Pre-Trained Language-Meaning Models for
Multilingual Parsing and Generation

Chunliu Wang*, Huiyuan Lai*, Malvina Nissim, Johan Bos
CLCG, University of Groningen / The Netherlands

{chunliu.wang, h.lai,

Abstract

Pre-trained language models (PLMs) have
achieved great success in NLP and have re-
cently been used for tasks in computational
semantics. However, these tasks do not fully
benefit from PLMs since meaning represen-
tations are not explicitly included in the pre-
training stage. We introduce multilingual pre-
trained language-meaning models based on
Discourse Representation Structures (DRSs),
including meaning representations besides nat-
ural language texts in the same model, and
design a new strategy to reduce the gap be-
tween the pre-training and fine-tuning objec-
tives. Since DRSs are language neutral, cross-
lingual transfer learning is adopted to further
improve the performance of non-English tasks.
Automatic evaluation results show that our ap-
proach achieves the best performance on both
the multilingual DRS parsing and DRS-to-text
generation tasks. Correlation analysis between
automatic metrics and human judgements on
the generation task further validates the ef-
fectiveness of our model. Human inspection
reveals that out-of-vocabulary tokens are the
main cause of erroneous results.

1 Introduction

There are two common tasks in computational se-
mantics: mapping a text to a meaning representa-
tion (semantic parsing), and its reverse, producing
a text from a meaning representation (semantic gen-
eration). These tasks generally rely on corpora that
contain texts aligned with meaning representations.
While in recent years large pre-trained language
models (PLMs), both monolingual as well as mul-
tilingual, have brought NLP tasks to a new level,
semantic parsing and generation cannot fully ben-
efit from them since the meaning representations
are not included in PLMs explicitly.

Our goal in this work is to leverage the principle
of pre-trained models and explore the benefit of
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Figure 1: Our Multilingual (English:EN, German:DE,
Italian:IT, Dutch:NL) Language-Meaning framework
(MLM) for parsing and generation.

multilingual semantic parsing and generation of in-
cluding in the same model meaning representations
aside from natural language. This would make it
possible not only to operate multilingually, thanks
to representation neutrality, but also to leverage
the bidirectionality of language-meaning alignment.
Figure 1 illustrates our idea.

Semantic parsing and generation (in different
languages) are clearly related, but traditionally they
are studied and developed independently of one an-
other, usually focusing on a single language (often
English). This results in having to train separate
models from scratch for each task and language,
and progress has been hampered by data scarcity.
This is especially true for languages other than En-
glish, where data scarcity is even more severe.

Our proposal to incorporate meaning representa-
tions in PLMs and to concurrently embrace a multi-
lingual approach breaks with this tradition yielding
a twofold advantage. First, multilingual PLMs en-
able different languages to be represented in one
universal space making it possible to benefit from
cross-lingual knowledge transfer in semantic pars-
ing and generation. Second, joining the formal and
natural language representations in training makes
it possible to leverage one and the same model
for parsing and generation. For this approach to
work, we need a meaning representation frame-

5586

Findings of the Association for Computational Linguistics: ACL 2023, pages 5586-5600
July 9-14, 2023 ©2023 Association for Computational Linguistics



work where (i) the formalism is language-neutral,
(ii) there is aligned data both in terms of meaning-
language(s), but also multilingually across different
languages, and (iii) there is enough expressivity to
cover for a wide range of language phenomena.

Discourse Representation Structure (DRS),
which satisfies our requirements well, is the for-
mal meaning representation proposed in Discourse
Representation Theory (DRT, Kamp 1981; Asher
1993; Kamp and Reyle 1993; Kadmon 2001; Kamp
et al. 2011; Geurts et al. 2020). It covers a large va-
riety of linguistic phenomena, including anaphors,
presuppositions, temporal expressions and multi-
sentence discourses and captures the semantics of
negation, modals and quantification. Furthermore,
DRS provides a language-neutral meaning repre-
sentation: the same meaning representation asso-
ciated with text that can be expressed in various
languages. While Abstract Meaning Representa-
tions (AMR, Banarescu et al. 2013) have been pro-
posed for this task, we believe DRS is more suitable
because of its multi-lingual representation capabil-
ity (all predicates are interpreted), its expressive
power (proper treatment of negation and universal
quantification), and the comparable annotated data
available for multiple languages.

