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Abstract

Despite recent advancements, NLP models con-
tinue to be vulnerable to bias. This bias of-
ten originates from the uneven distribution of
real-world data and can propagate through the
annotation process. Escalated integration of
these models in our lives calls for methods to
mitigate bias without overbearing annotation
costs. While active learning (AL) has shown
promise in training models with a small amount
of annotated data, AL’s reliance on the model’s
behavior for selective sampling can lead to an
accumulation of unwanted bias rather than bias
mitigation. However, infusing clustering with
AL can overcome the bias issue of both AL and
traditional annotation methods while exploit-
ing AL’s annotation efficiency. In this paper,
we propose a novel adaptive clustering-based
active learning algorithm, D-CALM, that dy-
namically adjusts clustering and annotation ef-
forts in response to an estimated classifier error-
rate. Experiments on eight datasets for a di-
verse set of text classification tasks, including
emotion, hatespeech, dialog act, and book type
detection, demonstrate that our proposed al-
gorithm significantly outperforms baseline AL
approaches with both pretrained transformers
and traditional Support Vector Machines. D-
CALM showcases robustness against different
measures of information gain and, as evident
from our analysis of label and error distribution,
can significantly reduce unwanted model bias.

1 Introduction

While NLP models have experienced groundbreak-
ing advancements in performance and functionality
in recent years, they have been under scrutiny for
exhibiting bias (Lu et al., 2020; Ahn and Oh, 2021;
Kiritchenko and Mohammad, 2018). As noted by
Davidson et al. (2019), classifier bias can stem from
distribution in training data rather than the classi-
fier itself. This bias is complex and can manifest
in various forms, including racial, gender-based,
and other types of discrimination. For example,
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Figure 1: Example scenario: classifiers may not perform
well for underrepresented groups in the data. Here, the
classifier has a high error rate in detecting hatespeech
(HS) against persons of color. Thus, annotation effort
should be focused on regions (upper-right) more likely
to contain hatespeech against persons of color.

in a hatespeech dataset, hatespeech against Per-
sons of Color might be underrepresented, leading
to a model biased against Persons of Color (Figure
1). Since the true distribution of data is unknown
prior to labeling, ridding these models of such un-
wanted bias would require annotating a large num-
ber of samples to ensure that minority groups are
well-represented in the data, incurring much higher
cost, time, and effort. As such, we are in need
of methods that can mitigate unwanted bias with-
out overwhelming annotation costs. We address
the problem of bias with a novel clustering-based
active learning approach.

Although active learning (Settles, 2009) is re-
garded as an efficient method for training models,
generic active learning methods can induce bias
(Krishnan et al., 2021) rather than mitigate it. Al-
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though there have been numerous works aimed
at mitigating bias of active learning methods by
the machine learning community (Farquhar et al.,
2021; Gudovskiy et al., 2020), these approaches
often necessitate an in-depth comprehension of ma-
chine learning and active learning theories. We
hypothesize that infusing clustering with active
learning will allow us to overcome bias issues of
both generic active learning and traditional anno-
tation approaches while leveraging the annotation
efficiency of active learning.

To this end, we propose a novel dynamic
clustering-based algorithm that can substan-
tially improve performance and mitigate bias
—D-CALM (Dynamic Clustering-based Active
Learning for Mitigating Bias)!. D-CALM lever-
ages the distance between a classifier’s predictions
and true labels in dynamically-adjusted subregions
within the data. As opposed to existing active learn-
ing methods (Bodé et al., 2011; Berardo et al.,
2015) that utilize static clustering of data, our pro-
posed algorithm adapts the clustering in each it-
eration of active learning. As the classifier gets
updated in each iteration, the classifier’s error rate
changes in different regions. By calibrating the
boundaries of clusters iteratively, D-CALM fo-
cuses annotation effort in updated regions with the
evolving classifier’s error-rate. As D-CALM dy-
namically adapts its regions for obtaining samples,
we hypothesize that our approach will result in re-
duced bias. Similar to Hassan et al. (2018), we
expect bias reduction to be reflected in improved
performance metrics and more balanced label and
error distribution. We test our hypothesis across
eight datasets, spanning a diverse range of text
classification tasks (e.g., fine-grained hatespeech,
dialog act, emotion detection) and a case study of
fine-grained hatespeech detection. Our algorithm
is model agnostic, showing substantial improve-
ment for both pretrained models and lightweight
Support Vector Machines. Our experiments also
demonstrate robustness of D-CALM with respect
to different measures of information gain.

