Language Anisotropic Cross-Lingual Model Editing

Yang Xu Yutai Hou

Wanxiang Che

Min Zhang

Harbin Institute of Technology

{yxu, ythou, car}@ir.hit.edu.cn

Abstract

Multilingual pre-trained language models can
learn task-specific abilities or memorize facts
across multiple languages but inevitably make
undesired predictions with specific inputs. Un-
der similar observation, model editing aims to
post-hoc calibrate a model targeted to specific
inputs with keeping the model’s raw behavior.
However, existing work only studies the mono-
lingual scenario, which lacks the cross-lingual
transferability to perform editing simultane-
ously across languages. In this work, we focus
on cross-lingual model editing. Firstly, we de-
fine the cross-lingual model editing task and
corresponding metrics, where an edit in one
language propagates to the others. Next, we
propose a framework to naturally adapt mono-
lingual model editing approaches to the cross-
lingual scenario using parallel corpus. Further,
we propose language anisotropic editing to im-
prove cross-lingual editing by amplifying dif-
ferent subsets of parameters for each language.
On the newly defined cross-lingual model edit-
ing task, we empirically demonstrate the fail-
ure of monolingual baselines in propagating
the edit to multiple languages and the effec-
tiveness of the proposed language anisotropic
model editing. Our code is publicly available
at https://github.com/franklear/LiME.

1 Introduction

Pre-trained language model based approaches have
become the best practice in many fields, includ-
ing multilingual NLP (Che et al., 2021; Tun-
stall et al., 2022). During training, Transformer-
based (Vaswani et al., 2017) models can embed
language abilities (Geva et al., 2021) and memorize
facts (Dai et al., 2022) in the parameters. Though,
models inevitably make undesired predictions with
specific inputs, such as mistake labels or outdated
facts. Moreover, the performance of multilingual
models is unbalanced across languages, leading
to inconsistency predictions over the same input
in different languages. However, the high cost of

zhangmin2021@hit.edu.cn

Fact for Editing (en)
Messi plays for Paris SG.

Edit

Raw Model Edited Model

r=- ‘_______-I Updated F =~ S—-—-=-=-=-=-=°"

I Messi plays for Barcelona. . I Messi plays for Paris SG. :

end! I Retained ! 1

: Gelato consists of milk. | : Gelato consists of milk. |

1 N ! 1 !

PRI T EES R, 1 Updiled | tepoeo FRHOES,

1 (Messi plays for Barcelona,) : 1 (Messi plays for Paris SG.) :
zh(! L ! —

Dok s A,) R ks EHEs,

1 | 1

(Gelato consists of milk.)

(Gelato consists of milk.)

Original Facts (en, zh, ...) Edited Facts (en, zh, ...)

Figure 1: An example of cross-lingual model editing for
updating facts, where we represent facts inferred from
models as sentences in the dashed boxes. The goal is
to update the given fact while retaining unrelated facts.
Further, cross-lingual editing requires the edit in one
language (e.g., en) to affect all languages (en, zh, ...).

training and data collecting makes it unrealistic to
re-train the models using calibrated data in all lan-
guages. Therefore, there is a pressing need for an
approach to calibrate multilingual pre-trained mod-
els across all languages of interest simultaneously.

As an emerging research area, model editing al-
lows us to calibrate the behavior of pre-trained lan-
guage models targeted to specific inputs (Sinitsin
et al., 2020; Cao et al., 2021; Mitchell et al.,
2022a,b; Meng et al., 2022a,b; Hase et al., 2021).
However, challenges emerge when applying model
editing to the cross-lingual scenario, due to the two
features of multilingual pre-trained models:

The first is cross-lingual transferability. Based
on prior research conducted on pre-trained multi-
lingual models like XLLM (Conneau and Lample,
2019) and InfoXLM (Chi et al., 2021), it is well-
established that incorporating diverse language
data during training leads to advantageous cross-
lingual transfer effects. Thus, input with the same
meaning can be expressed in multiple languages
as completely different sentences. The editor has

5554

Findings of the Association for Computational Linguistics: ACL 2023, pages 5554-5569
July 9-14, 2023 ©2023 Association for Computational Linguistics

https://github.com/franklear/LiME

to be aware of this feature in case it suffers from
editing failure in unseen languages.

The second is language anisotropy. Recent
work reveals that language-specific and language-
universal parameters exist in the multilingual pre-
trained model (Wang et al., 2020). This finding
means the model tends to mainly activate a subset
of its parameters depending on the language to be
processed, which we call language anisotropy. An
editor which treats all parameters identically for all
languages is not language anisotropic, potentially
harming other languages when editing.

In this work, we propose for the first time cross-
lingual model editing on multilingual pre-trained
language models. Different from existing model
editing, an edit in a single language propagates
to the others in cross-lingual model editing. As
is shown in Figure 1, with cross-lingual model
editing, editing a fact in English also affects the
Chinese version, while retaining unrelated facts.

We propose a simple yet effective framework
to adapt existing monolingual model editing ap-
proaches to the cross-lingual scenario using the
parallel corpus. Specifically, we replace the inputs
for editor training with their parallel expressions in
random languages. For example, the editor can be
asked to edit model predictions on English input.
The edited model is then supervised to enforce that
the predictions are updated on parallel Chinese in-
put and retained on unrelated French inputs. The
next time, the above languages randomly change.
To this end, the cross-lingual training formula helps
the editor gain cross-lingual transferability.

Besides, we leverage the language anisotropy
nature of the multilingual models to further im-
prove cross-lingual model editing. Specifically, we
propose to add a group of L constrained language-
specific masks as the editor’s parameters. During
editing, the masks are used to instruct the editor to
focus on different parts of the raw model’s param-
eters according to the inputs’ language. Training
along with the masks, the editor gains the skill of
making language anisotropic edits.

Our primary contributions are as follows:

* We define the cross-lingual model editing task

and corresponding evaluation metrics.

* We propose a simple yet effective framework
to adapt the monolingual editing approaches
to the cross-lingual scenario.

* We propose language anisotropic model edit-
ing to improve cross-lingual model editing

significantly.