As a first step, we consider DRS as an additional
abstract language that will complement the natural
languages in our pre-trained model. We take the
multilingual PLM mBART (Liu et al., 2020) and
further pre-train it with all of our language data,
thus both the four natural languages we use as well
as the language neutral meaning representations,
so that the DRSs and texts are learnt in the same
semantic space. As a second step, we introduce
a supervised denoising training that exploits more
explicitly the relationship between DRS and each
corresponding text as well as between the parallel
texts in the different languages; we do this com-
bined with denoising training to reduce the gap
between the pre-training and fine-tuning objectives.
At this point, we have at our disposal a single mul-
tilingual language-meaning model which can then
be fine-tuned for either parsing (text-to-DRS) or
generation (DRS-to-text), in a monolingual or mul-
tilingual fashion.

Overall, our main contributions include: (i) A
novel task of multilingual DRS-to-text generation,
and a framework for a mixed language-meaning
modelling in a multilingual setting, serving both
parsing and generation. (ii) A pre-training strat-

egy, with self-supervised training followed by su-
pervised training, to reduce the gap between pre-
training and fine-tuning; we also employ multilin-
gual transfer techniques to boost performance in
languages other than English exploiting language
neutrality in DRSs. (iii) Extensive experiments
for both parsing and generation across different
languages, including both automatic and human
evaluation to understand how multilingual models
perform. !

2 Background and Related Work

This work employs intensive multilingual pre-
training techniques for language-meaning mod-
elling for both parsing and generation. In this
section, we briefly introduce the concept of DRS,
which serves as our meaning representation tool,
and relevant background and related work.

Discourse Representation Structures The Par-
allel Meaning Bank (PMB, Abzianidze et al. 2020)
provides a large corpus of sentences annotated
with DRSs in different formats for three different
degrees of annotation quality: gold (completely
checked manually), silver (partially checked manu-
ally) and bronze (uncorrected).”> The box-format of
DRS extensively used in Discourse Representation
Theory may be convenient for human readability,
but it is not suitable for modelling. We thus use
the Discourse Representation Graph (DRG) format
provided by the PMB and its equivalent variable-
free sequential notation (Figure 2). There are three
types of nodes in a DRG, a directed acyclic graph:
conceptual entities (represented by WordNet (Fell-
baum, 1998) synsets), constants (names, quantities,
and the discourse deictics speaker, hearer, and
now), contexts (defining scope as a box in DRT,
represented graphically as a box). Edges between
entity nodes denote thematic roles (Agent, Theme,
Patient, Experiencer, Stimulus, Time, etc.) and
comparison operators (=, #, <, <, ~, and so on);
edges between context nodes are discourse rela-
tions including negation (Figure 2).

Even though the PMB resorts to the English ver-
sion of Wordnet (Fellbaum, 1998), we consider
a synset as an interlingual way of representing a
concept, being a compound of a lemma, part of
speech (noun, verb, adjective, adverb) and sense
number. This means that DRSs for languages other

!Code and models are available at https://github.com/

wangchunliu/DRS-pretrained-LMM.
See https://pmb.let.rug.nl/data.php.
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Figure 2: Example of different formats of DRS for the
English sentence "I’m not selling anything": the box
format (a), the variable-free sequence notation (b), and
as directed acyclic graph (c).

than English also employ the synsets of the English
WordNet as a sort of interlingua. Only names in a
DRS are language-specific — for instance, the city
of London would be represented in an Italian DRS
ascity.n.@1 Name "Londra".

The sequence notation for DRGs is based on a
variable-free representation of DRS (Bos, 2021).
In this notation a DRS is just a sequence of concep-
tual entities, roles with hooks (indices) or anchors,
and discourse relations. Each entity is followed
by the roles it introduces. Each thematic role or
comparison operator either hooks to another en-
tity via a negative or positive index (—1 relates to
the previous entity in the sequence, —2 to the one
before that, +1 to the next one, and so on). Dis-
course relations (e.g., NEGATION, NARRATION,
ELABORATION) in the sequence notation intro-
duce new contexts (see Figure 2). We make heavily
use of this sequential notation because of the many
advantages it offers. For example, compared with
the box-format DRS, it can be easily converted
into a graph structure without the complicated con-
version process introduced in previous work (Fan-
cellu et al., 2019; Fu et al., 2020). Compared with
the clause-format DRS (van Noord et al., 2018), it

omits the use of variables and is therefore simpler.
It can also be used directly to train a sequence-to-
sequence (seq2seq) neural model.