2 Related Work

Active learning is a well-studied problem in ma-
chine learning (Settles, 2009) with numerous sce-
narios and query strategies (Section 3). Al-
though active learning has shown promise in many

'Our code is available at:
sabithsn/DCALM

https://github.com/

tasks, susceptibility to bias, particularly for neu-
ral networks, is a concern raised by several works
(Yuan et al., 2020). There are existing works
that aim to mitigate this bias. Farquhar et al.
(2021) proposes using corrective weights to mit-
igate bias. Gudovskiy et al. (2020) propose self-
supervised Fischer-Kernel for active learning on
biased datasets. These approaches, however, often
require a deep understanding of active learning and
neural networks. Our approach is tailored for the
NLP community and can easily be deployed.

In recent years, there has been a renewed inter-
est in active learning within the NLP community
(Zhang et al., 2022). Some recent works have ap-
plied active learning with BERT models for spe-
cific tasks such as intent classification (Zhang and
Zhang, 2019), sentence matching (Bai et al., 2020),
parts-of-speech tagging (Chaudhary et al., 2021) or
named entity recognition (Liu et al., 2022). Mar-
gatina et al. (2022) propose continued pretraining
on unlabeled data for active learning. Rotman and
Reichart (2022) adapt active learning to multi-task
scenarios for transformer models. Ein-Dor et al.
(2020) perform a large-scale empirical study of
existing active learning strategies on binary classi-
fication tasks. In comparison, we target a diverse
range of binary and multi-class classification tasks.

Some other works in the NLP domain have
adapted advanced active learning approaches. Yuan
et al. (2020) adapt the BADGE (Ash et al., 2020)
framework for active learning with BERT. While
BADGE computes gradient embedding using the
output layer of a neural network and then clusters
the gradient space, Yuan et al. (2020) computes
surprisal embeddings by using Masked Language
Model loss. Margatina et al. (2021) use acquisition
functions to obtain contrastive samples for BERT.
Our algorithm is comparatively straightforward,
not requiring in-depth understanding of surprisal
embeddings or acquisition functions. Our algo-
rithm is also model-agnostic and can be applied
to neural networks such as BERT, and traditional
models such as SVMs. In addition, our clustering
step relies on feature representation independent
from the learner’s representation which may induce
bias during the learning process. While some of
the aforementioned works (Ein-Dor et al., 2020;
Yuan et al., 2020; Margatina et al., 2021) compute
diversity in selected samples, our work is the first
to analyze and address bias in active learning from
a socio-cultural perspective.
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Figure 2: Active learning framework in a pool-based
setting. Most informative sample from an unlabeled
pool of data is annotated and added to training data.

3 Background

This section presents the relevant background of
generic active learning followed by a discussion
of adapting clustering-based active learning frame-
work for text classification. Within the scope of
this paper, we focus on creating the train data. We
assume that the dev and test data are already cre-
ated. Literature of active testing (Kumar and Raj,
2018; Hassan et al., 2018) can be referred to for
efficiently creating the dev and test set.

3.1 Active Learning Framework

Due to the expanse of active learning literature, it
is important to define the generic active learning
framework within the scope of this paper. To do
so, we need to define the labeling scenario and

query-strategy.