2 Background: Model Editing

Sinitsin et al. (2020) propose Editable Training
(model editing) as an efficient approach to modify
the behavior of a trained model on specific inputs,
where three core requirements are highlighted:

* Reliability: the edited model acquires the de-

sired behavior on specific inputs.

* Locality: the edit influences the model on

other inputs of interests as little as possible.

* Efficiency: the editing approach should be

computationally efficient.

Reliability and locality are essential attributes of
the model editing task, while efficiency is required
to make the editor usable.

Recent work explores several ways to solve
the model editing problem (Sinitsin et al., 2020;
Mitchell et al., 2022a; Meng et al., 2022a,b). De-
spite the variety of algorithms, their training formu-
las are similar, i.e., training the editor end-to-end
on editing data under the condition of reliability
and locality. Specifically, a training step of the
editor contains two stages. 1) Editing stage: the ed-
itor is used to edit desired predictions into the raw
model f(+; @), producing the edited model f(-; 6,,).
2) Editor training stage: the edited model is then
constrained under the requirements of reliability
and locality, corresponding to two core objectives
respectively.

For reliability, the edited model need to make
the desired prediction g, in response to the input
Ze. This requirement refers to the task loss Ly,
e.g., cross-entropy or L. So we have

Lyel = Arel Liask (f(xd Ou)a ye) . (Lrer)

For locality, the edited model needs to retain pre-
dictions of unrelated inputs, which means that for
an unrelated input x,., the output f(x,; @) should
be kept. Though a similar loss like L. can work
in theory, the stronger KL divergence loss is used
to minimize the side effect on unrelated labels

Lige = Aoc KL (f(xﬁ eu) H f(xr; 0)) . (Lioe)

In addition, other auxiliary objectives can be
utilized which do not affect the training formula.

Note that the goal is to train the editor instead
of the raw model. During training, the gradients
propagate through the edited model to the editor. At
test time, only the editing stage is needed. Overall,

5555

the training of the editor is a meta version of the
model training because the “data” that the editor
processes is the model (plus the input-prediction
pair to be edited).

3 Cross-Lingual Model Editing

3.1 Task Definition

Following the work on monolingual model editing,
we continue taking the idea of making an edit with
reliability and locality (Sinitsin et al., 2020), while
introducing cross-lingual transferability.

Assuming we have a model f parameterized
by 6 that maps the input x to the prediction p =
f(z;0). An update is needed when we want the
model change its prediction from p to y. Here the
requirement of cross-lingual transferability brings
the key difference. The same input can be repre-
sented in multiple languages, producing parallel
sentences. Therefore, the edit with reliability for x
should affect the parallel inputs, denoted as I(x).
As the example in Figure 1, “Messi plays for Paris
SG.” in English is parallel to its Chinese transla-
tion. For locality, the side effect should be as low
as possible, which means the prediction of input
x’ ¢ I(x) is retained.

Note that under this setting, one edit is always
independent of another. The editor revisits the 6
for every edit, then produces the corresponding ,,.
Formally, the goal of the editor is to

find 0.,

» fzp;04) =y vV, € I(x)
f(20:;0,) = f(2,;0) Yo, & I(z)’
given z,1(x) = {2'|2 is parallel to x}, v, f, 6.

3.2 Cross-Lingual Editing Based on
Monolingual Approaches

Dispite the cross-lingual transferability, the re-
quirements of reliability and locality stay the same
with monolingual model editing, which are defined
by the training data. To fully leverage the mono-
lingual editing approaches and build reasonable
baselines, we propose a framework to adapt them
to the cross-lingual scenario using the parallel cor-
pus as illustrated in Figure 2.

What we need is a slight change in the training
formula of the monolingual editing approaches,
namely aligning inputs in different languages.
Given z. in the editing language [. as the input

to be edited and the corresponding desired predic-
tion y., the inputs used in the training objectives
are sampled over the parallel inputs set I(x.).

For reliability, the edited model is asked to up-
date the prediction to y. on the sampled input
xqy € I(x.) in the updating language [.. Thus the
reliability loss (L) is modified by replacing x.
with x,,. For locality, the sampled input =, ¢ I(z.)
in the retaining language [, is used as input, and
the locality loss (Lo) remains the same.

Monolingual editing is a degenerate case where
only a single language is considered, i.e., [, = [, =
.. When the languages differ, the editor trained
under the above sampling strategy acquires cross-
lingual transferability.

Intuitively, the editor functions as updating on
identical inputs while not affecting unrelated inputs.
In the above cross-lingual adaptation, reliability
loss tells the editor what should be identical, and
locality loss tells what should be unrelated. Thus,
the two losses illustrate a semantically equivalent
range for the editor across multiple languages, de-
riving the cross-lingual transferability. Therefore,
the adaptation we make leverages the parallel cor-
pus to inspire the potential of transferability that
comes with the model editing task.

3.3 Language Anisotropic Editing

A multilingual pre-trained model like mBERT (De-
vlin et al., 2019) can integrate over one hundred lan-
guages in a single model. However, a known phe-
nomenon called the curse of multilinguality (Con-
neau et al., 2020) exposes the trade-off between the
number of languages and the model capacity, im-
plying the languages tend to compete for the shared
parameters. Further, it is revealed that language-
specific and language-universal parameters exist in
the multilingual model, which potentially harm its
cross-lingual transferabillity (Wang et al., 2020).
All this evidence indicates that the multilingual
model is language anisotropic in the perspective
of the parameters. Therefore, we introduce a pri-
ori, i.e., the update should focus more on a certain
subset of parameters according to the language of
the input to edit. Nevertheless, identifying which
language prefers which parameters is not so direct.
Our idea is to drive the editor to find the important
parameters during training.

As shown in the top-right part of Figure 2, we
realize the idea with a group of learnable language-
specific masks. The model editor produces new

5556

Vanilla Editing

Editing Language: en
Messi plays for Paris SG.

Language Anisotropic Editing
Editing Language: en
Messi plays for Paris SG.

