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Abstract
Named Entity Recognition (NER) state-of-
the-art methods requires high-quality labeled
datasets. Issues such as scarcity of labeled
data, under-representation of entities, and pri-
vacy concerns with using sensitive data for
training, can be significant barriers. Generat-
ing synthetic data to train models is a promis-
ing solution to mitigate these problems. We
propose ECG-QALM, a contextual question
and answering approach using pre-trained lan-
guage models to synthetically generate entity-
controlled text. Generated text is then used
to augment small labeled datasets for down-
stream NER tasks. We evaluate our method on
two publicly available datasets. We find ECG-
QALM is capable of producing full text sam-
ples with desired entities appearing in a con-
trollable way, while retaining sentence coher-
ence closest to the real world data. Evaluations
on NER tasks show significant improvements
(75% - 140%) in low-labeled data regimes.

1 Introduction

NLP tasks typically require large amounts of high-
quality labeled data to train sufficiently accurate
and useful models. However, in many domains,
such as finance and healthcare, access to labeled
data is often limited. In these domains, annotating
data often requires strong domain expertise and
therefore, crowdsourcing of labeled data is infea-
sible. The cost of annotating data by training an
expert workforce is often too high for feasibility.

A small collection of labeled data also runs the
risk of bias creeping in the data and may result in
algorithms and models that reflect or even exploit
this inherent bias. It also degrades the capability
of models to generalize as small datasets are much
less likely to have population groups or patterns
under-represented (Zhou and Bansal, 2020). These
issues need solutions that can perform well in low-
labeled data regimes while combating data bias.
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Synthetic data generation presents a promising
solution to address the issues outlined above (Bayer
et al., 2021). By synthetically generating data, we
can augment small labeled datasets to build a train-
ing set. Synthetic data generation can also reduce
bias in the data by to sufficiently represent all pop-
ulation groups. In particular, the field of controlled
synthetic text generation has received increased at-
tention in recent years. Controlled text generation
provides the ability to control for traits such as tone,
sentiment, and topic in the generation of a language
model (Wang and Wan, 2018; Zeng et al., 2021).
This lends controlled synthetic text generation as a
useful technique for augmenting small or privacy-
sensitive datasets. However, there has been limited
work on the topic of entity-controlled synthetic text
generation, i.e., the task of generating coherent text
while controlling for the named entities that appear
in the generation (Dong et al., 2021).

In this paper, we study the problem of entity-
controlled synthetic text generation. We propose,
ECG-QALM, a Entity Controlled Text Generation
with Contextual Question Answering based pre-
trained Language Model, that can produce coher-
ent text which contains specific entity tokens, gen-
erated in an order provided by the user. We are
motivated by the need to synthetically augment
datasets to improve performance on downstream
NER tasks (Zhou et al., 2022). ECG-QALM pro-
vides multiple advantages. It is more sample effi-
cient than other methods, as the model is trained on
each block of each sample, unlike just seeing a sam-
ple in whole for Seq2Seq models like Dong et al.
(2021); b) ECG-QALM sees a block of text which
is relatively smaller than whole sample, prompted
on entity to be inserted and conditioned on previous
generation allowing for generation of more coher-
ent text as demonstrated by generation metrics like
perplexity versus SOTA Seq2Seq baselines; and c)
unlike prior Seq2Seq methods like RNN (Dong
et al., 2021) or using a vanilla GPT, where length of
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Figure 1: This figure depicts how a text sample with three <B-protein> entities is processed into blocks to train ECG-
QALM. An <ENDTEXT> token always defines the final block of a decomposed text sample. In the Contextual
Q&A Block Generation step, we show an example of a training sample for Block 3.

text generated is limited to 512/1024, ECG-QALM
can generate as many blocks of (maximum) length
1024, as the number of entities to be inserted.

We make the following contributions: 1) we
propose a novel approach using pre-trained lan-
guage models to generate entity-controlled blocks
of text, which can be chained to produce full syn-
thetic text samples; 2) our method is capable of
generating texts semantically closest to the train-
ing data while being distinct; and, 3) evaluations
on publicly available datasets on NER task show
a significant improvement in data augmentation
performance for low-labeled data regimes, even by
just using a purely synthetic data.

2 Related Work

Controlled text generation These methods con-
trol a certain aspect of generated text (Yang and
Klein, 2021; Chan et al., 2020; Pascual et al.,
2021) like sentiment (Wang and Wan, 2018) or
concepts (Zeng et al., 2021). These methods focus
a macro level aspect of the generated text while we
want to control a fine grained text generation.

