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Abstract

We identify the robust overfitting issue for pre-
trained language models by showing that the
robust test loss increases as the epoch grows.
Through comprehensive exploration of the ro-
bust loss on the training set, we attribute ro-
bust overfitting to the model’s memorization
of the adversarial training data. We attempt to
mitigate robust overfitting by combining reg-
ularization methods with adversarial training.
Following the philosophy to prevent the model
from memorizing the adversarial data, we find
that flooding, a regularization method with loss
scaling, can mitigate robust overfitting for pre-
trained language models. Eventually, we inves-
tigate the effect of flooding levels and evaluate
the models’ adversarial robustness under tex-
tual adversarial attacks. Extensive experiments
demonstrate that our method can mitigate ro-
bust overfitting upon three top adversarial train-
ing methods and further promote adversarial
robustness.

1 Introduction

Deep neural networks (DNNs) suffer from adver-
sarial robustness issues (Goodfellow et al., 2015;
Szegedy et al., 2014; Papernot et al., 2016a). Re-
cent literature has revealed their vulnerability to
crafted adversarial examples on a wide range of
natural language processing (NLP) tasks (Papernot
et al., 2016b; Ren et al., 2019; Jin et al., 2020; Li
et al., 2020). Among the corresponding defensive
methods, gradient-based adversarial training (AT)
is often considered as the most effective one.

Building upon standard training, AT additionally
solves a max-min optimization problem to learn
an adversarially robust model (Goodfellow et al.,
2015; Kurakin et al., 2017; Madry et al., 2018;
Zhang et al., 2020). Surprisingly, a widely ob-
served fact is that AT, which is challenging to op-
timize, can also converge quickly on pre-trained
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Figure 1: Robust loss against PGD-10 attacks on the
SST-2 dataset. The base model is BERT-base (Devlin
et al., 2019). “-10” indicates that the number of attack
iterations used in AT is 10. The robust test losses of
the three top AT methods only increase as the training
epochs grow. In contrast, the robust training losses
converge to zero within very few epochs.

language models (PrLMs) (Li and Qiu, 2021; Li
et al., 2021b). That is, due to their overparame-
terization, PrLMs can achieve zero robust training
error within a few epochs. It is common in practice
to achieve zero training error without harming the
generalization performance when sufficient data
is available, which indicates that overfitting does
not occur in the standard training of many modern
deep learning tasks (Zhang et al., 2017; Neyshabur
et al., 2017; Belkin et al., 2019). Nevertheless,
whether PrLMs will overfit when trained to zero
robust training error is yet to be explored.

As revealed by a recent work (Rice et al., 2020),
robust overfitting dominates the training procedure
of the image classification task, in which the ro-
bust test loss increases as the learning rate decays.
In contrast, the robust training loss continues to
decrease. This motivates us to identify the robust
overfitting issue in adversarially robust learning for
NLP models. We first visualize the robust test loss
of various effective AT methods developed for NLP
tasks. We adopt the simple yet effective Projected
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Gradient Descent (PGD) attack (Madry et al., 2018)
rather than any other textual adversarial attacks to
get universal results. This is because textual adver-
sarial attacks integrate too many strategies, and the
results under a particular textual adversarial attack
may not be generalizable. We can observe from
Figure 1 that the robust test loss only increases as
the training epochs grow, which is counterintuitive.
It also violates the common practice of taking the
last checkpoint as an adversarially robust model. In
contrast, the robust training loss converges to zero
quickly. We refer to the difference between the two
robust losses as an adversarial generalization gap.
What is worse, the generalization gap appears in
the early stage of AT and grows during the whole
training phase. This initial finding inspires us to
explore the convergence and generalization of AT
in-depth and to ask the following question:

• Why does the robust test loss continue to in-
crease as adversarial training goes?

We further explore the robust loss and accuracy
curves on the training set. More specifically, we
re-perform a PGD-10 attack on the training set to
check the robust learning curves. We surprisingly
observe that on the training set, both the robust
loss and robust error under PGD-10 converge to
small values. We also evaluate the adversarial ro-
bustness under different settings, such as datasets,
model architectures, etc., and similar results are ob-
served. With extensive empirical results, we argue
that the model overfits the threat model used in AT
and loses the adversarial generalization ability. We
hypothesise that the model simply memorizes the
adversarial data during training and fails to gen-
eralize to robust testing. Thus a poor adversarial
generalization performance is observed on the test
set. We make several attempts to mitigate robust
overfitting issues in AT using a series of regular-
ization methods. The underlying philosophy is
to prevent the model from memorizing adversar-
ial data. In this way, we prevent the adversarially
trained model from robust overfitting. Eventually,
we evaluate our methods against textual adversarial
attacks and obtain improvements upon the existing
AT methods. Our contributions can be summarized
as follows:

• We identify the robust overfitting issue in AT
for PrLMs. Through in-depth explorations,
we attribute the robust overfitting to memoriz-
ing the adversarial training data.