3.1.1 Labeling Scenario

In our work, we assume there is a large pool of
unlabeled dataset U but only a small set of labeled
dataset L that can be obtained. L is iteratively con-
structed by querying label for the most-informative
instance. We focus on pool-based active learn-
ing because of its relevance to many recent NLP
tasks (e.g., hatespeech detetion), for which, a large
amount of unlabeled data is scraped from the web
and then a subset of it is manually annotated.

3.1.2 Query-Strategy

Many types of query-strategies have been proposed
for active learning over the years, including, but
not limited to: uncertainty sampling (Lewis and
Gale, 1994), expected model change (Settles et al.,
2007), expected error reduction (Roy and McCal-
lum, 2001), and variance reduction (Hoi et al.,
2006). In our work, we focus on uncertainty sam-
pling because of its popularity and synergy with
pool-based sampling (Settles, 2009). Settles (2009)
lists three measures of uncertainty to identify most
informative sample:
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Figure 3: Clustering-based framework. First, unlabeled
data is clustered and then most informative samples are
chosen from each cluster.

Least Confident: Query the instance whose pre-
diction is the least confident.

5o = argmaz 1 — Py(jlz) (1)
X

In Eq. 1, § = argmaxy,Py(y|z), or the class label
with the highest probability.

Smallest Margin: Query the sample with mini-
mum difference between two most likely classes:

Tyrg = argmin Py(y1|z) — Po(g2]z)  (2)
x

Entropy: The most commonly used measure of

uncertainty is entropy:

xp = argmaz — ZPg(yﬂ:c)long(yi]a;) 3)
(2
In Eq. 3, i ranges over all possible labels.

It should be noted that, in binary classification,
all the above measures become equivalent. The
active learning framework, within the scope of this
paper, is summarized in Figure 2

3.1.3 Challenges

Bias Induction: Since the active learning frame-
work relies on the model’s uncertainty to choose
samples, the framework may never query samples
that the model is confident on. The active learning
classifier can become confidently wrong on certain
samples, leading to an accumulation of bias.

Effective Batch Selection: In a real-world set-
ting, it is not feasible to obtain annotations one by
one and queries need to be done in batches. The
most straightforward approach would be to choose
the N most informative samples (Citovsky et al.,
2021). The limitations of this approach can be
easily seen. Particularly when N is large, it can
amplify the bias discussed earlier.
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3.2 Clustering-based Framework

To address the challenges outlined earlier, we ap-
proach the problem with clustering-based frame-
work for active learning under pool-based uncer-
tainty sampling settings. Within this framework,
the first step is to obtain vector representation of
the unlabeled data. This can be done using Sen-
tenceBERT (Reimers and Gurevych, 2019) or more
traditional Doc2Vec (Le and Mikolov, 2014).

The next step is to cluster the data. This can
be done using any clustering algorithm such as
KMeans. Then, informative samples are chosen
from each cluster, and are added to the training data.
The classifier is retrained after each round and the
process is repeated until the annotation budget runs
out. Figure 3 summarizes this framework.

3.3 D-CALM

Within the clustering-based framework of active
learning, we propose a novel algorithm, D-CALM,
that dynamically adjusts clusters in the data based
on estimated classifier error rate.

Algorithm 1 D-CALM: Dynamic Clustering-
based Active Learning for Mitigating Bias

D, T + dev data, test data
U, L < unlabeled data, labeled data
G < bootstrapped classifier
B < labeling budget
N <+ annotation batch size
m < initial number of clusters
Cluster U into {C1, Cs, ... Cy,}
Partition D into {C1, C%, ... C}.}
while B > 0 do
for i=0,1,...mdo
Estimate accuracy A; in C!
end for
for i=0,1,...mdo
Allocate [; = N *

1-A;
2 (1-4;)

J
Cluster C; into {C},, Ci,, -.-Cni}
for j=0,1,...7; do
x7; < most infor. sample in Cy;
y;; < query true label for z7;
Add (z};,y;;) to L
end for
end for
G < retrainon L
B=B-N
end while
Evaluate Gon T

