jensen-Shanon
divergencies between the vocabularies of six lan-
guages. We observe that the highest cross-lingual
overlaps appear in the vocabulary obtained by Uni-
gram, followed by TOKMIX, and BPE. Expectedly,
we do not observe overlaps for NOOVERLAP’s set-
ting (JSD = 1).

Jensen-Shanon divergence is a good predictor of
whether the languages share the script. For all tok-
enization methods, the divergence is significantly
smaller in the bottom-right square grouping of the
languages using Latin script. This effect is even
more visible in the visualization of JSD computed
for twenty languages (Figure 8 in Appendix C).

5.2 Tokenizer Properties Impact Language
Model’s Performance

High vocabulary allocation improves down-
stream results for word-level tasks. In Table 2a,
we observe that the choice of the tokenization
method significantly impacts the results for POS,
dependency labeling, and NER. We presume it re-
sults from learning good lexical representations
throughout languages, e.g., by BPE and TOKMIX.
The higher vocabulary allocation is especially ben-
eficial for word-level tasks. Whereas the influence
on the sentence-level task (NLI) is minimal.

Notably, the model instance with NOOVERLAP

tokenizer achieves the best F1 in POS and depen-
dency labeling despite underperforming in vocabu-
lary allocation. It is the result of learning language-
specific representation for tokens that is especially
useful for syntactic tasks.

Better MLM performance doesn’t bring im-
provement to downstream tasks. In Table 2a,
we observe that the models performing better on
masked token prediction (MRR) tend to be worse
on downstream tasks (POS and NER). It is the
result of different average ranks. The higher it
is, the more vocabulary units a language model
needs to consider for masked token filling, making
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Different Same All
Metric Tokenizer script script transfers

Overlap
(JSD)

Unigram 0.77 0.62 0.74
BPE 0.83 0.68 0.8
NoOverlap 1.0 1.0 1.0
TokMix 0.8 0.65 0.77

NER
(F1)

Unigram 31.3 ±0.4 55.4 ±0.2 36.1 ±0.4

BPE 33.5 ±0.5 59.9±0.2 38.7 ±0.4

NoOverlap 32.0 ±0.5 48.6 ±0.4 35.3 ±0.5

TokMix 31.8 ±0.4 58.0 ±0.3 37.0 ±0.4

POS
(F1)

Unigram 18.1 ±0.4 38.3 ±0.4 22.2 ±0.4

BPE 25.8 ±0.5 40.8 ±0.4 28.8 ±0.5

NoOverlap 20.1 ±0.5 41.9 ±0.5 24.5 ±0.5

TokMix 21.9 ±0.4 40.4 ±0.3 25.6 ±0.4

Dep. labeling
(F1)

Unigram 11.1 ±0.3 25.5 ±0.3 14.0 ±0.3

BPE 15.9 ±0.4 27.0 ±0.4 18.1 ±0.4

NoOverlap 12.8 ±0.4 27.8 ±0.5 15.8 ±0.4

TokMix 12.6 ±0.5 26.1 ±0.3 15.3 ±0.5

NLI
(Acc)

Unigram 42.2 ±0.7 43.7 ±0.7 42.5 ±0.7

BPE 42.4 ±0.7 45.2 ±0.8 43.0±0.7

NoOverlap 37.3 ±0.6 37.1 ±0.5 37.2 ±0.6

TokMix 41.2 ±0.7 42.7 ±0.5 41.5 ±0.7

Retrieval
(Acc)

Unigram 21.0 43.9 25.6
BPE 20.9 40.7 24.9
NoOverlap 12.3 28.0 15.4
TokMix 23.0 43.4 27.1