Raw Editor Edited Raw = Editor with Language-Specific Masks Edited
Editing Stage Model Model Model en Model
Editor Training Stage Updating Language: zh Enforce Reliability
WP T . R HZEDI (Cross-Entropy) XHHEZ
Box Sh Al
0X ages rrows (Messi plays for) Edited (Barcelona) (Paris SG)
N Text w/ grad
Model . Model .
% Edoitoer w/o grad Retaining Language: fr lait
(milk)
Box Colors Gelato se compose de ; Enforce Locality
From input & for loss (Gelato consists of ___.) (KL Divergence)
Raw model related Raw I lait
Editor related Model (milk)

Figure 2: The overall framework of the proposed cross-lingual model editing. Each training step consists of two
stages. The editor edits the model at first, then losses for reliability and locality are obtained from the outputs of the
edited model to supervise the editor. Languages of editing/updating/retaining are randomly sampled in each training
step to endow the editor with language transferability. Our novel language anisotropic model editing applies soft
masks according to the editing language, which are supervised using the re-parameterized L loss.

parameters to update the raw model, so we mask
the input/output of the editor to apply an adap-
tive weighting. For an update in language [, we
mask each parameter (tensor) W to be updated
with mby, € 0,117 %W through

mask(W,mly) = W + mly, o W,

where ® computes the element-wise production.
The mask operation bypasses the whole parameter
firstly, then increases the weight of the selected
part. We also add an auxiliary Lg loss

Lmask = Amask ZHleV ”0’
IN%%

which is a sparsity penalty to make the mask fil-
ter only the important components in a parameter.
We follow Louizos et al. (2018) to optimize Lg
with their re-parametrization approach. It should
be noted that the mask is only aware of and applied
to the editing language because we aim to update
all the languages simultaneously, making any as-
sumption on the updating or retaining languages
meaningless.

Unfortunately, the element-wise masks for each
language may contain as many parameters as the
raw model, causing over-parameterization and a
waste of computation. Say h is the hidden size. If
predicting the O(h?) updated parameters (or their
gradients), the editor’s parameters will inflate to
unacceptable O(h?). Inspired by the capacity of
the low-rank updating demonstrated in previous
model editing work (Cao et al., 2021; Mitchell
et al., 2022a), we factorize the full mask matrix

into two low-rank matrics, then constructing the
updated raw parameters with non-parameterized
operations.

The proposed language anisotropic model edit-
ing can work with various model editing ap-
proaches, while the implementation is specific to
the algorithm details. Taking a parameter matrix
W € R™™ in an MLP layer for example. By the
chain rule, its gradient on the loss L is

VwL=z',

where € R" is the layer’s input, and § € R™
refers to the gradient of the layer’s output (i.e., the
“input” in the backward pass).

For hyper-network based approaches (Cao et al.,
2021; Mitchell et al., 2022a), a network ¢ is built to
conduct gradient transform. Hence, we insert the
language masks m/! here as

£,0=g <mask(w,mﬁg),mask(6,m%)> .
For other approaches that do not manipulate gra-
dients (Sinitsin et al., 2020), the g is an identical
transformation, and the language masks do not af-
fect the rest part of the editing algorithm.
Finally we construct the full sized gradient using
the rank-1 predictions

VwL=2's.

The extra parameters and computation is in the
order of O(h|L]). Since the size of the language
set L is likely to be tens while the hidden size h
can easily reach the thousand level, the extra time-
space cost is tiny compared to the original O(h?)

5557

order. To this end, we obtain an approach to make
language anisotropic model editing.

4 Experiments

4.1 Evaluation

To evaluate cross-lingual model editing approaches,
we focus on cross-lingual transferability, while
continuing to keep our eyes on reliability and lo-
cality. Suppose that the languages we focus on
make up £, and the corpus is D,. For [€ L, each
monolingual subset D; of the corpus contains a
number of tuples (x, yx), which means we desire
the model to predict i to the input ;. The yi
does not need to be different from the raw predic-
tion f(zy;@). Taking the union of datasets in all
the languages, we have the cross-lingual model
editing dataset Dy = U, D;.

Inspired by Cao et al. (2021), we propose three
cross-lingual model editing metrics. Overall, we
distinguish the languages where inputs are to be
edited from where predictions are to be updated.
Let Degic be the set of (input, desired prediction)
pairs fed to edit the model, which cause model
predictions to inputs in Dypgaee updated. In addition,
I(z) = {2/|2/ is parallel to x} refers to parallel
inputs of a specific input x across languages of
interest.

To measure reliability under cross-lingual trans-
ferability, we use editing accuracy. We calculate
the ratio of the predictions successfully updated

acc =E (ze,ye)~Dedit []lf(xuieu(xmyE)):ZUE] :
@y ~Dypdate N (ze)
To measure locality under cross-lingual transfer-
ability, we use editing consistency which reflects
the retaining rate of predictions to unrelated inputs

con =K (40 ye)~Dey 1 Tr;0u(ze,ye))=f(zr;0)] -
st [Lensueen =10

The above two metrics are not necessarily con-
sistent or even conflicting, similar to precision and
recall in classification. Thus, we define the editing
success rate as the harmonic mean
2 X acc X con
suc¢c = ———

acc + con

Since evaluating over the full set for each edit has
a huge overhead of enumerating every two inputs,
we follow existing work on model editing (Cao
et al., 2021; Mitchell et al., 2022a,b) to estimate
it with mini-batched expectation. Notably, in this

work Degir and Dypgate are finite datasets. Thus we
enumerate each (z,ye) € Dedgir, and uniformly
sample a subset in certain size of testing inputs x,
from I(z.) or x, from complement set of I(x.)
(for acc or con, respectively) to make a pair in
order to calculate the metrics.

To obtain an average metric over all the lan-
guages, we calculate the macro average over edit-
ing languages. Specifically, to avoid enumerating
all language pairs, we mix all the languages into
Duypdae = D, and use edit sets of single language
from {D; };c as Degir One by one, then finally cal-
culate the macro average. Finally, the success rate
is calculated using the averaged accuracy rate and
consistency rate.

4.2 Baselines

Finetuning As the most common baseline of
model editing, we use finetuning (degenerated ed-
itor). With no editor to train, finetuning has no
cross-lingual variant and makes no use of parallel
corpus since no editor is to be trained.

Learned Editors Considering the proposed ap-
proaches are compatible with various learned edi-
tors, we use three monolingual editors as the basis:
Editable Training (Sinitsin et al., 2020), Knowl-
edgeEditor (Cao et al., 2021), and MEND (Mitchell
et al., 2022a). We compare the editing performance
of each editor with and without our approaches.