In our proposed algorithm, the cluster C/ is used
to dynamically partition C;. Our algorithm first ob-
serves how the classifier behaves in C. For cluster
C;, it allocates samples proportional to the error
rate in C]. Then the cluster Cj; is split into subclus-
ters according to the number of samples allocated
to C;. Most informative sample from each subclus-
ter is then added to training data. The subclusters
are dynamically updated in each iteration to ac-
count for the classifier’s new state. This prevents
the classifier from repeatedly sampling from any
particular region. It is worth noting that error-rate
can be substituted with different metrics to account
for specific needs. For example, in scenarios where
it is more important to reduce false negative rate re-
duce compared to false positive rate, the error rate
can be substituted with false negative rate. In this
paper, we focus on the general case of error-rate.

4 Experiment Setup

In this section, we outline our experimental setup.

4.1 Active Learning Approaches

For all the following approaches, total number of
samples range from 100-300, initial allocation for
bootstrapping is set to 50, and annotation batch
size is 50. Similar to (Ein-Dor et al., 2020), the
classifiers are retrained in each round.

Random: The allocated number of samples are
picked randomly from the unlabeled pool.

TopN: The classifier is bootstrapped with 50 sam-
ples. In each iteration N most informative samples
are labeled and added to training data until labeling
budget runs out. TopN is a widely used baseline
(Yuan et al., 2020; Ash et al., 2020).

Cluster-TopN: The classifier is bootstrapped in
the same way. The unlabeled pool is first clus-
tered into 10 clusters and in each iteration, N/10
most informative samples are chosen from each
cluster. Cluster-TopN combines TopN and strati-
fied sampling (Qian and Zhou, 2010). We choose
Cluster-TopN as a baseline due to its similarity
with multiple existing methods (Xu et al., 2003;
Zhdanov, 2019).

D-CALM: The classifier is bootstrapped in a sim-
ilar fashion. While D-CALM is not sensitive to the
initial number of clusters because of its dynamic
splitting into subclusters, we set initial number of
clusters to 10 to be consistent with Cluster-TopN.
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4.2 Models

Transformers We fine-tune the widely-used bert-
based-cased (Devlin et al., 2019). We observed
that the models stabilize on the dev data when fine-
tuned for 5 epochs with learning rate of 8e-5 and
batch size of 16. The same setting is used across
all experiments.

Support Vector Machine (SVM) We choose
SVM as our alternate model as it is completely
different from transformers and because SVMs are
still in use for practical purposes due to speed and
lightweight properties (Hassan et al., 2021, 2022).
We use Tf-IDF weighted character [2-5] grams to
train SVMs with default scikit-learn settings?.

4.3 Datasets

We evaluate our proposed algorithm on eight di-
verse datasets, among which two are binary classi-
fication datasets and the rest are multiclass.

BOOK32 (Iwana et al.,, 2016) contains 207K
book titles categorized into 32 classes such as Bi-
ographies & Memoirs. We take a subset that con-
tains 20K random samples from 10 most frequent
classes for runtime efficiency. Random sampling
ensures the subset respects original distribution.

CONAN (Fanton et al., 2021) contains 5K in-
stances annotated for hatespeech targets: Disabled,
Jews, LGBT+, Migrants, Muslims, Person of Color
(POC), Women, and Other.

CARER (Saravia et al., 2018) is an emotion de-
tection dataset that contains six basic emotions in
the released version: Anger, Fear, Joy, Love, Sad-
ness, and Surprise. 3. The released version consists
of 16K training, 2K dev and 2K test instances.

CoLA (Saravia et al., 2018) contains 9.5K sen-
tences expertly annotated for acceptability (gram-
maticality) in the public version. We use the in-
domain set as dev and out-of-domain as test set.