(a) 6 languages

Different Same All
Tokenizer script script transf

Unigram 0.75 0.58 0.73
BPE 0.83 0.67 0.81

TokMix 0.8 0.64 0.78

Unigram 33.2 ±0.5 50.7 ±0.6 35.4 ±0.5

BPE 36.6 ±0.6 54.3 ±0.3 38.8 ±0.5

TokMix 36.5 ±0.6 53.7 ±0.5 38.7 ±0.6

Unigram 23.4 ±0.5 32.9 ±0.3 24.6 ±0.5

BPE 30.5 ±0.6 40.7 ±0.4 31.8 ±0.6

TokMix 29.2 ±0.5 40.4 ±0.3 30.7 ±0.5

Unigram 13.0 ±0.6 15.6 ±0.5 13.4 ±0.6

BPE 16.5 ±0.6 19.2 ±0.5 16.9 ±0.5

TokMix 16.0 ±0.5 19.4 ±0.4 16.5 ±0.5

Unigram 37.3 ±0.5 37.5 ±0.4 37.4 ±0.5

BPE 36.2 ±0.5 38.7 ±0.5 36.7 ±0.5

TokMix 37.8 ±0.5 39.2 ±0.5 38.1 ±0.5

Unigram 44.1 44.4 44.2
BPE 44.1 49.1 45.1

TokMix 42.8 46.9 43.6

(b) 20 languages

Table 4: Averaged results of the evaluation for cross-language overlaps and transfers. Each probing result is an
average of 5 random seeds (for 6 languages) and 3 random seeds (for 20 languages). The best value in each metric
is underlined, and bolded results are closer than the sum of standard deviations from the optimal value.

masked word prediction harder. At the same time,
a high average rank means that the vocabulary is
broader and contains lexical units important for
downstream tasks.

Again, this trend does not hold for the results for
NOOVERLAP setting, in which the search space
for the masked-word problem is limited to the
language-specific tokens leading to the best per-
formance in MLM and syntactic tasks (POS and
dependency label prediction).

In Table 3, we show that the strong relation-
ship between vocabulary allocation (avg. rank and
CPT) and LM performance (MRR) is statistically
supported. The length of token units has a strong
positive influence on POS, dependency labeling,
and NER results (r > 0.65) and a negative influ-
ence on MRR (r < −0.9), while it does not signif-
icantly affect NLI results. The correlation between
the average rank and MRR, NER scores is weaker
but still significant. Moreover, it is significantly
correlated with XNLI accuracy with a medium co-
efficient r = 0.56, even though the changes in
XNLI are low across tokenizers.

Impact of vocabulary overlap on cross-lingual
transfer varies across tasks. We observed that
NOOVERLAP approach obtains competitive results
for POS tagging . Surprisingly no vocabulary shar-
ing also improves cross-lingual transfer in the task
among languages with Latin script (shown in Ta-
ble 4a and Figure 3b). We think that the reason
behind the strength of NOOVERLAP approach is
that some tokens have different meanings across
languages, e.g., the word “a” is an indefinite article
in English and a preposition in Spanish.

Nevertheless, vocabulary overlap is crucial to
cross-lingual transfer in some tasks. Especially
NER within the same script languages (Figure 3a)
and sentence-level tasks. For these tasks, NOOVER-
LAP significantly underperforms other tokenization
methods. The drop within Latin script languages
is in the range: 6.8 - 11.3% for NER and 12.7 -
15.9% for sentence retrieval. In these cases, usage
of the same tokens can indicate that texts refer to
the same entities across languages, e.g., names are
usually the same strings in the languages sharing
writing system.
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Figure 3: Cross-lingual transfer for POS and NER tasks. The absolute values are presented for the Unigram
tokenizer. For other tokenization methods, the color scheme shows a difference from the Unigram algorithm. In the
case of NER, we observe a drop in cross-lingual transfer for NOOVERLAP tokenization, especially for the same
script pairs, suggesting that lexical overlap is an important aspect contributing to cross-lingual transfer for NER. We
don’t see similar drop in the case of Part of Speech tagging.

V. Overlap V. Allocation SRC V. Allocation TGT
(JSD) (AR) (CPT) (AR) (CPT)

NER -0.111 0.249 0.33 0.209 0.28
POS 0.395 0.365 0.547 0.489 0.653
Dep l. 0.463 0.19 0.425 0.249 0.44
NLI -0.516 0.421 0.203 0.297 0.103
Retrieval -0.648 0.235 0.082 0.238 0.085

Table 5: Spearman correlations between cross-lingual transfer results and tokenization measures. vocabulary
overlap is measured by JSD, we also measure the correlation with vocabulary allocations of source and target
language of the transfer directions. Statistically significant correlations (p < 0.01) are bolded. Computed for six
languages.