Data-to-text generation The idea is to convert
a given set of words or structured data from tables
into a piece of text. Most popular problem is table
summary generation, also called table-to-text (Liu
et al., 2018; Parikh et al., 2020; Chen et al., 2021) or
keyword to text methods (Pascual et al., 2021; Tan
et al., 2021). While similar, the key difference is
they have a fixed set of entities in every generation.

Entity-controlled generation Works in the in-
tent detection and slot filing literature for conver-
sational systems have attempted entity-controlled
generation (Jolly et al., 2020). Recently, Rosen-
baum et al. (2022), attempted to use a pre-trained
language model with an instruction prompt that
uses examples as input in the prompt for model to
generate synthetic text. Note, these models have

been built in context of conversational systems and
hence, have a goal to respond to a specific query
which generating the output text, unlike our task of
generating text with specified input entities.

Dong et al. (2021) proposed a solution to this
exact problem for generating text with given en-
tity types and their mentions, using a RNN based
Seq2Seq architecture. Our method uses a pre-
trained language model with a block-by-block gen-
eration mechanism, producing superior text over
theirs. They do not evaluate on a downstream task
like NER, unlike our work.

Data Augmentation for Named Entity Recogni-
tion These methods rely on substitution of enti-
ties in a given example with entity of same type
to create examples. (Dai and Adel, 2020) pro-
posed a simple random replacement which was
further enhanced using language modeling to ex-
ploit context (Zhou et al., 2022; Ding et al., 2020).
While these methods need seed text to generate
each example, our method only needs entity tags
to generate an example.

3 Methodology

We use a contextual question and answering based
training approach to generate blocks of text with
desired entity tags. This approach is able to reliably
generate augmented text samples while retaining
sentence coherence. Our method generates blocks
of text delimited by entities to be inserted, and
chaining these generated blocks to create full text
samples. We use a GPT-2 language model in place
of a recurrent network used by Dong et al. (2021)

Table 1: Dataset Statistics

Dataset #Training #Val #Test Avg. #Words #Entities

JNLPBA 18606 1938 4259 22.97 5
BC5CDR 4561 4582 4798 24.93 2
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Table 2: Generation Quality Metrics for the two datasets: Perplexity, Distinctness-3 (tri-gram), and Rouge-L. Cells
with best score are highlighted in blue. (↑): higher the better; (↓): lower the better.

JNPBLA (10%) BC5CDR (10%)

Metric Gold Data RS EntInj DACA MELM ECG-LM ECG-QALM Gold Data RS EntInj DACA MELM ECG-LM ECG-QALM

Perplexity(↓) 400.36 605.75 796.5 556.93 519.24 518.09 488.56 388.42 5856.61 1521.3 884.53 692.06 510.98 477.66
Distinctness-3(↑) 0.74 0.82 0.2 0.82 0.82 0.60 0.58 0.72 0.92 0.06 0.92 0.92 0.67 0.59
Rouge-L(↓) 1.0 0.72 0.30 0.72 0.72 0.39 0.20 1.0 0.83 0.26 0.83 0.83 0.25 0.21

to take advantage of using pre-trained large lan-
guage models. The intuition being that using a
pre-trained model helps in increasing diversity of
the generated text.

3.1 Training

We first preprocess real world training text sam-
ples into blocks, whereby each block is composed
of non-entity tokens and ends with an entity tag
as shown in Figure 1. Every text sample is then
decomposed into these blocks of text. An end of
text token is added at the end. Therefore, a full
text sample generation consists of chaining gen-
erated blocks until a block with an <ENDTEXT>
token appears. Side benefit of creating blocks is
increased number of (shorter, manageable) training
examples that are easier to learn on, unlike existing
methods that input entire text at once.

After decomposing text samples into such
blocks, we arrange blocks into the question and an-
swering format, which consists of three segments:
context, question and answer. The context segment
provides preceding text blocks, the question seg-
ment prompts the model for the desired token, and
the answer block is the desired generation.

Context section consists of all blocks in the text
sample, preceding the current block. This was mo-
tivated by the need for the model to be aware of the
context for successive generation. The generation
of each block must be a continuation of preceding
blocks to maintain sentence level coherence.

Question segment prompts for the desired entity
to appear in the next block. Therefore, through this
prompting mechanism we control the desired entity
tag to be generated. Following the "Question: " tag
is a single token representing the desired entity.