HATE (Davidson et al., 2017) contains a total
of 24.7K tweets that are annotated as: Offensive,
Hatespeech, and Neither.

MRDA (Shriberg et al., 2004) contains 117K in-
stances annotated for dialog acts. We consider the
five basic labels: Statement, BackChannel, Disrup-
tion, FloorGrabber, and Question. We limit the
thtps://scikit—learn.org/stable/modules/

generated/sklearn.svm.LinearSVC.html
3https://huggingface.co/datasets/emotion

data to 20K randomly chosen samples for runtime
efficiency.

Q-Type (Li and Roth, 2002) contains 5.5K train
and 0.5K test instances annotated for question
types. We take the first level of annotation, contain-
ing six classes: Entity, Description, Abbrebivation,
Number, Human, and textitLocation.

Subjectivity (Pang and Lee, 2004) contains 10K
snippets from Rotten Tomatoes/IMDB reviews au-
tomatically tagged as Subjective or Objective.

4.4 Data Preparation

Splits We use default train-dev-test splits if they
are provided. If they are not provided, we split
the data into 70-10-20 splits. The train data is
treated as unlabeled pool of data, dev data is used
for tuning purposes and test data is used to report
results. Table 1 shows summary of data used.

Dataset classes | Pool | Dev | Test
BOOK32 32 14K 2K 4K
CONAN 8 35K | 05K | 1K
CARER 6 16K 2K 4K
CoLA 2 8.5K | 0.5K | 0.5K
Hatespeech 3 17.2K | 24K | 49K
MRDA 5 14K 2K 4K
Q-Type 6 49K | 0.5K | 0.5K
Subjectivity 2 7K 1K 2K

Table 1: Statistics of used datasets

Vector Representation We use MiniLM (Wang
et al., 2020) sentence-transformer to transform text
instances into 384 dimensional vectors. These vec-
tors are then used to cluster the unlabeled data.

Clustering We use KMeans to cluster the unla-
beled pool of data. We use scikit-learn* implemen-
tation of KMeans with default parameters.

5 Results and Case Study

We first discuss findings of our experiments, fol-
lowed by a case study of fine-grained hatespeech
detection. Figures 4,5 and 6 summarize the re-
sults across the eight datasets, different measures
of information gain, and different models. Table 2
summarizes relative performance across all experi-
ments. For each experiment, we report Macro-F1

*https://scikit-learn.org/stable/modules/
generated/sklearn.cluster.KMeans.html
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Figure 4: Comparison of our proposed algorithm (D-CALM) and baseline approaches. D-CALM (green-dashed-
line) consistently outperforms baseline approaches across eight datasets with Entropy as the measure of information

gain and BERT as learner model.
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Figure 5: Comparison of our algorithm with TopN approach under different measures of information gain. LC
refers to Least Confident and SM refers to Smallest Margin. A consistent improvement over TopN baseline, similar
to Entropy-based information gain in Figure 4 affirms the robustness of our algorithm
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Figure 6: Comparison of our proposed algorithm (D-CALM) and baseline approaches for SVM as learner model.
Consistent improvement for SVMs in addition to BERT models (Figure 4) suggests D-CALM can be used for

completely different types of models.

score averaged across 3 runs. We choose Macro-
F1 as our metric since it provides a more holistic
measure of a classifier’s performance across classes.
Thus, reduction of bias is more likely to be reflected
in metrics such as F1 compared to other metrics
such as accuracy.

5.1 Experiment Results

D-CALM consistently outperforms baselines:
From Figures 4, 5, 6 we can observe that D-
CALM consistently outperforms TopN, random
and cluster-TopN across all datasets. From Table
2, we observe that D-CALM beats TopN in 32 out
of 40 data points for BERT, among which, the dif-
ference in F1 score is greater than 5 in 15 cases. D-
CALM beats the nearest algorithm, Cluster-TopN
in 28/40 (p value 0.003) for BERT and Random
Sampling in 26/40 cases (p value 0.0073) for SVMs
(Table 2). Both of these are statistically significant
according to 2 population proportion test at signifi-
cance level of 0.01.