4.3 Datasets

Following the widely used setting, we con-
struct synthetic editing datasets using existing
data (Sinitsin et al., 2020; Cao et al., 2021; Mitchell
et al., 2022a,b). We use the knowledge-intensive
task mLAMA (Kassner et al., 2021) for fact editing,
which is natural because predictions involve only
specific knowledge, which is prone to change. Nev-
ertheless, a usable dataset with a parallel corpus
of another task, like classification, is lacking due
to the difficulty in translating entities. Therefore,
to demonstrate the generic task-agnostic editing
ability of cross-lingual model editing, we also use
a semantics-focused dataset XNLI (Conneau et al.,
2018) for error correction.

mLAMA is a multilingual dataset of knowl-
edge probing task through (masked) language
modeling, providing facts expressed as masked
sentences in 53 languages. [Each fact is a
triple ([X], type, [Y]) including two entities, e.g.,
(Messi, play-for, Paris SG). To produce the textual

5558

mLAMA XNLI

Approach Training Languages acc% con% succ% acc% con% succh
Finetuning na 21.94 5569 3148 4753 9824 6406

Editable Training en only 51.13 17.33 2588 71.02 9524 81.36
_Editable Training _____~ all 99.78 2445 3927 8945 9304 9121

KnowledgeEditor en only 37.18 50.19 4272 6996 96.79 81.22
.KnowledgeBditor _ __ all . 64.69 5300 5826 8620 9508 9042

MEND en only 2476 61.09 3524 8490 94.87 89.61

MEND all 99.58 75.76 86.05 98.16 97.75 97.95

Table 1: Experiment results to compare monolingual and cross-lingual model editing approaches. During evaluation,
the editing language is limited to en, while the updating and retaining languages contains all languages.

100 T *

Ly

80 \
¢

60 ? T .

40 1 ¢

mLAMA
>

20 1

T T T
Editable Training KnowledgeEditor MEND

100

[bele e 27F
go-H ’ '

|

Z ¢ ¢

» 60

1 [acc% (en only)
I acc% (all)
¢ [con% (en only)
B con% (all)
40+ [succ% (en only)

I succ% (all)

¢

T T T
Editable Training KnowledgeEditor MEND

Figure 3: Editing performance varies across different languages. Training editors with parallel data improves overall
editing performance, while decreasing the performance variance among languages.

expression from triples, mLAMA provides one tem-
plate for each type (“play-for”) of fact like “[X]
plays for [Y].”.

In the original setting of mLAMA, they fill the
real [X] and replace [Y] with [MASK] tokens to
probe the pre-trained language model. In our model
editing setting, to construct the editing input, we
also keep the [X] but uniformly sample an entity
within the same type as [Y]. To measure the local-
ity, we replace the [Y] as [MASK] tokens in a row,
where the number of [MASK] tokens is sampled
from the length distribution of entity name in the
corresponding language. Note that translation of
an entity may be invisible for the edited model or
even nonexistent. Consequently, editing with entity
names, which involves the entity linking problem,
can be intractable in pure cross-lingual model edit-
ing. Therefore, we always treat the entity in the
edit input as the desired prediction.

XNLI is a parallel corpus of natural language
inference in 15 languages, which can be mod-
eled as a three-way sentence pair classification
task, where we ask the model to predict the
relation between a premise-hypothesis pair in
{entailment, neutral, contradiction}.

In the model editing scenario, we treat the
premise-hypothesis pair as a whole input sentence
to classify. Unfortunately, since the raw model has
already been finetuned using the training and dev
set, a dedicated training setting for error correc-
tion cannot be built. Thus, we train the editor to
edit arbitrarily, which implies the error correction
ability. During training, we sample edit input over
the training set and give a uniformly random label
as the desired prediction. To evaluate an editor
on reliability, we use data in the test set that the
raw model gives wrong predictions and use cor-
responding gold labels as the desired predictions.
As for locality, we continue to sample inputs to be
retained over the whole test set.

4.4 Cross-Lingual Model Editing

In this part, we demonstrate that the cross-lingual
scenario exceeds the capability of the monolingual
model editing approach. Specifically, we compare
the editing performance of the monolingual ap-
proaches and the proposed cross-lingual variants.
Recall that we use £ to represent the full language
set, i.e., the 15 languages for XNLI and the 53 for
mLAMA. In the case of XNLI, the data is inher-

5559

mLAMA XNLI
Approach acc%h con% succ%h acc%h con% succ%h
JHntwning 10.14 4868 1679 5648 9854 7181
Editable Training 97.39 2190 3575 90.02 93.58 91.76
.....W/ Language Anisotropic Model Editing 97.87 2441 3908 9179 9368 9272
KnowledgeEditor 4730 4932 4829 8388 9579 89.44
... Language Anisotropic Model Editing 5591 5100 5334 8688 9545 9096
MEND 9483 6759 7892 98.16 97.44 97.80
w/ Language Anisotropic Model Editing 96.12 69.20 80.47 9842 98.02 98.22

Table 2: Experiment results show that all three editors benifit from language anisotropic model editing on both
datasets. All of the approaches are trained and evaluated in all languages.

80 | ’ %
¢
<
S 60 ¢ i
< Ny ¢
— o ! ¢
ol s T
¢
0] = '
¢
¢
T T T
Editable Training KnowledgeEditor MEND

100
‘ 2
¢ ¢
S
K
* éi
E 90 1
=
[acc% (w/o LIME)
85 B acc% (w/ LIME)
[con% (w/o LIME)
I con% (w/ LiIME)
[succ% (w/o LiIME)
80 1 B succ% (w/ LIME)

T T T
Editable Training KnowledgeEditor MEND

Figure 4: Distribution of editing performance across languages. Language Anisotropic Model Editing (LiME for
short) provides overall performance improvement and closes the performance gap across languages.

ently parallel, while in mLAMA, each language,
excluding English, relies on a translated subset of
English. Given this scenario, we train the editors us-
ing the English subset to ensure uniform exposure
to knowledge during training, thereby mitigating
potential issues arising from training set dispari-
ties. More specifically, we select en as the editing
language and expect the approaches to update pre-
dictions across all the languages. Hence, we have
le = en, ly,l, € L during evaluation. Table 1
shows the averaged results of en — all the lan-
guages, while Figure 3 illustrates the distribution
of results across languages.