Answer segment contains the desired text block
to be generated. The final token in this block will
therefore be the same token as in the question seg-
ment. With this three segment format, every block
from the corpus represents a training sample for
the language model.

3.2 Generation during Inference

At inference time, ECG-QALM generates text con-
ditioned on two segments of context and question.
To generate the first block, the context segment is
blank, while the question segment contains the de-
sired token to be generated in the first block. The
model then completes the answer segment with a
generated block, which is inserted into the context
segment for the next block generation. A full text
sample then is produced by concatenating blocks
until an <ENDTEXT> token. If the desired en-
tity tag does not appear in the generated block, we
re-generate the block text until the tag appears.

3.3 Metrics

To evaluate the generated text, we quantitatively
measure the quality of generation and performance
on NER task. We use three generation quality met-
rics used in prior literature (Dong et al., 2021)1.
Perplexity measures the ‘surprisingness’ of the
generated text evaluated on a GPT model (Rad-
ford et al., 2018). Distinctness (Li et al., 2015)
measures the uniqueness of tri-grams in the corpus.
Rouge-L (Lin, 2004): One trivial sanity check is
regurgitation, i.e., if the generation model is simply
memorizing the training set. Rouge-L score mea-
sures the similarity of the generated text with the
training data by calculating the longest common
sub-strings. Rouge-L score should be low, if the
model is not just spitting out the training examples.
A lower Rouge-L score indicates that the gener-
ated data is not trivially similar to the training data,
hence, ensuring privacy complaint models by not
regurgitating the private training data.

4 Experiments

We evaluate our model on two datasets described in
Table 1. We compare with the following baselines:

Gold Data: Refers to the real world training data.

1Grammaticality (Warstadt et al., 2019) used in prior works
is not a general metric as it is based on English literature.
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Table 3: Macro F1 scores on NER. Method with highest F1 scores among the generation methods is boldfaced
while method with highest F1 score overall is indicated by blue. ∆ is percentage difference in F1 scores of gold
data and ECG-QALM (w/ augmentation). (*) indicates statistically significant increase with student t-test (p<0.01).

Generated Data Gold Data Augmented with Generated Data

Training Data #Samples Gold Data RS EntInj DACA MELM ECG-LM ECG-QALM RS EntInj DACA MELM ECG-LM ECG-QALM ∆

JNLPBA (1%) 186 0.311 0.172 0.087 0.184 0.229 0.273 0.347 0.392 0.313 0.425 0.459 0.482 0.546 75.5%*

JNLPBA (10%) 1860 0.722 0.375 0.219 0.525 0.552 0.596 0.641 0.709 0.484 0.722 0.723 0.722 0.723 0.1%

BC5CDR (1%) 45 0.192 0.209 0.193 0.220 0.239 0.262 0.283 0.330 0.264 0.377 0.378 0.403 0.463 142.1%*

BC5CDR (10%) 456 0.749 0.587 0.424 0.689 0.711 0.734 0.741 0.711 0.738 0.744 0.758 0.757 0.760 1.4%*

RS (Dai and Adel, 2020): Simple data genera-
tion by substitution of named entities with entities
of same type from the training gold samples.

DACA (Ding et al., 2020): Substitution method
using a LSTM based language model to replace
entities in the gold samples, by exploiting context.

MELM (Zhou et al., 2022): Substitution method
using Masked Entity Language Model with XLM-
Roberta with linearization, for a richer context.

EntInj (Dong et al., 2021): Text generation
method based on LSTM Seq2Seq model. Closest
work to ours, as it performs actual text generation.

ECG-LM: This is our own baseline Seq2Seq
method, which generates the entire text given a list
of entities, without a block-by-block generation.

Note: Generated text length in DACA, MELM,
EntInj, and ECG-LM is limited by number of to-
kens model can generate (512/1024) at once; ECG-
QALM is not, as it chains the generated blocks.

4.1 Experimental Settings
We use the training, validation, and testing data
splits provided publicly in the datasets on Hugging-
face2. We use the training dataset (and its men-
tioned subsets) for training both the text generation
models as well as training the downstream NER
model. We use BERT (Devlin et al., 2018) for
downstream NER task. NER results are reported
on the complete test set for both the datasets.