Text-to-DRS Parsing In the traditional efforts
for DRS parsing, it can be roughly divided into two
categories, namely rule-based and neural network-
based methods. Regarding rule-based methods,
Boxer (Bos, 2008) is a classic system based on
rules and statistical methods. Recently, Poelman
et al. (2022) propose a multilingual DRS parser
leveraging existing off-the-shelf Universal Depen-
dency parsers, it can achieve similar or even better
performances than BERT-based models. Indeed,
neural models have become the most popular meth-
ods in this field and usually achieve the best perfor-
mance (van Noord et al., 2018; Liu et al., 2019b;
Evang, 2019; van Noord et al., 2019, 2020a; Wang
et al., 2021b). In addition to the seq2seq models
above, there are two lines focusing on tree-based
approaches (Liu et al., 2018, 2019a) and graph-
based approaches (Fancellu et al., 2019; Fu et al.,
2020), where Fancellu et al. (2019) is the first at-
tempt at multilingual DRS parsing.

Most of the above works train neural models
from scratch, and some make use of PLMs, but
the models do not contain meaning representations
explicitly during pre-training. Therefore, we aim
to leverage the principle of pre-trained models and
incorporate both meaning representations and natu-
ral language into one model. This, hopefully, can
enable different languages to be represented explic-
itly in one universal space through pre-training, and
result in one model for parsing and generation.

DRS-to-Text Generation Compared to DRS
parsing, DRS-to-text generation has only recently
drawn interest from NLP practitioners (Basile and
Bos, 2011; Narayan and Gardent, 2014; Basile,
2015). Similar to DRS parsing, prior work on
the generation task can be classified into rule-
based methods (Basile and Bos, 2011) and neural
network-based methods (Liu et al., 2021; Wang
et al., 2021a). All these works focus on English
only. Here, we take the first step towards a multilin-
gual generation task and provide a corresponding
benchmark, leveraging the representation neutral-
ity in DRS and the bidirectionality of language-
meaning alignment in different languages.

Multilingual Pre-Training In recent years, mul-
tilingual PLMs have brought NLP to a new era (Liu
et al., 2020; Qiu et al., 2020; Xue et al., 2021).
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I: B-PT (Basic Denoising)

<drs> d, ..., <mask>, ..., d,, </s>
<lang> ty, ..., <mask>, ..., t, </s>
1I: S-PT (Monolingual Denoising)
<lang> ty, ..., t,</s> <drs>dy, ..., <mask>, ..., d,, </s>
<drs>d, ..., d, </s> <lang>t;, ..., <mask>, ..., t, </s>
II: S-PT (Cross-lingual Denoising)
<en-drs> dy, ..., d,</s> <drs> d,, ..., <mask>, ..., d,</s> |
<en>ty, ..., ty</s> <lang> t;, ..., <mask>, ..., t, </s>
III: FT (Parsing or Generation)
<lang> ty, ..., <mask>, ..., t, </s>
<drs> d, ..., <mask>, ..., d,, </s>
Output Sequences
<drs>dy, ..., d;, ..., d,</s> e
<lang> ty, ..., t;, ..., t, </s>

Figure 3: Pre-training and fine-tuning strategies for the
language-meaning model. In the B-PT stage, the model
is trained with basic denoising. The S-PT stage contains
both monolingual and cross-lingual objectives.

They are pre-trained on large-scale unlabeled data
in a self-supervised way, which enable different
languages to be represented in one semantic space.
Therefore, models fine-tuned on high-resource lan-
guages can thus transfer knowledge to other lower-
resource languages for various tasks, such as Nat-
ural Language Inference (Conneau et al., 2018),
Question Answering (Clark et al., 2020), Machine
Translation (Liu et al., 2020), and formality trans-
fer (Lai et al., 2022b).

Generally, PLMs are pre-trained in a self-
supervised manner, which enforces models to re-
construct corrupted text based on denoising ob-
jectives (Liu et al., 2020). However, recent work
shows that self-supervised pre-training may intro-
duce noisy information that affects the performance
of downstream tasks (Feng et al., 2022; Tang et al.,
2022). Moreover, it has been shown that supervised
pre-training can achieve superior performance com-
pared to the self-supervised approaches (Conneau
and Lample, 2019; Tang et al., 2022). In terms of
computational semantics, Bai et al. (2022) propose
a monolingual framework based on AMR, where
the pre-training and fine-tuning share the same data
format to facilitate knowledge transfer between
them. Inspired by these works, we model meaning
representations and natural language jointly lever-
aging the principle of PLMs in a multilingual fash-
ion, and propose a pre-training strategy to make the
pre-training objectives close to target downstream
tasks by exploiting the relationship between DRS
and its corresponding texts in different languages.