Finetuning suffers from severe cross-lingual un-
derfitting according to its low editing accuracy,
causing a low overall success rate.

The monolingual editors work much better than
finetuning. Although never seen other languages,
the editors demonstrate partial cross-lingual trans-
ferability. Moreover, the editor acquires the ability
to perform updates of locality, almost reaching all
the highest editing consistency on XNLI.

However, only editors with the proposed cross-
lingual editing training framework truly generalizes
the desired prediction to inputs in other languages.

On XNLI, editors trained cross-lingually on all lan-
guages improves the editing accuracy by a large
margin, with much less loss of editing consistency,
resulting in a large growth in editing success rate.
On mLAMA, where the model faces a much larger
output space, editors trained on all languages re-
veals its high consistency and improves all three
metrics significantly. Moreover, Figure 3 shows
that the performance gap across languages is closer
under the cross-lingual training framework.

4.5 Language Anisotropic Model Editing

After confirming the effectiveness of the cross-
lingual model editing, we conduct experiments
to study how the proposed language anisotropic
model editing improves performance. Here we al-
ways train and evaluate approaches in all languages
(leyly, 1 € L). Table 2 shows the averaged all
— all results, with the per-language distribution
plotted in Figure 4. Editors using parallel training
data in Table 1 are the same as the editors with-
out language anisotropic model editing in Table 2.
The difference is that we no longer limit the edit-
ing language, thus the editing task becomes harder,
making the results in Table 2 lower.

5560

S 1.0 0.6 0.4 m 0.3 0.6 0.7 %N o.
ar JURER 2 0.0 02 Y 0.5 0.6 0.6 0.3

0.8

05 06 1.0 04 mm 04 05 0.6

! o.o 0.3 -0.4 %A -0.1) -0.3
003 04 0.6 0.4 ENNE] 0.5 (2] 0.6 [0.6

004 0.6 05 0.6 05 04 0.5 0.

0.4

-02

IO 0.5 0.4 EOBN 0.4 0.6 0.4 0.3

02 05 0.7 038 m P05 1.0 0.6 103
th -0Je RORROZE 0.0 -0.1 0.2 f07) 0.3 0.2 P RARKY -o. 038 - 0.0
e 0.3 X 0.6 0.6 0.6 05 0.6 -0.1 -0.2 {8y -0.1 08 -0.3

0.4 0.4 (P8 0.6 0.7 0.5 0.3 1.0 0.6 ‘

0604 0.6 04 0.5 0.6 1.0/0.3

PR 0.4 05 0.5 01 ozmmmm 0.8 01moz 1.0

en ar bg de el es fr hi ru sw th tr ur vi zh

--0.2

Figure 5: Cosine similarities of learned parameters of
language-specific masks. In each row, we inspect the
top-1% preferred dimensions of a certain language [
by value, on which dimensions we calculate the cosine
similarities between [and every languages.

Finetuning still falls into underfitting across lan-
guages, performing similar to the situation of single
editing language.

With language anisotropic model editing, the
performance of editors reach a new high in both
datasets. Note that on XNLI, the small growth
(97.80% — 98.22%) corresponds to the large error
reduction (2.20% — 1.78%, 19% relatively).

Though trained with parallel data, a performance
gap still exists between some languages and the
others. Language anisotropic model editing helps
the editors close the performance gap and increases
the overall editing success rates.

To illustrate the function of the language-specific
masks, we conduct analyses using one of the final
MEND based checkpoints on XNLI. We observe
that the parameters of the masks are very close in
most dimensions across all languages. However,
masks for different languages show preferences
in small but different dimension subsets. There-
fore, we plot the cosine similarities of learned pa-
rameters in the masks as a heatmap in Figure 5,
where we limit the size of the preferred subset to
1% of the full hidden size. The heatmap of cosine
similarities demonstrates that language anisotropic
model editing captures the language anisotropy
feature of the multilingual pre-trained language
model. Through adaptively re-weighting gradients
of a small subset of parameters for each language,
language anisotropic model editing improves the
performance of cross-lingual model editing.

5 Related Work

Model Editing Sinitsin et al. (2020) initially
presents the model editing problem and proposes a
MAML-like method, called Editable Training. Our
cross-lingual model editing problem definition and
metrics mostly extend their work. The proposed
language anisotropic model editing approach can
be applied to Editable Training by using the rank-1
masks to construct a full gradient/parameter mask.

A series of work models editing as a learning-
to-update problem and develops the hyper-network
based approaches, such as KnowledgeEditor (Cao
et al., 2021), MEND (Mitchell et al., 2022a), and
SLAG (Hase et al., 2021). They build the editor to
constrain gradients during finetuning. We gain a
lot of inspiration from their work when designing
our methods.

A category of approaches regard the language
model as a knowledge base, and utilize a wider
range of editing fomulars (Santurkar et al., 2021;
Meng et al., 2022a,b; Geva et al., 2021; Dai et al.,
2022; Mitchell et al., 2022b). We can obtain the
cross-lingual variants using the parallel corpus,
while whether the language anisotropic model edit-
ing works depends on the algorithm details.

Cross-Lingual Transferability In recent work,
multilingual pre-trained language models show
their cross-lingual transferability (Devlin et al.,
2019; Conneau et al., 2020; Xue et al., 2021; Chi
et al., 2021), where multiple languages included
in the training corpus benifit each other. Opposite
to the positive cross-lingual transfer, Wang et al.
(2020) study the negative interference phenomenon.
They show the existence of language-specific pa-
rameters, which is also a theoretical basis of our
work. Based on this priori, their work and our
proposed language anisotropic model editing have
similar underlying ideas: identifying the language-
specific parameters and using them to improve the
cross-lingual transferability.

Though, our work differs from theirs in method
and task. They leverage language-specific prun-
ing to identify the preferred parameter subset of
different languages. Then they propose an itera-
tive second-order meta-optimizing algorithm to im-
prove pre-training. Our approach does not perform
prune, where the masks play the role of reweighting
coefficients. Our approach also makes no change in
the training algorithm, maintaining maximum com-
patibility with various model editing approaches.