We use an instance of OpenAI’s GPT-2 (Radford
et al., 2019) for ECG-QALM. Our model is trained
with the Adam optimizer on a learning rate of 1e-
3, one hundred warm-up steps, and an epsilon of
1e-8. The default CrossEntropy loss function is
used, and the model is trained for up to 100 epochs.
For the NER task, we train the BERT model for
upto 10 epochs with a learning rate of 2e-3. These
parameters were set based on hyper-parameter tun-
ing on the validation set. During generation, we

2https://huggingface.co/

exactly mimic the entity distribution of the gold
data. We can also change the entity distribution
to boost under-represented entities as shown in Ap-
pendix A.1.

5 Results and Discussion

5.1 Generation Quality
Generation quality results are shown in Table 2. We
clearly observe that our method is lower on all three
metrics against the original dataset, which is ex-
pected as ours is synthetically generated data. Our
method works better than the only other text genera-
tion baseline EntInj (Dong et al., 2021) on all three
metrics across the two datasets. Particularly, for
the BC5CDR dataset, we note EntInj tends to gen-
erate repetitive text. The correct benchmark are the
substitution based baselines as our method inserts
the entities in the same fashion. We observe for the
substitution based baselines, distinctness is highest,
as expected as we have swapped commonly occur-
ring trigram entities, while the perplexity is worse
than ECG-QALM. This shows that swapping af-
fects the lexical meaning of the text, even when
done intelligently in DACA/MELM. While we also
insert randomly chosen entities in our generated
text, these results indicate that our method gener-
ates coherent generic text where semantic meaning
of the type of the entity is preserved.

Our generated data has the lowest Rouge-L
scores. Hence, our generated data is not simply
memorizing the training data, it is quite different
than the gold data. We can see the huge gap with
the substitution methods; while the data from sub-
stitution methods is practically same as the gold
data, ours is distinct. Based on these metrics, we
can claim that generated text is semantically clos-
est to the original corpus, while being distinct.

5.2 Named Entity Recognition Task
We took two subsets of the JNLPBA and BC5CDR
datasets: 1% and 10% as we found the performance
on datasets was already saturated at their full sizes
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as number of samples was enough. Hence, we
present the results on first 1% and 10% examples
of training splits to show the comparisons. We
present two settings: (a) w/o augmentation with
gold data; and (b) augmentation with gold data.
Generated text for all methods is same size as gold
data. Note, no changes were made to test/val sets.

Table 3 shows the results for the two subsets of
the two datasets. From the results five things stand
out: 1) Augmenting gold data with our syntheti-
cally generated data always out-performs a model
trained with the gold data; 2) using only syntheti-
cally generated data is comparable in performance
to the gold data in medium labeled setting (10%)
; 3) our synthetically generated data outperforms
gold data in low labeled data setting (1%) subsets;
4) our synthetically generated data gives better per-
formance vs all baseline methods; and 5) our novel
block-by-block generation approach significantly
improves over a vanilla GPT-2 (ECG-LM) model.

Our finding that synthetically generated data can
get us a comparable performance to gold data has
an application in making the models trained for
downstream tasks like NER, privacy preserving, as
they do not have to be trained on the real data. This
finding can be attributed to zero/few-shot capabil-
ities of large language models (Wei et al., 2021).
Hence, the capability to produce texts that can gen-
eralize better on unseen test set while other models
are only able to capture subset of test set distri-
bution reflected in the training gold dataset. Our
results show our method of generation can be quite
effective as a data augmentation method in a low
labeled data regime.

5.3 Generating more text in low resource

Previously, we only showed the results by gener-
ating synthetic data of same size as the gold data.
We perform an experiment to see if there is further
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Figure 2: Macro Average F1 score as we augment more
generated data to the JNLPBA (1%) dataset.

improvement in the performance as we add more
generated data with the JNLPBA (1%) dataset. We
observe that F1 score keeps improving going up to
0.70 vs gold data at 0.31 in Figure 2. Note, we only
use the entity mentions found in the JNLPBA (1%)
dataset to fill in the entity tags in the generated text.
This is remarkable considering that 10x real data
for JNLPBA (10%) has a F1 score of 0.72. This is a
further evidence that our model is able to generate
text that is similar to real data.

6 Conclusion

Synthetic data generation is a promising approach
to train large language models in order to deal with
scarcity of labeled data. In this work, we study
the problem of conditional text generation where
the conditions are provided as a list of entities that
must appear in the text in a manner desired by the
user. We propose ECG-QALM that can generate
blocks of text conditioned on the desired entities.
We test our generation system on generation quality
metrics and NER task. Evaluations show that our
method outperforms baselines in terms of both gen-
eration quality and NER performance. Our block-
by-block generation provides significant gains over
using a fine-tuned vanilla LLM for generation.