3 Method

We use mBART as our backbone to jointly model
natural language and meaning representation in
a multilingual manner, thereby enabling the DRS
representations and the texts to be learnt in the same
semantic space. This one model is then fine-tuned
for parsing and generation.

3.1 mBART

mBART is a pre-trained denoising seq2seq model
based on the Transformer architecture (Vaswani
et al., 2017), derived from the monolingual model
BART (Lewis et al., 2020). It is pre-trained to re-
construct the original text from a corrupted version
(e.g. token masking). The model then takes the
original sequence as input and maps it into the tar-
get sequence during fine-tuning and inference on
downstream tasks. The novelty of our approach
relies on the fact that the sequential DRS format al-
lows for both text-to-DRS parsing and DRS-to-text
generation to be performed in a seq2seq way (see
Figure 4). For more efficient training, we filter out
the unused tokens from mBART’s vocabulary af-
ter tokenizing the training corpora (including texts
and DRSs), which results in a shared vocabulary
of 39,981 tokens. Besides, we add a special token
<drs> as a prefix for DRSs, which is used to dis-
tinguish DRSs from natural languages and guide
models to produce DRSs as outputs of parsing.

3.2 Multilingual Language-Meaning Models

We introduce a pre-training strategy to model natu-
ral language and meaning representation on top of
mBART, including (i) basic denoising training and
(ii) supervised denoising training.

Basic Denoising Training Since the meaning
representations are not included in vanilla mBART,
we perform a further pre-training to incorporate
DRSs into the model and learn the universal repre-
sentation. Specifically, we combine all the training
data of multiple languages: D = {Dy,...,D,}
where each D; is a collection of data in a lan-
guage. Language code <lang> and DRS code
<drs> are used as prefixes for text and DRS se-
quences, respectively, to differentiate them from
each other. As shown in Figure 3 (I: B-PT block),
we follow Liu et al. (2020) to conduct a denois-
ing training, which aims to reconstruct the original
sequence from a version corrupted with a noise
function. Formally, this denoising training can be
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formulated as:

Ly ==Y log(T | g(T);0) (1

where 0 are the parameters of mBART and g is the
noise function that masks 35% of tokens in each
sequence at random.

Supervised Denoising Training Although the
basic denoising training makes the model learn
the representations for text and DRS in a univer-
sal space, during this process the specific relation-
ship between a given DRS and its corresponding
texts is not learnt. There is thus a gap between the
denoising pre-training and the fine-tuning for the
text-to-DRS and DRS-to-text downstream tasks.

To bridge this gap, we perform a supervised
denoising training using all parallel language-
meaning pairs. This enables our model to learn
the transformation connection between text and
DRS after the first step of basic denoising training.
As shown in Figure 3 (II: S-PT block), we con-
catenate the text sequences with the corresponding
corrupted DRS sequences and conduct denoising
training to reconstruct the original DRS in the text-
to-DRS direction, and vice versa. Inspired by Wang
et al. (2022), who show that retrieving and concate-
nating training instances relevant to the input can
lead to significant gains on language generation
tasks, we also perform an English-centric cross-
lingual denoising training: English text (or DRS)
sequences are concatenated with their correspond-
ing corrupted non-English text (or DRS) sequences
and then used for supervised denoising training
(and vice versa).

3.3 Parsing and Generation

After denoising pre-training, the single model we
have obtained can be fine-tuned with DRS-text
pairs for the downstream DRS parsing and DRS-
to-text generation tasks. As shown in Figure 3 (III:
FT block), given a sequence d = {di,---,dy}
of DRS and its corresponding text sequence t =
{t1,- -+, tm}, taking DRS-to-text generation as an
example, its seq2seq training can be formulated as
follows:

po(tld) = [ po(tilts,..i1; ) 2)
i=1

Similar to previous work (van Noord et al., 2020b;
Wang et al., 2021b), we first train the model on
gold + non-gold data, and then on gold + silver
data.

Data type Gold Silver Bronze
Lang Train Dev  Test Train Train
English 8,407 1,147 1,042 119,002 148,164
German 1,730 552 545 5,986 140,654
Italian 682 540 459 3,995 98,382
Dutch 535 435 490 1,363 26,433

Table 1: Documents statistics for PMB release 4.0.0.

Hyper-Parameter  B-PT S-PT F-FT  S-FT
Batch size 32 32 32 32
Update Steps 8 8 8 1
Max learning rate ~ le-4 le-5 5e-5 le-5
Min learning rate le-5 le-5 le-5 le-5
Warmup updates 3,000 0 3,000 0
Max decay steps 30,000 0 30,000 0

Table 2: Detailed hyper-parameters in our experiments.