5561

6 Conclusion

In this work, we define the task and metrics of
cross-lingual model editing. After summarizing
the training formula of various monolingual model
editing approaches, we naturally extend the for-
mula to a cross-lingual variant using the parallel
corpus. Further, we propose language anisotropic
model editing to improve cross-lingual model edit-
ing. We conduct experiments to verify that the
cross-lingual model editing problem is necessary
and find that the proposed approaches are effective.

Limitations

Our work depends mainly on parallel data. Al-
though tasks focusing on language abilities can
leverage machine translation to obtain parallel
data (Hu et al., 2020), it is much harder for tasks
about knowledge and facts. Using parallel data
to train cross-lingual model editors is like doing
full supervision, while we need to leverage weakly
labeled data to mitigate data scarcity.

On the other hand, whether monolingual or cross-
lingual, model editing still struggles with the con-
tinual learning problem. In the real world, knowl-
edge constantly emerges and fades, disabling the
stop of learning. However, most studies, including
our work, focus on a single or a batch of inputs.
Thus, an effective solution of continuously updat-
ing a series of inputs is necessary before model
editing becomes a practical technic.

Note that our work focuses on the editor’s gen-
eralized cross-lingual editing ability. We expect
the editor to perform the editing honestly. This
target potentially offers the possibility to modify
model behavior maliciously. Though editing may
not soon become a practical technic, the potential
risk does exist.

Acknowledgement

This work was supported by the National Key R&D
Program of China via grant 2020AAA0106501 and
the National Natural Science Foundation of China
(NSFC) via grant 62236004 and 61976072.

References

Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E.
Hinton. 2016. Layer normalization. CoRR,
abs/1607.06450.

Nicola De Cao, Wilker Aziz, and Ivan Titov. 2021. Edit-
ing factual knowledge in language models. In Pro-

ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP 2021,
Virtual Event / Punta Cana, Dominican Republic, 7-
11 November, 2021, pages 6491-6506. Association
for Computational Linguistics.

Wanxiang Che, Jiang Guo, and Yiming Cui. 2021. Nat-
ural Language Processing: A Pre-trained Model Ap-
proach. Publishing House of Electronics Industry,
Beijing, China.

Zewen Chi, Li Dong, Furu Wei, Nan Yang, Saksham
Singhal, Wenhui Wang, Xia Song, Xian-Ling Mao,
Heyan Huang, and Ming Zhou. 2021. Infoxlm: An
information-theoretic framework for cross-lingual
language model pre-training. In Proceedings of the
2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, NAACL-HLT 2021, On-
line, June 6-11, 2021, pages 3576-3588. Association
for Computational Linguistics.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzman, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics, ACL 2020, On-
line, July 5-10, 2020, pages 8440-8451. Association
for Computational Linguistics.

Alexis Conneau and Guillaume Lample. 2019. Cross-
lingual language model pretraining. In Advances
in Neural Information Processing Systems 32: An-
nual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, December 8-14, 2019,
Vancouver, BC, Canada, pages 7057-7067.

Alexis Conneau, Ruty Rinott, Guillaume Lample, Ad-
ina Williams, Samuel R. Bowman, Holger Schwenk,
and Veselin Stoyanov. 2018. XNLI: evaluating cross-
lingual sentence representations. In Proceedings of
the 2018 Conference on Empirical Methods in Natu-
ral Language Processing, Brussels, Belgium, Octo-
ber 31 - November 4, 2018, pages 2475-2485. Asso-
ciation for Computational Linguistics.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao
Chang, and Furu Wei. 2022. Knowledge neurons in
pretrained transformers. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 8493—
8502, Dublin, Ireland. Association for Computational
Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4171-4186. Association for Computational
Linguistics.

5562

http://arxiv.org/abs/1607.06450
https://doi.org/10.18653/v1/2021.emnlp-main.522
https://doi.org/10.18653/v1/2021.emnlp-main.522
https://doi.org/10.18653/v1/2021.naacl-main.280
https://doi.org/10.18653/v1/2021.naacl-main.280
https://doi.org/10.18653/v1/2021.naacl-main.280
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://proceedings.neurips.cc/paper/2019/hash/c04c19c2c2474dbf5f7ac4372c5b9af1-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/c04c19c2c2474dbf5f7ac4372c5b9af1-Abstract.html
https://doi.org/10.18653/v1/d18-1269
https://doi.org/10.18653/v1/d18-1269
https://aclanthology.org/2022.acl-long.581
https://aclanthology.org/2022.acl-long.581
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423

Mor Geva, Roei Schuster, Jonathan Berant, and Omer
Levy. 2021. Transformer feed-forward layers are key-
value memories. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, EMNLP 2021, Virtual Event / Punta Cana,
Dominican Republic, 7-11 November, 2021, pages
5484-5495. Association for Computational Linguis-
tics.

Peter Hase, Mona T. Diab, Asli Celikyilmaz, Xian Li,
Zornitsa Kozareva, Veselin Stoyanov, Mohit Bansal,
and Srinivasan Iyer. 2021. Do language models have
beliefs? methods for detecting, updating, and visual-
izing model beliefs. CoRR, abs/2111.13654.

Junjie Hu, Sebastian Ruder, Aditya Siddhant, Gra-
ham Neubig, Orhan Firat, and Melvin Johnson.
2020. XTREME: A massively multilingual multi-
task benchmark for evaluating cross-lingual general-
ization. CoRR, abs/2003.11080.

Sergey loffe and Christian Szegedy. 2015. Batch nor-
malization: Accelerating deep network training by
reducing internal covariate shift. In Proceedings
of the 32nd International Conference on Machine
Learning, ICML 2015, Lille, France, 6-11 July 2015,
volume 37 of JMLR Workshop and Conference Pro-
ceedings, pages 448—-456. JMLR.org.

Nora Kassner, Philipp Dufter, and Hinrich Schiitze.
2021. Multilingual LAMA: investigating knowledge
in multilingual pretrained language models. In Pro-
ceedings of the 16th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Main Volume, EACL 2021, Online, April 19
- 23, 2021, pages 3250-3258. Association for Com-
putational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Christos Louizos, Max Welling, and Diederik P. Kingma.
2018. Learning sparse neural networks through 1_0
regularization. In 6th International Conference on
Learning Representations, ICLR 2018, Vancouver,
BC, Canada, April 30 - May 3, 2018, Conference
Track Proceedings. OpenReview.net.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022a. Locating and editing factual knowl-
edge in GPT. CoRR, abs/2202.05262.