• We make empirical attempts to mitigate ro-
bust overfitting using a series of regularization
methods. We propose calibrating the model’s
overconfident prediction in AT1. Extensive ex-
perimental results demonstrate that our meth-
ods can mitigate robust overfitting and im-
prove the adversarial robustness of models
upon three top AT methods.

2 Related Work

In this section, we briefly review the relevant work
on AT and robust overfitting, especially for NLP
tasks.

2.1 Adversarial Training
Let D = {(xi, yi)}ni=1 be the training set, in which
xi ∈ X is an input sample with its corresponding
true label yi ∈ Y . AT aims to learn adversarially
robust models by expanding the training set with
adversarial data, which can be formulated as the
following max-min optimization problem:

min
θ

E(X ,Y)∼D

[
max
∥δ∥≤ϵ

L(fθ(X + δ),Y)

]
, (1)

where fθ is a neural network parameterized by θ,
L(·) is the loss function, δ is the adversarial pertur-
bation, and ϵ is the allowed perturbation size.

To tackle the intractable problem, Goodfellow
et al. (2015) first proposed to use a one-step
gradient-based method to generate adversarial ex-
amples, also known as the Fast Gradient Sign
Method (FGSM). Madry et al. (2018) extended
it to a multi-step method with random starts known
as the PGD method.

Unfortunately, AT always leads to a drop in the
standard accuracy. Zhang et al. (2019b) theoreti-
cally identified a trade-off between robustness and
accuracy and proposed TRADES to trade adver-
sarial robustness off against accuracy. Considering
that PGD-based AT is time-consuming, there is
another line of work focused on accelerating AT
(Shafahi et al., 2019; Zhang et al., 2019a; Wong
et al., 2020).

For NLP tasks, Miyato et al. (2017) first found
that AT could help generalization in a semi-
supervised manner. To make AT more reason-
able, Sato et al. (2018) proposed to generate in-
terpretable adversarial perturbations in the embed-
ding space to improve standard accuracy. Zhu et al.

1Our code is available in public at https://github.com/
zedzx1uv/GAT.
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(2020) proposed a model named FreeLB to un-
derstand natural languages better. To exploit the
implicit information in the text, Li and Qiu (2021)
crafted fine-grained perturbations for tokens in their
model named TAVAT and obtained improvements
on both the standard and robust accuracy. Wang
et al. (2021a) improved AT from an information
theoretic perspective termed InfoBERT. Dong et al.
(2021b) proposed RIFT to encourage the model to
retain the information from the original pre-trained
model. To benchmark the existing defensive meth-
ods, Li et al. (2021b) gave a systematic analysis
of them under the same attack settings. They also
found that removing the norm-bounded projection
and increasing adversarial steps could improve ad-
versarial robustness.

To defend against the widely used adversarial
word substitutions, Jia et al. (2019) captured the
perturbation in a hyper-rectangle and obtained cer-
tified robustness. Dong et al. (2021a) further mod-
elled the word substitution attack space as a convex
hull to enhance adversarial robustness. Wang et al.
(2021c) proposed to project the perturbed word em-
bedding to a valid one so that the crafted adversarial
examples are reasonable. By learning a robust word
embedding space where synonyms have similar rep-
resentations, Yang et al. (2022) promoted models’
robustness and maintained competitive standard
accuracy.

Discrete adversarial data augmentation (Ren
et al., 2019; Jin et al., 2020; Zang et al., 2020;
Li et al., 2020; Si et al., 2021; Li et al., 2021a) can
also significantly improve adversarial robustness
by generating valid adversarial examples to expand
the training set. However, the adversarially trained
model suffers from degraded generalization perfor-
mance. Another disadvantage is that it only helps
defend against the same attacking method with ad-
versarial data augmentation. To this end, Zhu et al.
(2022) developed friendly adversarial data augmen-
tation to improve adversarial robustness without
hurting standard accuracy.