Diff. Count for BERT (IG=Entropy)
(F1) | DL>RND | DL>TN | DL > CTN
>0 33/40 32/40 28/40
>1 30/40 27/40 23/40
>3 24/40 18/40 16/40
>5 15/40 12/40 11/40

> 10 4/40 4/40 2/40
(F1) | DL>RND | DL>TN | DL > CTN
>0 26/40 30/40 34/40
>1 21/40 23/40 30/40
>3 16/40 18/40 23/40
>5 10/40 11/40 16/40

> 10 0/40 2/40 6/40

Table 2: Aggregated counts of D-CALM (DL) outper-
forming Random (RND), TopN (TN) and Cluster-TopN
(CTN) across 8 datasets (5*8=40 data points). Diff de-
notes the difference of F1 score between DL and the
contesting method. E.g.: diff >10 indicates the count of
DL outperforming contesting methods by a difference
of 10 F1 score or more.
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Figure 7: Label and error distribution after one iteration of Active Learning on the CONAN (fine-grained hatespeech)
dataset (averaged across 3 runs). D-CALM doesn’t suffer from strong bias toward particular groups as TopN does
and is more equitable toward underrepresented groups compared to random sampling.

D-CALM is more robust against critical failures:
We observe from Figure 4 that on occasions such
as in the case of Subjectivity and MRDA, TopN
can have critical failures where the model ends up
with an extremely low F1 score. Although on a
few occasions, we witness dips in the curves of
D-CALM, in general, the curves are much more
stable, indicating its robustness.

D-CALM is robust across different measures
of information gain: From Figure 5, we see
that D-CALM outperforms random, TopN, and
cluster-TopN for different measure of information
gain. Figure 5 does not contain the Subjectivity
and CoL A because these are binary datasets and
Entropy (reported in Figure 4), Least Confident and
Smallest Margin become equivalent in the case of
binary classification (Section 3).

D-CALM is model-agnostic: From Figure 6, we
observe similar patterns in improvement when the
learner model is SVM instead of BERT. Although
the degree of improvement is smaller for SVMs
compared to BERT, it is a limitation of active learn-
ing rather than D-CALM’s, as we can see others
showing smaller improvement as well. Improve-
ment over the baselines for SVMs in addition to
BERT suggests D-CALM is model-independent.

D-CALM is more robust against bias: Since
D-CALM’s focus on enforcing diversity in dynam-
ically adjusting clusters separates it from the other
methods, we can deduce that it is the bias reduction
that is resulting in improved performance metrics.
This is further supported by a study of label and
error distribution in the following section.

5.2 Case Study

We choose hatespeech detection as our case study
because hatespeech and abusive content detection
has been one of the most studied text classification
tasks in recent years (Zampieri et al., 2019; Has-
san et al., 2020). Due to its importance in many
avenues, whether for AI moderation of online con-
tent (Ye et al., 2023) or filtering language model
data (Abdelali et al., 2021), racial and gender bias
in hatespeech and abusive content detection tasks
have been a particular concern for the NLP com-
munity (Davidson et al., 2019; Ahn and Oh, 2021).

5.2.1 Label and Error Distribution

To understand the effect of the underlying distri-
bution in data, we observe the label distribution of
samples chosen for annotation after one round of
active learning. We also observe the distribution
when the same number of samples are chosen ran-
domly. From Figure 7 we can observe that random
sampling may result in small number of samples
chosen for minority classes in the data such as Per-
sons of Color and Disabled. The distribution of
labels obtained by TopN can become particularly
skewed. We see that on average, TopN samples
25+ hatespeech targeting Jews while mostly ignor-
ing groups such as Person of Color (POC) with
<5 samples on average. While Cluster-TopN miti-
gates this problem to an extent, the best results are
obtained by D-CALM, with samples for POC dou-
bling compared to TopN and samples for Disabled
doubling compared to random sampling after just
one iteration. The error distribution in Figure 7,
reflects the effects of this as we see errors for POC
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Text Annotated | Predicted Error Type
Jews are everywhere, but they are too fundamentalist. Jews Muslims Related Class
Asians just want to talk with other asians: they are the racists... Other POC Dataset Limitation
Migrants are just a bunch of animals, we can’t accept them... Other MIGRANT | Annotation Error