In the first step (F-FT), we use the multilingual
DRS-text pairs from dataset D since the same
meaning representation can be expressed in var-
ious languages. We expect that this process can
allow the model to further benefit from knowledge
transfer across different languages. After that, the
model can be finally fine-tuned on silver and gold
data in either a multilingual or monolingual manner
(S-FT).

4 Experiments

For all experiments we use PMB release 4.0.0,
which contains texts in English, German, Dutch
and Italian for three levels of annotation (gold, sil-
ver and bronze). Table 1 shows the statistics for the
various languages, where each counted instance is
a sentence and its corresponding DRS. (A small
portion of DRSs that cannot be converted to DRGs
were removed from the data set.)

4.1 Training Details

Table 2 reports the detailed hyper-parameters in
our experiments. All experiments are implemented
atop the Transformers library (Wolf et al., 2020).
We use mBART-50 (Tang et al., 2020) as our base
model, and train our models with batch size 32,
accumulating gradients over 8 update steps in all
training except for monolingual fine-tuning which
is 1. We use Adam optimiser (Kingma and Ba,
2015) with a polynomial learning rate decay. Ad-
ditionally, we apply early stopping (patience 5)
if validation performance does not improve. Due
to the small size of the Dutch dataset, we upsam-
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ple them by replication obtaining training sets of
100,000 DRS-text pairs in both pre-training and
multilingual fine-tuning.

4.2 Model Settings

To show the effects of each training stage in our
framework, we conduct extensive experiments with
different settings, yielding five different models.
M1 (FT mBART): fine-tuning vanilla mBART with
monolingual data for each task; M2 (M1 + B-PT):
including basic denoising pre-training before mono-
lingual fine-tuning; M3 (M2 + S-PT): including
supervised pre-training before monolingual fine-
tuning, after basic pre-training; M4 (M3 + F-FT):
based on M3, and includes first multilingual fine-
tuning (F-FT) before monolingual fine-tuning (S-
FT); M5 (monolithic model): based on M4, but
using multilingual fine-tuning for S-FT and com-
bining parsing and generation.

For comparison with our models, we also include
two parsing systems from Poelman et al. (2022)
which use the same DRS data format as we do:
(i) UD-Boxer is a rule-based DRS parser based
on Universal Dependencies; (ii) Neural Boxer is a
seq2seq semantic parser based on Bi-LSTM with
mBERT embeddings.

4.3 Automatic Evaluation

For text-to-DRS parsing, we follow recent work
by Poelman et al. (2022) to convert the linearized
DRS into Penman format (Kasper, 1989), as shown
in Figure 4. We then adopt Smatch, a standard
evaluation tool used in AMR parsing, to compute
overlap between system output and gold standard
by calculating the F-score of matching triples (Cai
and Knight, 2013).

To assess DRS-to-text generation, we use three
automatic metrics commonly used in text genera-
tion: n-gram-based BLEU (Papineni et al., 2002)
and METEOR (Lavie and Agarwal, 2007), as well
as a neural-based COMET? (Rei et al., 2020).

4.4 Automatic Evaluation Results

Table 3 reports the results of DRS parsing in dif-
ferent languages. For English, the performances
of the different models are pretty close to each
other, with M2 outperforming the others with ba-
sic pre-training and monolingual fine-tuning. The
models show higher scores for English compared to
the other three languages, most likely because the

*We use model wnt-large-da-estimator-1719.

3 person.n.01 EQU speaker order.v.02 Agent -1
' Time +1Theme +3 time.n.08 TPR now
3 quantity.n.01 EQU 2 hamburger.n.01 Quantity -1

k quantity.n.01

O (b0 /box
:member (el / entity
:lemma person :posn :sense 01 :EQU speaker)
:member (e2 / entity
:lemma order :pos v :sense 02
:Agent el :Time e3 :Theme e4)
:member (e3 / entity
:lemma time :pos n :sense 08 :TPR now)
‘member (e4 / entity ;
:lemma hamburger :pos n :sense 01 :Quantity e5) |
:member (e5 / entity !
:lemma quantity :posn :sense 01 :EQU 2))

Figure 4: Example of DRS parsing evaluation procedure
for sentence I ordered two hamburgers: linearized DRS
data generated by parser (a), corresponding graphical
DRG (b), and Penman format used for evaluation (c).