Table 5 presents the correlations for cross-
lingual transfer scores with JSD measuring vocabu-
lary overlap. The coefficient supports our previous
observation that lower overlap (thus higher JSD)
improves transfer for POS tagging and dependency
labeling and deteriorates it for other tasks. Al-
though, the correlation for NER is not significant.
The vocabulary allocations of source and target
languages significantly influence the cross-lingual
transfers. Similarly to the in-language correlations,
the influence of character per token is more sub-
stantial on word-level tasks, while Average Rank
affects sentence-level tasks to a larger extent. This
observation underlines the importance of allocating

a sufficient portion of vocabulary for low-resource
for better cross-lingual transfer. 8

Results generalize to the larger set of languages.
The key observation for six language sets holds
in the model trained for twenty languages. Ta-
ble 2b shows that BPE and TOKMIX obtain bet-
ter vocabulary allocation than Unigram leading to
improved results for word-level downstream tasks
(NER, POS, Dependency labeling). Due to the
smaller vocab size to the language number ratio,
average ranks decrease for all methods.

We observe in Table 4b that the cross-language

8We describe the correlation analysis in detail in Ap-
pendix C.3.
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vocabulary overlap is the highest for Unigram and
lowest for BPE, similar to the six languages set-
tings. However, the association between vocabu-
lary overlap and the cross-lingual transfers is less
pronounced.

6 Related Work

Importance of vocabulary overlap. Wu and
Dredze (2019); Pires et al. (2019) claimed that mul-
tilingual overlap benefits cross-lingual transfer. In
contrast to this work, they compare overlaps for dif-
ferent language pairs with only one tokenizer. We
think that their observations may be confounded by
the typological similarity between languages. In
the following works, Conneau et al. (2020) found
that sharing parameters in top layers is more impor-
tant to multilingualism than same token embedding.
Similar results were demonstrated by Wang et al.
(2021); Dufter and Schütze (2020) who show that
in bilingual models, artificially removing vocabu-
lary overlap (similarly to ours NOOVERLAP) does
not deteriorate cross-lingual transfer. In contrast
to many previous approaches, we used probing
for evaluation because this method offers better
insight into representation learned in pre-training.
Similarly, our results, Malkin et al. (2022); Lim-
isiewicz et al. (2022) observed that differences in
scripts could, in some cases, improve the cross-
lingual transfer in masked language modeling and
for downstream tasks.

Importance of vocabulary allocation. The ef-
fect of vocabulary allocation on model perfor-
mance was studied to a lower extent. Zheng et al.
(2021) observed that limited vocabulary capacity
allocated for specific languages impedes the down-
stream tasks’ performance and thus proposed a
method to obtain more balanced vocabulary alloca-
tion throughout languages. For the same purpose,
Chung et al. (2020) proposed a novel approach to
generating multilingual vocabulary based on clus-
tering the target languages and merging separate
vocabularies. Recently, Liang et al. (2023) based
on the elements of both approaches and increased
vocabulary to train the XLM-V model, achieving
better results than its predecessor (XLM-Roberta
Conneau et al. (2019)).

In a monolingual setting, Bostrom and Durrett
(2020) argued that Unigram tokenization produces
subword tokens that are more aligned with mor-
phological units that bring improvement for down-
stream tasks. This contrasts with our finding of

Unigram’s underperformance when applied to a
multilingual corpus.

Improving multilingual sub-word tokenization.
Patil et al. (2022) proposed a modification to BPE
algorithm that increases overlap between similar
languages and benefits cross-lingual transfer. Rust
et al. (2021) observed that models with dedicated
monolingual tokenizers outperform multilingual
ones. This observation can be utilized by adapt-
ing the embedding layer of the model for a tar-
get language (Pfeiffer et al., 2020; Artetxe et al.,
2020; Minixhofer et al., 2022). However, these
approaches require language-specific modification
of the model, limiting its multilingual aspect.

Alternatives to sub-word tokenization. There
are multiple alternative approaches for inputting
text into deep models, such as character-based rep-
resentation (Clark et al., 2022), byte input (Xue
et al., 2022), or representing the input text as im-
ages (Salesky et al., 2021). Mielke et al. (2021)
summarize a wide range of methods and point out
that they offer trade-offs and may be better suited
for certain tasks or languages.