Table 3: Examples of errors made on the CONAN dataset by our proposed approach. While our approach improves
performance and mitigates bias as seen before, a better task design and annotation quality control are required to
address these types of errors. Disclaimer: these examples do not reflect authors’ views in any way.

and Disabled are greatly reduced by D-CALM. It’s
important to note, if we had access to a large pool
of labeled data, we could obtain a more balanced
dataset for training. However, in a real-world sce-
nario, before the annotation process, we only have
access to unlabeled pool of data. As such, we can-
not identify low-frequency classes and balance the
training set. D-CALM, however, can obtain more
samples from the underrepresented classes without
knowing their true labels beforehand.

5.2.2 Error Analysis

To understand the limitations of D-CALM, we
manually annotated 100 errors made by the best
run with BERT on the CONAN dataset after one
iteration of active learning. Our key observations
are listed below:

* The model can be confused on closely related
classes such as Jews and Muslims as the hate-
speech in both cases target religions.

* Some errors can be attributed to the limitation of
annotation design. For example, CONAN con-
tains the class Persons of Color (POC), but does
not contain a separate class for racism against
Asians. These instances are labeled as Other in
the data but are predicted as POC by the model.

* In some cases, the error is in the original annota-
tion, rather than the model’s prediction.

Examples of these errors are listed in Table 3.
While the first type of error can possibly be reduced
with the addition of more data close to boundary
regions between closely related classes, the last
two types of errors need to be addressed during the
design and annotation phase of the task.

6 Conclusion and Future Work

In this paper, we presented a novel dynamic
clustering-based active learning algorithm, D-
CALM, that can be easily adopted by the NLP
community for training models with a small set
of annotated data. We have shown that by focus-
ing annotation efforts in adaptive clusters where

the learner model has higher error rates, the per-
formance can be improved substantially while re-
ducing bias against underrepresented groups in un-
labeled data. Our experiments also show that D-
CALM is robust across different datasets, different
measures of information gain, and completely dif-
ferent model types. In the future, our approach can
be adapted for creating less biased test sets for eval-
uating classifiers. An exciting future direction for
our approach is to adapt it for natural language gen-
eration tasks such as style-transfer (Atwell et al.,
2022) or counterspeech generation (Ashida and
Komachi, 2022).

Limitations

It’s important to note that, in this paper, we focus
on bias resulting from underlying distribution of
training data. Bias that may result from pretraining
of transformer models (Li et al., 2021) is not within
the scope of this paper.

Although we conduct a case study of fine-
grained hatespeech detection task, a collective ef-
fort from the research community is required to bet-
ter quantify bias mitigation of our approach across
multiple tasks and different types of bias.

Another limitation of our work is that our pro-
posed algorithm requires dynamic adjustment of
clusters. For very large datasets, this may be com-
putationally expensive.

Ethics Statement

Although our proposed algorithm shows more sta-
bility and reduced bias compared to existing ap-
proaches and random sampling, it’s important to
observe the behavior of active learner as the algo-
rithm may not completely eliminate bias, specifi-
cally when the annotation budget is small. This can
be achieved by observing label and error variance
on the evaluation data. It is also important to take
into consideration the necessities of practical sce-
narios. In scenarios where certain type of bias is
desired (e.g., higher precision), the algorithm needs
to be adapted as outlined in Section 3.3
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