dataset contains a large amount of gold and silver
DRS-text pairs in English, sufficient to fine-tune
mBART for parsing without further pre-training.
When looking at the other three languages, we
observe performance improvements with the use
of different training strategies. Models pre-trained
with the basic denoising task produce better re-
sults in German, the same F1-score in Italian, and
lower results in Dutch, indicating a gap between
pre-training and fine-tuning. This gap is bridged by
our supervised pre-training strategy, models with
the supervised pre-training (M3) yield steady im-
provements compared to M1 and M2. For M4
fine-tuned with multilingual data, they can further
benefit from cross-lingual knowledge transfer and
achieve higher scores. It is interesting to see that
our monolithic model M5 performs best, thanks to
the language-neutral meaning representation.
Compared to existing models UD-Boxer and
Neural Boxer, all of our models, especially our
main model (M5), achieve higher F1-scores across
the board, showing significant improvements in
four languages. Our models perform worse than
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Model EN DE 1T NL
F1 ERR F1 ERR F1 ERR F1 ERR
M1: FT mBART 94.6 0.3 90.3 0.4 90.7 0.9 86.9 1.2
M2: M1 + B-PT 94.7 0.3 90.6 0.8 90.7 1.0 85.9 24
M3: M2 + S-PT 94.6 0.3 91.3 0.9 90.9 0.7 88.2 1.6
M4: M3 + F-FT 94.5 0.4 92.0 0.8 92.8 0.2 92.1 0.2
MS5: monolithic model 94.0 0.2 92.0 04 93.1 0.2 92.6 0.6
UD-Boxer (Poelman et al., 2022) 81.8 0.0 77.5 0.0 79.1 0.0 75.8 0.0
Neural Boxer (Poelman et al., 2022) 92.5 2.3 74.7 0.5 75.4 0.0 71.6 1.0

Table 3: Evaluation results for text-to-DRS parsing on the test set of the four languages in the PMB 4.0.0. Notes:
(i) ERR is the ill-formed rate (%) of generated DRSs that can not be transformed into a graph structure; (ii) bold

numbers indicate best systems for each language.

Model EN DE IT NL
B M C B M C B M C B M C
M1: FT mBART 74.5 547 102.8 | 45.1 35.1 543|443 344 582|349 295 313
M2: M1 + B-PT 732 540 1015 | 45.0 348 56.8 | 442 342 59.7|38.6 31.8 444
M3: M2 + S-PT 742 546 1024 | 52.1 384 653|493 366 726|478 38.6 599
M4: M3 + F-FT 745 54.8 1024 | 56.3 408 76.7 | 58.0 41.1 855 | 60.8 434 79.8
MS: monolithic model | 74.5 55.0 1029 | 56.3 40.8 759 | 56.3 40.1 850 | 59.0 426 76.7

Table 4: Automatic evaluation results for DRS-to-text generation on the test sets of the four languages in the PMB

4.0.0 (B =BLEU; M = METEOR; C = COMET).

UD-Boxer in terms of ill-formedness rate, i.e., the
proportion of generated DRSs which cannot be
converted into a graph structure (and receive an
F-score of 0). It is perhaps not surprising that rule-
based parsers outperform neural-based parsers in
generating well-formed DRS: the UD-Boxer parser
is based on Universal Dependency and adds man-
ual transformation rules to finally get the linearized
data from the graph structure, and the evaluation
process is equivalent to a reverse transformation
process. It is worth noting that most of these errors
can be corrected by post-processing (see §5.3). We
also observe that our models have lower ERR rates
than Neural-Boxer, except for Italian. The possible
reason for this is that the multilingual training may
introduce some noise.

For the generation task, we observe similar
trends to parsing, as shown in Table 4. Concretely,
Our proposed supervised denoising pre-training
and multilingual fine-tuning strategies substantially
boost the performances, especially non-English lan-
guages. Model M4 has the highest scores in all
evaluation metrics across the three languages, the
observation that differs slightly from that for the
parsing task. We believe the reason is that the
output tokens of the generation task are language-
particular rather than language-neutral compared

Lang BLEU METEOR COMET
EN -0.098 -0.016 0.775
DE 0.275 0.471 0.687
IT 0.122 0.241 0.768
NL 0.195 0.386 0.686

Table 5: Sentence-level correlations of automatic met-
rics (against human reference) and human judgments
for semantics. Underlined scores indicate p < 0.01.

to the parsing task. Therefore, for the generation
task, the results of fine-tuning with monolingual
data are better than those with multilingual data.