Kevin Meng, Arnab Sen Sharma, Alex Ando-
nian, Yonatan Belinkov, and David Bau. 2022b.
Mass-editing memory in a transformer. CoRR,
abs/2210.07229.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea
Finn, and Christopher D. Manning. 2022a. Fast
model editing at scale. In The Tenth International
Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net.

Eric Mitchell, Charles Lin, Antoine Bosselut, Christo-
pher D. Manning, and Chelsea Finn. 2022b. Memory-
based model editing at scale. In International Con-
ference on Machine Learning, ICML 2022, 17-23
July 2022, Baltimore, Maryland, USA, volume 162 of
Proceedings of Machine Learning Research, pages
15817-15831. PMLR.

Fabio Petroni, Tim Rocktischel, Sebastian Riedel,
Patrick S. H. Lewis, Anton Bakhtin, Yuxiang Wu,
and Alexander H. Miller. 2019. Language mod-
els as knowledge bases? In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing,
EMNLP-IJCNLP 2019, Hong Kong, China, Novem-
ber 3-7, 2019, pages 2463-2473. Association for
Computational Linguistics.

Shibani Santurkar, Dimitris Tsipras, Mahalaxmi Elango,
David Bau, Antonio Torralba, and Aleksander Madry.
2021. Editing a classifier by rewriting its prediction
rules. In Advances in Neural Information Process-
ing Systems 34: Annual Conference on Neural In-
formation Processing Systems 2021, NeurlPS 2021,
December 6-14, 2021, virtual, pages 23359-23373.

Anton Sinitsin, Vsevolod Plokhotnyuk, Dmitry V.
Pyrkin, Sergei Popov, and Artem Babenko. 2020.
Editable neural networks. In 8th International Con-
ference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net.

Lewis Tunstall, Leandro von Werra, and Thomas Wolf.
2022. Natural Language Processing with Transform-
ers: Building Language Applications with Hugging
Face. O’Reilly Media, Incorporated.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 5998—6008.

Zirui Wang, Zachary C. Lipton, and Yulia Tsvetkov.
2020. On negative interference in multilingual mod-
els: Findings and A meta-learning treatment. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2020, Online, November 16-20, 2020, pages 4438—
4450. Association for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transformers:
State-of-the-art natural language processing. In Pro-
ceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing: System Demon-
strations, EMNLP 2020 - Demos, Online, November

5563

https://doi.org/10.18653/v1/2021.emnlp-main.446
https://doi.org/10.18653/v1/2021.emnlp-main.446
http://arxiv.org/abs/2111.13654
http://arxiv.org/abs/2111.13654
http://arxiv.org/abs/2111.13654
http://arxiv.org/abs/2003.11080
http://arxiv.org/abs/2003.11080
http://arxiv.org/abs/2003.11080
http://proceedings.mlr.press/v37/ioffe15.html
http://proceedings.mlr.press/v37/ioffe15.html
http://proceedings.mlr.press/v37/ioffe15.html
https://doi.org/10.18653/v1/2021.eacl-main.284
https://doi.org/10.18653/v1/2021.eacl-main.284
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=H1Y8hhg0b
https://openreview.net/forum?id=H1Y8hhg0b
http://arxiv.org/abs/2202.05262
http://arxiv.org/abs/2202.05262
https://doi.org/10.48550/arXiv.2210.07229
https://openreview.net/forum?id=0DcZxeWfOPt
https://openreview.net/forum?id=0DcZxeWfOPt
https://proceedings.mlr.press/v162/mitchell22a.html
https://proceedings.mlr.press/v162/mitchell22a.html
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1250
https://proceedings.neurips.cc/paper/2021/hash/c46489a2d5a9a9ecfc53b17610926ddd-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/c46489a2d5a9a9ecfc53b17610926ddd-Abstract.html
https://openreview.net/forum?id=HJedXaEtvS
https://books.google.ch/books?id=7hhyzgEACAAJ
https://books.google.ch/books?id=7hhyzgEACAAJ
https://books.google.ch/books?id=7hhyzgEACAAJ
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.18653/v1/2020.emnlp-main.359
https://doi.org/10.18653/v1/2020.emnlp-main.359
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6

16-20, 2020, pages 38—45. Association for Computa-
tional Linguistics.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale,
Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and
Colin Raffel. 2021. mt5: A massively multilingual
pre-trained text-to-text transformer. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT 2021,
Online, June 6-11, 2021, pages 483-498. Association
for Computational Linguistics.

A Datasets Preprocessing

A.1 mLAMA

Along with the raw English data from
LAMA (Petroni et al.,, 2019), mLAMA pro-
vides translations of the facts in the other 52
languages if possible. mLAMA is organized into
two-level. The first level is relations, and the
second is facts. Facts in the same relation share
the same template and can be identified by the
([X1, [Y]). Thus, we split at the fact level for con-
sistency across different data splits. Specifically,
we split the whole dataset to train/dev/test with a
ratio of 8:1:1, resulting in 628,612/78,555/78,600
facts in the train/dev/test set.

In our setting, the template with filled [X] is used
as input, and then we test if the edited model pre-
dicts [Y] (§4.3). Thus, to avoid leakage and keep
large output space, we ensure that an [X] can only
appear in one split while not limiting the label [Y].
Take an example of relation P19 ([X] was born in
[Y] .) where [X] is a person’s name and [Y] is a
location. In the training set, if an input is “Allan
Peiper was born in [MASK] ., there cannot exist an
input in the dev/test set with [X] = Allan Peiper.
On the contrary, a [Y] (like “Alexandra’) can be
used as the desired prediction during both train-
ing and testing, because we use it as a label. We
first exclude samples in the test set having over-
lap [X] with the training set, then exclude samples
in the dev set overlapping with the train/test. Fi-
nally, we obtain 628,612/23,718/53,993 facts in the
train/dev/test set after preprocessing summing up
all languages.