7 Conclusions

We introduced a new framework for the evalu-
ation of multilingual subword tokenizers. We
show that vocabulary allocation is a crucial as-
pect affecting the results of many downstream tasks.
Specifically, we have observed the following trends:
1. Including longer and more diverse vocabulary
units (higher vocabulary allocation) improves in-
language results and cross-lingual transfers for
word-level tasks; 2. vocabulary overlap is ben-
eficial for cross-lingual transfer in sentence-level
tasks; 3. Among languages with the same script,
vocabulary overlap improves transfer for NER and
deteriorates it for POS and dependency labeling.
Our conclusions are in line with the observation of
Mielke et al. (2021) that there is no “silver bullet
solution” tokenizer suiting all purposes.

We release the code for measuring tokenizer
properties: github.com/tomlimi/entangled_
in_scripts. We believe that it will be a useful
evaluation tool for the developers of models who
can get a better insight into the tokenization method
before computationally expensive model training.
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Limitations

To achieve robust, unbiased results, we decided to
train first on a smaller number of languages, fix our
methodology and then confirm our findings on the
full set of languages. This meant that two rounds
of pretraining needed to be done and because of
that, we scaled our models down for computational
efficiency reasons.

Another limitation of our methodology is the
choice to train linear probes on top of the contex-
tualized word representations instead of the more
common finetuning approach. Nevertheless, we
think that probing gives better insight into the pre-
trained model’s representation.

Ethics Statement

We do not identify ethical risks connected to this
work.
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A Technical Details

A.1 Tokenizer training details

We use the Huggingface Tokenizers library for
training the Unigram and BPE tokenizers. We
kept the default values for the training parameters.
Namely, for Unigram, we use a maximum piece
length of 16 and a shrinking factor of 0.75. For
BPE, we use alphabet size 1000 and minimum
merge frequency 2. For all languages, we use
SentencePiece (Kudo and Richardson, 2018) for
word segmentation techniques instead of language-
specific word tokenizers.

A.2 Model Architecture and Pre-Training

In this study, we employed the Huggingface li-
brary (Wolf et al., 2020) to conduct all experiments.
The model architecture is based on XLM-Roberta,
although for our purposes, it was scaled down.
Specifically, the size of the embeddings is 768,
the number of attention layers is 8, and the number
of attention heads is 6. The maximum sentence
length is 128, and the vocabulary size is 120000.
The number of parameters is 150M and, therefore,
roughly 2 times smaller than the XLM-Roberta
base model.

The model was pre-trained for 10 epochs with a
batch size of 1024. The learning rate was 5e-5 with
linear decay and weight decay and 1% warm-up
steps. In pretraining, we used AdamW optimizer
(Loshchilov and Hutter, 2019).

In total, we pretrained 7 models. The models
were trained on 3 Nvidia GPUs. The probing ex-
periments were run on 1 Nvidia GPU with 40GB
of memory (Nvidia A40). The pretraining took
about 17 hours for each 6-language model and 60
hours for the models trained on the full set of 20
languages.

We didn’t pursue any extensive hyperparameter
search efforts as this was not the focus of our work.
We selected the best batch size and learning rates
for the pre-training based on a few trials.

A.3 Downstream Data and Training

The probes were for 30 epochs with early stopping
and batch size 16. We used an initial learning rate
of 2e-5. Other training parameters were the same as
in pretraining. Probing experiments took between
5 to 180 minutes to complete on the same infras-
tructure as used for pretraining. We ran around 360
probe trainings.

POS We use Part of Speech annotations from
Universal Dependencies (de Marneffe et al., 2021).
The dataset is available for 17 languages analyzed
by us (not covered: Swahili, Thai, Georgian). Each
word is assigned one of the 17 coarse POS tags.

NER We use Wikiann dataset (Pan et al., 2017)
consisting of Wikipedias article with annotated
named entities of three types: location, person, and
organization in IOB2. Following XTREME, we
use balanced data splits from (Rahimi et al., 2019).