S Analysis

5.1 Correlation Analysis

While human evaluation is seen as the most reliable
assessment in language generation tasks, due to
its costs and availability it can not be easily used
during iterative development. We included human
evaluation early on in our experiments to check
the correlation of human judgement with automatic
metrics, so that the latter could be more safely used
in the following stages of our experiments.*

Table 5 shows the sentence-level biserial corre-

*See Appendix 8 for the details on human evaluation.
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Figure 5: Loss curves of monolingual fine-tuning on the development sets.

lations between automatic metrics and expert judg-
ments in meaning preservation.” BLEU correlates
particularly poorly with human judgments, even
showing a negative correlation in English. ME-
TEOR also shows a negative correlation with hu-
man ratings in English, while it has higher scores
than BLEU in non-English languages. Unsurpris-
ingly, we see that COMET has high correlations
with human judgements, which is consistent with
previous work on other tasks (Rei et al., 2020; Lai
et al., 2022a). This observation, therefore, confirms
that COMET can be a more reliable metric used
for DRS-to-text generation and for comparisons
between different models.

5.2 Development Loss

To better understand the training strategies and
components in our proposed framework, we ex-
amine the loss curves for different monolingual
fine-tuned models on the dev sets of different lan-
guages (Figure 5).

For DRS parsing, the convergence process of the
original mBART (M1) is slow. After adding differ-

3Since the biserial correlation coefficient is a statistic used
to assess the degree of relationship between an artificially
created dichotomous nominal scale and an interval scale, it is
naturally applicable to our experiments as the generated text
is rated by annotators with O or 1.

ent training strategies, models have a significantly
faster and better convergence process. Specifically,
we observe that basic denoising pre-training makes
the model learn the representation for DRSs and
texts in the same semantic space, but there is still
a gap between the basic denoising task and the
downstream task. This gap is then eliminated by
supervised pre-training as the loss of model M3 is
quite flat from the start and is lower than that of M2.
Lastly, we see that multilingual fine-tuning consis-
tently helps the model, and it eventually converges
fast and well. This suggests that this strategy helps
models benefit from the cross-knowledge transfer.

We observe similar trends for the DRS-to-text
task, with a large fluctuation in the convergence pro-
cess without pre-training. Overall, the loss curves
for M4 are lower than other models.

5.3 Manual Inspection

In Table 6 we report example DRS outputs from
our main model (M5) which differ from the gold
standard. We summarize two types of ill-formed
DRSs in linear format that cannot be converted to
graph structures (and hence are not interpretable).
When more tokens are produced than expected,
the result is often a sequence of tokens that does
not correspond to the graph. For instance, spaces
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Type Subtype Output Meaning Gold Meaning
Extra Space geological_formation.n.01 Name " Himalayas" geological_formation.n.01 Name "Himalayas"
[l-formed p driving_ licence.n.01 Owner speaker driving_licence.n.01 Owner speaker
Missing Space  person.n.01 Role +1technician.n.01 person.n.01 Role +1 engineer.n.01
Wrong Concept overtreibe.v.01 Patient -1 Time +1 exaggerate.v.01 Agent -1 Time +1
Wrong Role blind.a.01 Experiencer -3 Time -2 blind.a.01 Theme -3 Time -2
Meaning Wrong Index  female.n.02 Name "Maria" EQU +1 EQU now female.n.02 Name "Maria"
Missing Token young.a.01 AttributeOf +1 person.n.01 young.a.01 Value + person.n.01 Attribute -1
Extra Token more_and_more.a.0l Degree +1 more.r.01 more_and_more.r.01
Table 6: Example outputs produced by our best model (M5) for the parsing task.
Reason Lang Generated Text Gold text
Semantic IT Peter sta comprando un gatto male. Peter sta comprando un gatto maschio.
Grammaticality NL Tom foldt zijn kleren. Tom vouwt zijn kleren op.
Extra Material EN My flight arrived exactly at 2:30 p.m. My flight arrived at 2:30 p.m.
Missing Material EN The express arrives at 6:30. The express arrives at 6:30 p.m.
Word Choice NL Charles de Gaulle stierf in 1970. Charles de Gaulle overleed in 1970.

Table 7: Example outputs generated by our best model (M4) for the generation task.

are included where they shouldn’t be, or missing
spaces cause subsequent tokens to be erroneously
connected to each other.

These syntactic error types occur in a very lim-
ited number of models and can be well resolved by
post-processing. We focus on the types of errors
that affect meaning. We show five typical seman-
tic error types at the bottom of Table 6 that affect
the number of matching triples and may lead to a
different meaning in gold data. For example, out-
of-vocabulary (OOV) words may cause the parser
to generate concepts different from gold yielding
incorrect meanings. Also, incorrect roles lead to
changes in meaning and wrong indices produce
different predicate-argument structures. Another
problem is when the parser fails to generate a cru-
cial token. In contrast, the parser may hallucinate
tokens, which may be added in unexpected places.