7 Limitations

The major limitations of this work are:

• We show results on two public datasets, from
bio-medical and bio-chemical domains. These
results may not generalize to other domains.

• Our results indicate benefit in low resource
settings, while no appreciable benefit is seen
for medium or high resource settings.

• Our method relies on GPT-2, a large lan-
guage model that needs humongous compute
resources and a long training time. It takes
about 2 hours to generate 50 samples, versus
the baselines like vanilla GPT-2 (ECG-LM)
taking 30 mins or EntInj taking about 10 mins
to generate same number of examples with
much less memory requirements.

• We use quantitative measures to evaluate the
quality of text generation, which might not
be enough to capture the quality of generated
text. Gold standard of measuring the quality
is human evaluation, which is expensive.
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A Appendix

A.1 Ablation: Generating Under-represented
Entities

We perform a simple experiment to see how ECG-
QALM can potentially also be beneficial to gen-
erate data that could be augmented to boost the
performance of under-represented entities in the
original training data. To refresh, we kept the en-
tity distribution exactly same as training data while
generating data through our method. To boost the
relative frequency of the under-represented entities,
we generate examples proportional to the inverse
frequency of the entities present.

Let the training data have n samples. Each sam-
ple has a set of named entities in it, e.g., a sam-
ple containing the set of entities, {<B-Protein>,
<B-DNA>, <B-DNA>}, has two distinct entities
in it. We calculate the frequency of each named
entities over the entire training corpus. Next, we
calculate the score of each sample by adding the
inverse frequency of each named entity in that sam-
ple. For example, if the <B-Protein> has a inverse
frequency of 10 and <B-DNA> has a inverse fre-
quency of 100, this sample would get a score of
210. Next, we normalize these scores by the sum
of scores of every sample in the corpus. This gives
us a probability score for using the entity set of a
sample to be picked while generating. Entity set of
a sample with a probability score of 1% would be
picked 10 times while generating 1000 synthetic
examples, for instance.

Hence, this ensures that under-represented enti-
ties are boosted in the new generated data. This
could be used for augmenting the original data to
improve performance on under-represented entities.
Note, we can also generate random entity sets just
with under-represented examples. However, we
prefer not to do it as it could alter the co-occurrence
of entities in the generated text, shifting the train-
ing set distribution so significantly that it no longer
represents the original training set.

We take JNLPBA (10%) dataset for this measure,
as it has a large number of entities. Results after
generating a synthetic data of same size as the orig-
inal training set are shown in Table 4. While there
is a 1% increase in the macro average, we observe
the performance over different entities are mixed.
While there is generally an increase in the perfor-
mance for the under-represented entities, there is a
drop for selected entities like <B-RNA>, despite
almost doubling of number of samples for the en-

tity. For the abundant entities like <B-Protein>
performance is similar. In future, it would be worth-
while to experiment with different distributions of
co-occurrence of entities instead of deriving it from
the gold (training) data.

A.2 Examples of Generated Text

In the section below we shows few examples of gen-
erated text by ECG-QALM and EntInj (Dong et al.,
2021), the only text generation method in baselines.
Our method generates semantically meaningful ex-
amples, while EntInj generates quite repetitive ex-
amples. Text highlighted in Red marks the entities.

A.2.1 ECG-QALM

The examples below seem grammatically correct,
as was the observation over the entire generated
corpus. However, as we randomly insert entity
mentions after we generated the entity tags, most of
the generated examples are not factual. E.g., DTG
is not associated with treatment of blood clotting
as generated in the first example. Our goal was not
factual correctness but ensuring that the generated
data preserves the distribution of the training data,
which seems to be the case based on generation
metrics and results on NER task.

The efficacy of DTG in the treatment of im-
paired blood clotting likewise did not appear
to be affected by the rate of administration,
although no formal statistical comparisons
were made .

The prevalence rate for death was the most
important reason for preference, cited by 67
. 3 % of patients preferring Picloxydine and
54 . 2 % of patients who preferred a p < or
= 0 . 001 ) .