Dependency labeling As in Part of Speech, we
use Universal Dependencies (de Marneffe et al.,
2021) for the dependency relation annotations. We
use the largest UD treebank available for each lan-
guage. For each word we predict one of the 37
universal relations to its head word. Because the
relation is between two words, we use the concate-
nation of the two word representations along with
their element-wise product as an input to the probe
([hw1;hw2;hw1 ⊙ hw2]).

NLI We use XNLI dataset (Conneau et al.,
2018b) for Natural Language Inference. We train
the linear classification probe on top of the concate-
nation of two sentence vectors and their element-
wise product: [hs1;hs2;hs1 ⊙ hs2]. We predict
one of two relations between the first of sentences
(called premise): contradicts, entails, or is neutral
to the second sentence (called a hypothesis). We
evaluate XNLI with the accuracy of classification.

XNLI contains data for 15 languages (not cov-
ered: te, ta, mr, he, ka).

Sentence Retrieval We use up to 1,000 sentences
aligned for pairs of languages from Tatoeba dataset
(Artetxe and Schwenk, 2019). For the pairs in-
cluding English, we use the same sample as in
XTREME data collection. For other pairs, we per-
form sampling ourselves.

We compute the cosine similarity between sen-
tence representations across languages and find the
best alignment with the Hungarian algorithm(Kuhn,
1955). We compute the accuracy as the number of
correctly aligned sentences divided by the total
number of sentences.

B In-depth Tokenizers Analysis

In Figure 4, we present the probabilities of vo-
cabulary units, computed on concatenate six lan-
guages corpora, learned by different tokenization
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Figure 4: Log-probabilites of vocabulary units in de-
creasing order for four tokenization methods.
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Figure 5: Avearage Rank measured for vocabularies of
different sizes, obtained with BPE and Unigram algo-
rithms.

algorithms. Unigram and NOOVERLAP use a big-
ger fraction of the vocabulary for rarely appearing
tokens (with probability lower than 10−6). BPE
and TOKMIX produce a vast set of tokens with
probabilities in the range between 10−5 and 10−6.
Interestingly, the former algorithm allocates about
6000 vocabulary entries to tokens not appearing in
the corpora.

BPE is better than Unigram in vocabulary allo-
cation throughout languages. To support this
claim, we train Unigram and BPE tokenizers for
different vocabulary sizes. We observe that both
the average rank (Figure 5) and CPT (Figure 6)
stop rising for vocab sizes above 250,000 (except
for Chinese). For BPE, the metrics still steadily rise
after this threshold, which makes it overperform
Unigram for most languages.

We think that the reason why Unigram does not
learn valuable tokens after this point is the way the
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Figure 6: Characters per Token measured for vocabular-
ies of different sizes, obtained with BPE and Unigram
algorithms.

English Turkish Greek

Unigram s, ing, ed,
ly, d, If

n, a, e,
k, s, i

η, ς, ο,
α, ή, ει

BPE the, to, of,
and, If, a

o, veyaim, im
inin, ası, esi

η, ο, και,
ή, να, στον

Table 6: List of units from Unigram and BPE vocabu-
lary with the highest difference in frequency between
tokenizers. The first row shows the tokens that appear
more frequently in the corpus tokenized by Unigram
and the second by the BPE tokenizer. We excluded
punctuation marks and special characters from the list.

initial vocabulary is constructed, i.e., it is the set
of all character n-grams appearing in the corpus
with n lower than 16. In contrast to BPR, Uni-
gram’s vocabulary won’t cover longer words than
16 characters, which are useful in modeling some
languages.

We believe that further work on identifying op-
timal strategies for multilingual tokenization is
needed.

Vocabulary units preferred by tokenizers. In
Table 6, we show the tokens with the highest differ-
ences in empirical probabilities obtained with BPE
and Unigram tokenizers for three languages. We
see that Unigram prefers suffixes to prefixes. Also,
it splits text more often into single, possibly due to
lower vocabulary allocation.

C Supplementary Results

C.1 Visualizations

We present the additional visualization for the re-
sults for transfers across six languages for the tasks
not presented in the main text: Dependency label-
ing 7a and NLI cross-lingual accuracy 7b, Sentence
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retrieval accuracy 7c.
The results of experiments for 20 languages:

Jensen-Shanon Divergences 8, and cross-lingual
transfers for POS 10a, NER 10b, dependency tree
labeling 10c, XNLI 9a, sentence alignment 9b.