A.2 XNLI

XNLI dataset contains completely parallel data in
fifteen languages. We use Huggingface Datasets to
access to XNLI dataset, and follow the official split
with 392,702/2,490/5,010 samples in train/dev/test
set in each language.

B Experiment Details

We conduct all experiments three times and use
the mean of editing success rates as the final per-
formance metric, including main experiments and
hyperparameter tuning.

B.1 Model and Implementation

We use bert-base-multilingual-cased from
Hugging Face Transformers (Wolf et al., 2020) as
the basic model. As the basic model editors, we
use MAML-like Editable Training (Sinitsin et al.,
2020), and hyper-network based KnowledgeEdi-
tor (Cao et al., 2021) and MEND (Mitchell et al.,
2022a). For XNLI, the pre-trained model finetuned
on the en training set is used as the raw model to
edit in all the following experiments. For nLAMA,
we use the pre-trained language model directly.

We work on the official MEND codebase,
together with HuggingFace Transformers and
Datasets. During preliminary experiments, we find
that MEND in their implementation suffers from
low computation efficiency and sub-optimization
due to the token-level BatchNorm (loffe and
Szegedy, 2015) variant used by the editor. Thus,
we replace the token-level BatchNorm in MEND
editor with LayerNorm (Ba et al., 2016) in our
implementation.

B.2 Hyperparameters

Finetuning We use Adam (Kingma and Ba,
2015) optimizer with learning rate of 5 x 1076,
For each input to be edited, the maximum step is
set to 100.

Learned Editors We follow Mitchell et al.
(2022a) in most of the hyperparameter settings of
the three monolingual editing approaches we use.
For Editable Training and KnowledgeEditor, we set
the learning rate to 5 x 10~°. For MEND, the editor
is initialized to an identical mapping and trained by
Adam optimizer with the learning rate of 1 x 1076,
For the inner gradient decent updating, the learning
rate is set to 1 x 10~%. For the coefficients of losses,
we set A\re; = 0.1 and Ao = 1.0.

Since bert-base-multilingual-cased is
used as the raw model, we follow the setting of
bert-base of the original MEND, i.e., editing
MLPs in the last three layers of the encoder,
leaving the other parameters frozen.

Language Anisotropic Model Editing The /an-
guage anisotropic varients inherit hyperparameters

5564

https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2021.naacl-main.41

for architectures and training from their correspond-
ing base editors.

The newly introduced training hyperparameters
include the learning rate of masks and Ap,sc. We
tune the learning rate of masks in {1 x 10741 x
1073,1 x 1072}, and Amask in {0.01,0.1,1}. We
pick the best values and apply them to all main
experiments, i.e., learning rate of masks of 1 x
1073, and Amask of 1.0.

B.3 Training Details

We utilize the early-stopping strategy along with
up to 500, 000 training steps. When training on the
full datasets, we evaluate the model every 100, 000
steps and finalize training when the editing success
rate is not improved over 200, 000 steps. When
training on the English only subset, the validation
interval is set to 20, 000 and the early stop patience
is 40, 000 steps.

All experiments fit in one NVIDIA RTX 2080Ti
GPU, where a single run takes one to three days.

C Additional Results

The large versions with raw data points of Figure 3
and Figure 4 are as follows.

5565

1004 <= -’- O acc% (enonly) 4 ¢ -r
B acc% (all) ¢
1 con% (en only) *
20 — B con% (all) P
[succ% (en only) *
B succ?% (all)
| ' T
o4 oL
§ ¢
% ¢
é .
s)
s s o
20 i_ Li
0 — -I-
I I I
Editable Training KnowledgeEditor MEND
100 — ¢ _ e T ?
7+ ¢ o
90 — o
80 — . ‘ J_
70 = ‘ -
)
Z ¢
Z ¢
60 =
[acc% (en only)
50 — ¢ ¢ oo (all)
[con% (en only)
40 — B con% (all)
[succ% (en only)
¢ B succ% (all)

| | |
Editable Training KnowledgeEditor MEND

Figure 6: A large version of Figure 3, where each grey point corresponds to an en — [result averaged over three
runs.

5566

100 — ﬁ
80 = ,
¢
¢
¢
<§E 60 —
= ¢ ¢
— ‘ 0
E ¢
40 —
[acc% (w/o LIME)
B acc% (w/ LIME)
“ 1 con% (w/o LiME)
20 ¢ B con% (w/ LIME)
¢ [succ% (w/o LIME)
¢ B succ% (w/ LIME)
I I I
Editable Training KnowledgeEditor MEND
100.0
97.5 — ¢ *?
¢ ¢
95.0 —
‘g ¢
92.5 —
E 90.0 =
<
87.5 =
85.0 — [acc% (w/o LIME)
B acc% (w/ LiME)
82.5 — 1 con% (w/o LiIME)
B con% (w/ LIME)
0.0 — [succ% (w/o LIME)
' B succ% (w/ LiME)
I I I
Editable Training KnowledgeEditor MEND

Figure 7: A large version of Figure 4, where each grey point corresponds to an [— all result averaged over three
runs. LiME for Language Anisotropic Model Editing.

5567

ACL 2023 Responsible NLP Checklist

A For every submission:

¥ Al. Did you describe the limitations of your work?
Limitations

¥ A2. Did you discuss any potential risks of your work?
Limitations

¥ A3. Do the abstract and introduction summarize the paper’s main claims?
Abstract and Section 1

A4. Have you used Al writing assistants when working on this paper?
Left blank.

B ¥ Did you use or create scientific artifacts?

Section 4 and Appendix A

¥/ B1. Did you cite the creators of artifacts you used?
Section 4 and Appendix A

B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
License and terms will be included in the code repository to be released.

v B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?

Section 4 and Appendix A

0J B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Not applicable. Left blank.

[l B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Not applicable. Left blank.

¥f B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Section 4 and Appendix A

C ¥ Did you run computational experiments?
Section 4
¥ C1. Did you report the number of parameters in the models used, the total computational budget

(e.g., GPU hours), and computing infrastructure used?
Appendix B

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on Al writing
assistance.

5568

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

v C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Appendix B

v C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?

Section 4 and Appendix B

v C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?

Appendix B

D Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

O DI1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

(] D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?

No response.

[0 D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?

No response.

0 D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

0] DS. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

5569