The reduction of acetaminophen at 1 and
4 days after gestation not glomeruli with
ataxic movements than control rats .
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Table 4: Macro F1 scores on the NER task for gold data, our generated data, our generated data with Under-
represented generation (+URG) for JNLPBA (10%) dataset. Cells with highest (almost highest) F1 score for an
entity (row) are highlighted in blue. Second highest value is underlined.

W/o Augmentation W/ Augmentation
Training
Data

(→) % original frequency % generated frequency Gold Data ECG-QALM ECG-QALM(+URG) ECG-QALM ECG-QALM(+URG)

Entity(↓)

JNLPBA (10%) [#training samples=1860]

B-DNA 8.53% 8.45% 0.70 0.65 0.65 0.71 0.71
B-RNA 0.85% 1.92% 0.69 0.64 0.68 0.70 0.68
B-cell-line 3.45% 5.57% 0.51 0.46 0.45 0.51 0.53
B-cell-type 6.23% 6.69% 0.69 0.59 0.60 0.70 0.70
B-protein 27.98% 20.38% 0.76 0.76 0.64 0.75 0.76
I-DNA 14.15% 14.04% 0.78 0.68 0.69 0.79 0.79
I-RNA 1.35% 2.43% 0.82 0.70 0.81 0.81 0.83
I-cell-line 6.66% 8.92% 0.55 0.46 0.45 0.53 0.54
I-cell-type 8.18% 8.20% 0.69 0.63 0.63 0.71 0.70
I-protein 22.58% 20.15% 0.77 0.69 0.69 0.77 0.77
Macro Avg. 0.72 0.64 0.66 0.72 0.73

The aims of this study were to confirm our
previous findings in a separate cohort of
patients and to determine the time course
of the cardiovascular consequences of stop-
ping sertraline in the expectation that this
might shed light on the mechanisms by
which the mechanisms by Tamoxifen is be-
ing a significant reduction of the activity on
the drug causes the sodium associated with
cephalothin sodium associated with povi-
done - iodine is associated with cocaine and
inhibition with the use of tuberculosis and
area in this effect.

MR imaging with quantitative diffusion
mapping of E4031 ( 0 . g ), p - choloroani-
line ) and outcome in organ transplant con-
trols, and / L and the development of blood
coagulation by a potential is also more than
the development of systolic dysfunction and
possibly .

A.2.2 EntInj (Dong et al., 2021)

We observed a lot of repetition in the generated
text by EntInj method. This looping behavior is
shown in Example 2 and 3 below. Note, unlike
our method, EntInj has access to the exact same
entity mentions as they appear in the training data,
having an inherent advantage with this additional
information.

The possibilities that these findings might
be the result of non - induced <> is
a result of monoamine oxidase or in-
hibition of monoamine oxidase or inhi-
bition of monoamine oxidase or inhibi-
tion of monoamine oxidase or inhibi-
tion of monoamine oxidase or inhibi-
tion of monoamine oxidase or inhibi-
tion of monoamine oxidase or inhibi-
tion of monoamine oxidase or inhibi-
tion of monoamine oxidase or inhibi-
tion of monoamine oxidase or inhibi-
tion of monoamine oxidase or inhibi-
tion of monoamine oxidase or inhibi-
tion of monoamine oxidase or inhibi-
tion of monoamine oxidase or inhibi-
tion of monoamine oxidase or inhibi-
tion of monoamine oxidase or inhibi-
tion of monoamine oxidase or inhibi-
tion of monoamine oxidase or inhibi-
tion of monoamine oxidase or inhibi-
tion of monoamine oxidase or inhibi-
tion of monoamine oxidase or inhibi-
tion of monoamine oxidase or inhibi-
tion of monoamine oxidase or inhibi-
tion of monoamine oxidase or inhibi-
tion of monoamine oxidase or inhibi-
tion of monoamine oxidase or inhibi-
tion of monoamine oxidase or inhibition
of monoamine oxidase or inhibition of
monoamine
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<unk> : The cardiovascular responses to
standing and standing . 4 patients were stud-
ied in the drug . 4 days . 4 . 4 . 4 . 4 . 4 . 4 .
4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4
. 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 .
4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4
. 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 .
4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 .

telithromycin - induced bromo tetrahy-
dropyranyladriamycin pituitary carsinom
agitation one : a longitudinal study of

In the study was undertaken to the combi-
nation of painful , headache , bleed , which
was only induced by epilepticus drug , and
bronchitis

Investigation of anti - inflammatory agents
are warranted in the caudate nucleus . in-
jection of Allopurinol injection of bacterial
collagenase - induced
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