C.2 Results for All Languages
We also include detailed results for the in-language
experiments along with the proposed tokenizer met-
rics. In Table 7, we present the results for the six
languages.

C.3 Correlation Analysis
We present paired correlation plots for in-language
metrics in Figure 11. We use the results from 20
language settings to increase the number of obser-
vations. In this analysis, we focus on the differ-
ences between the tokenization methods and want
to marginalize the language-specific features (such
as the pre-training and fine-tuning data size or the
model’s preference for Indo-European languages).
Therefore, for vocabulary allocation measures (AR,
CPT) and downstream tasks, we subtract the mean
for each language. For vocabulary overlap mea-
sure (JSD) and transfer values, we subtract the
mean value for each pair of languages. In both
cases, means are computed across all tokenizers.
We present Spearman’s correlation coefficient and
associated p-value.
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Figure 7: The rest of the 6-language cross-lingual trans-
fer results. The absolute values are presented for the
Unigram tokenizer. For other tokenization methods, we
show the difference from the unigram algorithm.
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ar tr zh el es en All
metric tokenizer

V. Allocation
(AR)

Unigram 2129 2719 5919 2070 1439 1513 2042
BPE 2972 3226 4294 2907 2220 2143 2193
NoOverlap 2537 2653 2090 2065 1661 1597 1829
TokMix 3485 4167 3961 2639 1999 1898 2198

V. Allocation
(CPT)

Unigram 3.16 4.01 1.84 3.5 3.88 3.91 3.17
BPE 3.7 4.19 2.03 3.97 4.34 4.22 4.47
NoOverlap 3.53 4.19 1.56 3.81 4.15 4.15 3.16
TokMix 3.7 4.45 1.73 3.9 4.24 4.18 3.34

MLM
(MRR)

Unigram 36.0 36.0 34.2 46.3 49.7 49.6 42.0
BPE 28.7 33.6 28.6 38.6 43.1 41.0 35.6
NoOverlap 38.1 39.6 41.4 42.8 47.5 46.6 42.7
TokMix 31.5 30.6 38.2 41.2 45.3 45.6 38.7

NER
(F1)

Unigram 66.4 ±0.1 73.0 ±0.1 35.1 ±0.1 68.0 ±0.1 68.0 ±0.1 66.1 ±0.2 62.8 ±0.1

BPE 76.1 ±0.0 76.7 ±0.0 54.2 ±0.1 70.3 ±0.1 75.2 ±0.1 70.0 ±0.0 70.4 ±0.1

NoOverlap 76.5 ±0.1 72.8 ±0.0 58.4 ±0.1 69.6 ±0.1 71.6 ±0.1 67.3 ±0.1 69.4 ±0.1

TokMix 76.6 ±0.1 76.2 ±0.1 56.1 ±0.0 70.1 ±0.1 74.3 ±0.1 68.1 ±0.1 70.2 ±0.1

POS
(F1)

Unigram 54.8 ±0.1 46.9 ±0.2 29.3 ±0.1 52.9 ±0.3 76.5 ±0.2 81.9 ±0.1 57.1 ±0.2

BPE 66.7 ±0.1 52.1 ±0.1 62.2 ±0.0 63.4 ±0.1 81.7 ±0.4 87.4 ±0.1 68.9 ±0.2

NoOverlap 66.5 ±0.1 52.5 ±0.2 60.6 ±0.1 67.5 ±0.1 81.3 ±0.6 86.7 ±0.1 69.2 ±0.2

TokMix 66.0 ±0.1 52.1 ±0.2 56.2 ±0.0 61.7 ±0.2 81.3 ±0.2 86.3 ±0.1 67.3 ±0.1

Dep. labeling
(F1)