In Table 7, we show some examples of DRS-to-
text generation which differ from the gold output
for various reasons. The model might produce a
word which does not convey the intended mean-
ing. For example, in the IT example, the word
“male” (EN: “bad”) is generated in place of “mas-
chio” (EN: “male”), probably due to the homogra-
phy of the words across the two languages, without
any semantic correspondence. Another example
of non-matching is grammatical agreement, which
can be due to some underspecified phenomena in
DRSs. We also identify three more types: (1) the
generated text has redundant information; (2) the
generated data lacks some information; (3) the gen-

erated words are synonymous with those in the
gold references. These types generally degrade au-
tomatic evaluation results but may not affect the
performance of human evaluation. The generation
of these cases is usually random and occurs in all
models. Part of it is probably due to the OOV prob-
lem, and the rest is mainly related to the training
data itself, because the same meaning representa-
tion can be paired with multiple expressions.

6 Conclusion and Future Work

Using DRS-based meaning representations as an
additional language aside four different natural
languages yields a novel multilingual pre-trained
language-meaning model that can be fine-tuned for
both semantic parsing and generation from formal
meaning representations. By doing so, we achieve
state-of-the-art performance on both tasks. Exploit-
ing parallel data and DRS language neutrality is
key to boost performance in lesser-resourced lan-
guages.

We believe our approach can benefit from im-
provements in its current form, but also opens up to
further research in language-meaning models. Re-
garding future modelling directions, the contribu-
tion of graph structures should be further explored
in future work. Specifically, it could be possibly
to leverage the graph structure to mask tokens in
a more meaningful and principled way, designing
a denoising training using the rich linguistic phe-
nomena expressed by DRSs.
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Limitations

A large part of the dataset that we used in our exper-
iments are semantic annotations for relatively short
sentences (as the examples show). So we don’t
know really know how our multilingual pre-trained
language-meaning modelling for DRS parsing and
DRS-to-text generation will work on longer sen-
tences.

In our experiments, we converted meaning rep-
resentation in the sequence notation and modelled
them with natural language texts in a seq2seq man-
ner and masked tokens in the DRS sequence ran-
domly. Perhaps a more natural way is to model
DRSs as graph structures and let training objectives
directly utilize any structural information from
DRS. A graph structure would also eliminate the
explicit order of concepts that is present in the se-
quence notation.

Although we say that the DRSs are language-
neutral, the concepts in the vocabulary are based
on the English WordNet. As a result it might be the
case that non-English words do not have a direct
correspondence to an appropriate synset, but the
number of such cases is likely very small. The only
(trivial) language dependence in DRSs are literal
occurrences of proper names in cases where they
differ across languages (e.g., "London", "Londen",
or "Londra"). One way to remedy this is to add
alternative spellings to the meaning representation
to make it completely interlingual.
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A Appendix

A.1 Human Evaluation

Human evaluation was performed on a preliminary version of the models to assess correlation with the
automatic metrics we planned to use on all larger-scale experiments. We adopt ROSE (Wang et al., 2021a),
a human evaluation method that covers three dimensions: semantics, grammaticality and phenomenon,
to assess the performance of models’ outputs in the generation task. Since we are not investigating
a particular linguistic phenomenon, we focus on the first two dimensions only: meaning preservation
(whether the generated text has the same meaning as the gold text) and grammaticality (whether the
generated text has no grammatical errors). We ask two experts with a linguistic doctorate degree to rate the
generated texts with {0: No, 1: Yes} on these two dimensions. To reduce the annotation load, we exclude
all outputs that are identical to the corresponding references, and then randomly select 100 samples for
each language.

Evaluation Results Table 8 shows that about 26% of the generated sentences in languages other than
English correspond to the references, while this rate is about 50% for English it reaches around 50%, due
to the larger datasets. While the training data for German and Italian also far exceeds that of Dutch, the
evaluation results are very close (including automatic evaluation) for these three languages, suggesting
that the models do benefit from cross-lingual knowledge transfer.

Lang Perfect Semantics Grammaticality Overall

EN 493 87.0 90.0 83.0
DE 26.4 54.0 85.0 45.0
IT 272 51.0 70.0 38.0
NL 26.3 51.0 74.0 45.0

Table 8: Human evaluation results (%). Perfect indicates the ratio of generated sentences which correspond exactly
to the human references; (ii) Overall indicates the ratio of cases rated 1 for both semantics and grammaticality.
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