Unigram 13.5 ±0.6 58.6 ±0.8 20.7 ±0.1 58.4 ±0.4 71.9 ±0.1 65.7 ±0.2 48.1 ±0.4

BPE 13.8 ±0.0 63.7 ±1.2 59.5 ±0.1 68.2 ±0.8 77.0 ±0.2 70.3 ±0.4 58.7 ±0.4

NoOverlap 13.2 ±0.0 65.0 ±0.5 60.5 ±0.2 67.7 ±0.2 77.1 ±0.3 69.2 ±0.3 58.8 ±0.3

TokMix 14.1 ±0.0 62.9 ±1.2 53.8 ±0.1 67.3 ±0.5 76.5 ±0.1 69.1 ±0.2 57.3 ±0.4

NLI
(Acc)

Unigram 52.5 ±0.3 52.9 ±0.3 47.5 ±1.4 55.0 ±0.2 55.3 ±0.3 57.4 ±0.5 53.4 ±0.5

BPE 52.2 ±0.3 53.6 ±0.5 45.2 ±0.4 55.6 ±0.3 55.7 ±0.2 57.8 ±0.2 53.3 ±0.3

NoOverlap 52.9 ±0.7 54.0 ±0.2 44.0 ±0.8 54.8 ±0.1 54.9 ±0.3 57.3 ±0.3 53.0 ±0.4

TokMix 52.0 ±0.2 53.6 ±0.5 46.2 ±1.0 55.4 ±0.3 55.3 ±0.1 57.5 ±0.2 53.3 ±0.4

Table 7: Results of evaluation for in-language properties and tasks for six diverse languages. We observe significant
changes for different tokenization methods. The results for MRR, POS, NER, XNLI are in percent. For the
downstream task, we show average and standard deviations computed for five runs of probing.
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0.780.770.820.830.790.790.770.790.770.790.790.790.780.780.760.760.750.770.74

0.78 0.720.760.780.750.740.730.740.730.740.740.740.750.730.740.720.710.740.71

0.770.72 0.770.780.750.750.730.740.720.740.740.730.740.730.730.71 0.7 0.73 0.7

0.820.760.77 0.57 0.8 0.790.780.790.770.780.790.780.790.780.790.770.770.790.77

0.830.780.780.57 0.8 0.8 0.8 0.8 0.780.79 0.8 0.8 0.810.790.810.790.79 0.8 0.79

0.790.750.75 0.8 0.8 0.3 0.750.760.750.770.780.770.770.770.760.750.750.770.73

0.790.740.750.79 0.8 0.3 0.740.750.750.760.770.760.770.760.750.740.740.760.73

0.770.730.730.78 0.8 0.750.74 0.730.730.750.750.740.740.740.720.720.710.740.69

0.790.740.740.79 0.8 0.760.750.73 0.750.760.770.760.760.760.750.740.730.750.72

0.770.730.720.770.780.750.750.730.75 0.750.760.750.730.730.71 0.7 0.7 0.720.68

0.790.740.740.780.790.770.760.750.760.75 0.760.760.760.750.750.730.730.750.72

0.790.740.740.79 0.8 0.780.770.750.770.760.76 0.320.780.760.770.740.740.760.74

0.790.740.730.78 0.8 0.770.760.740.760.750.760.32 0.760.750.750.730.730.750.73

0.780.750.740.790.810.770.770.740.760.730.760.780.76 0.630.570.620.610.590.61

0.780.730.730.780.790.770.760.740.760.730.750.760.750.63 0.650.620.640.640.64

0.760.740.730.790.810.760.750.720.750.710.750.770.750.570.65 0.580.560.570.59

0.760.720.710.770.790.750.740.720.74 0.7 0.730.740.730.620.620.58 0.560.440.51

0.750.71 0.7 0.770.790.750.740.710.73 0.7 0.730.740.730.610.640.560.56 0.580.55

0.770.740.730.79 0.8 0.770.760.740.750.720.750.760.750.590.640.570.440.58 0.54

0.740.71 0.7 0.770.790.730.730.690.720.680.720.740.730.610.640.590.510.550.54

Unigram

zh he ka ar ur hi mr ta te th el ru bg sw vi tr fr de es en

0.82 0.8 0.860.870.820.82 0.8 0.810.790.820.820.810.810.790.780.790.790.790.78

0.82 0.780.840.860.81 0.8 0.780.79 0.8 0.81 0.8 0.790.810.790.780.790.780.790.78

0.8 0.78 0.830.86 0.8 0.790.770.790.780.790.780.770.790.780.760.760.760.770.76

0.860.840.83 0.660.850.850.830.840.830.850.850.840.860.840.840.840.840.840.84

0.870.860.860.66 0.860.860.840.850.850.870.870.870.870.860.860.860.860.870.86

0.820.81 0.8 0.850.86 0.410.780.790.810.820.820.810.81 0.8 0.780.790.79 0.8 0.78

0.82 0.8 0.790.850.860.41 0.770.78 0.8 0.820.810.810.81 0.8 0.780.790.79 0.8 0.77

0.8 0.780.770.830.840.780.77 0.760.780.790.790.780.780.770.750.760.760.770.74

0.810.790.790.840.850.790.780.76 0.790.810.81 0.8 0.8 0.790.770.780.780.790.77

0.79 0.8 0.780.830.850.81 0.8 0.780.79 0.8 0.810.790.790.780.750.760.760.770.75

0.820.810.790.850.870.820.820.790.81 0.8 0.81 0.8 0.810.810.790.790.790.790.79

0.82 0.8 0.780.850.870.820.810.790.810.810.81 0.3 0.820.81 0.8 0.8 0.8 0.8 0.8

0.810.790.770.840.870.810.810.78 0.8 0.79 0.8 0.3 0.810.790.780.780.780.780.78

0.810.810.790.860.870.810.810.78 0.8 0.790.810.820.81 0.750.630.680.670.650.67

0.790.790.780.840.86 0.8 0.8 0.770.790.780.810.810.790.75 0.720.720.730.730.72

0.780.780.760.840.860.780.780.750.770.750.79 0.8 0.780.630.72 0.610.590.590.62

0.790.790.760.840.860.790.790.760.780.760.79 0.8 0.780.680.720.61 0.6 0.470.56

0.790.780.760.840.860.790.790.760.780.760.79 0.8 0.780.670.730.59 0.6 0.620.59

0.790.790.770.840.87 0.8 0.8 0.770.790.770.79 0.8 0.780.650.730.590.470.62 0.57

0.780.780.760.840.860.780.770.740.770.750.79 0.8 0.780.670.720.620.560.590.57

TokMix

zh he ka ar ur hi mr ta te th el ru bg sw vi tr fr de es en

0.830.830.870.880.830.830.810.830.820.840.850.840.820.820.790.81 0.8 0.820.78

0.83 0.820.860.880.830.82 0.8 0.820.840.830.830.830.840.810.810.820.810.83 0.8

0.830.82 0.860.880.830.82 0.8 0.820.830.830.820.820.820.81 0.8 0.810.790.820.79

0.870.860.86 0.680.870.860.840.860.870.870.870.870.880.860.860.860.860.870.86

0.880.880.880.68 0.880.880.860.880.880.890.890.890.890.880.880.880.880.890.88

0.830.830.830.870.88 0.38 0.8 0.820.830.840.850.840.830.820.810.820.810.83 0.8

0.830.820.820.860.880.38 0.780.810.830.830.830.830.830.810.810.810.810.830.79

0.81 0.8 0.8 0.840.86 0.8 0.78 0.780.810.810.810.810.810.790.780.790.78 0.8 0.76
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Figure 8: Jensen-Shanon divergence for three tokenization methods, computed on 20 languages.
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(b) Sentence Retrieval

Figure 9: Cross-lingual transfer for the sentence-level tasks for 20 languages. The absolute values are presented for
the Unigram tokenizer. For other tokenization methods, we show the difference from the unigram algorithm.
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(b) Named Entity Recognition
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(c) Dependency labeling

Figure 10: Cross-lingual transfer for the token-level tasks on 20 languages. The absolute values are presented for
the Unigram tokenizer. For other tokenization methods, we show the difference from the unigram algorithm.
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Figure 11: Correlation analysis for pairs of factors: vocabulary overlap metrics, language modeling performance
(MRR), and downstream tasks. The diagonal of the figure presents the density of distribution of each feature. The
results are grouped by the type of tokenizer applied. Analysis was done in 20 language setting. In the top right
corner of each sub-plot, we show Spearman correlation coefficient and associated p-value.
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(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.
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