AT empirically boosts the adversarial robustness
of models, but no guarantees can be given for the ro-
bustness. Therefore, another series of work devotes
to obtaining certified robustness under given ad-
versarial strengths by using randomized smoothing
(Ye et al., 2020), interval bound propagation (Jia
et al., 2019; Huang et al., 2019; Shi et al., 2020),
differential privacy (Wang et al., 2021b), etc.

2.2 Robust Overfitting

Robust overfitting occurs immediately after the
learning rate decays in AT across datasets, model
architectures, and AT methods in computer vision
(Rice et al., 2020; Rebuffi et al., 2021; Dong et al.,
2022a). The robust training loss continues to de-
crease while the robust test loss begins to increase.
They also found that only the combination of early
stopping and semi-supervised data augmentation
works better than early stopping alone. Since it is
common in practice to train deep models as long
as possible in computer vision, robust overfitting
counteracts the gains of robustness by recent vari-
ants of AT.

From the perspective of the weight loss land-
scape, Wu et al. (2020) proposed adversarial
weight perturbation to improve robust generaliza-
tion. Chen et al. (2021) empirically injected learned
smoothing into AT to avoid overfitting in AT. Dong
et al. (2022a) introduced a new insight into the
relationships between noisy labels and robust over-
fitting. Rebuffi et al. (2021) found that data aug-
mentation with model weight averaging could also
mitigate robust overfitting.

Similarly, Dong et al. (2022b) integrated tempo-
ral ensemble into AT frameworks, which could be
seen as another form of weight averaging. Yu et al.
(2022) explored robust overfitting from data loss
distributions. They attributed robust overfitting to
the small-loss data under a large perturbation size.

In this paper, we mainly focus on the conver-
gence and robust overfitting of gradient-based AT
methods, which have rarely been studied in the
NLP field.

3 Robust Overfitting for PrLMs

In this section, we explore the robust learning
curves for PrLMs. By comparing the data loss
distributions between training and testing, we iden-
tify the robust overfitting issue and attribute it to
the model’s memorization of adversarial data.

3.1 Identifying Robust Overfitting

Motivated by the findings from Figure 1, we make
a further study on the training set to see whether
the model simply memorizes the adversarial train-
ing data. We re-perform PGD-10 attacks on the
training set. Since the PGD adversary randomly
initializes the starting point x(0) at a ϵ−ball cen-
tred by the input x, we expect a decrease in the
robustness of the model on the training set.
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Figure 2: Robust loss and accuracy against re-performed PGD-10 attacks on the SST-2 training set. The base
model is BERT-base. The small robust loss and high robust accuracy imply that the model simply memorizes the
adversarial data.

We adopt three AT methods, FreeLB (Zhu et al.,
2020), TAVAT (Li and Qiu, 2021), and InfoBERT
(Wang et al., 2021a), to provide comprehensive
results. “-10” refers to the number of attack iter-
ations used in AT is set to 10. As can be seen in
Figure 2, the robust losses of the three methods
decrease at early epochs, which indicates that the
model memorizes the adversarial data quickly.

In subsequent epochs, “TAVAT-10” and
“FreeLB-10” maintain small losses. The robust loss
of “InfoBERT” gradually increases but is still less
than 0.8. For robust accuracy, similar results are
observed. It is not surprising that “InfoBERT-10”
has a slightly large robust loss and a degraded
robust accuracy since we have observed that its
robust test loss is abnormally large compared to
others in Figure 1.

Comparing the robust loss on the training set
with that on the test set, we can conclude that the
model can not generalize to the adversarial test set,
although it achieves about 100% robust accuracy
during training.

We next vary the attack iterations in the re-
performed PGD attack to show the model’s robust-
ness against unseen attacks with larger perturba-
tions. As shown in Figure 3, when the perturbation
size exceeds that used for adversarial training (10
iterations), the robust losses and accuracies begin
to sharply increase and decrease, respectively.

Our findings indicate that the model overfits the
threat model seen during AT, which has also been
shown in (Stutz et al., 2020; Chen et al., 2021).
We answer the question raised in Section 1 that
due to the overparameterization of PrLMs, they
can easily memorize the adversarial data generated
during AT, resulting in robust overfitting. Thus the
adversarially learned model cannot generalize well
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Figure 3: Robust loss and accuracy against re-performed
PGD attacks on the SST-2 training set. The base model
is BERT-base. The robust loss and accuracy begin to
increase and decrease under ∼10 attack iterations, re-
spectively. InfoBERT is excluded due to its abnormal
robust loss and accuracy curves, as already shown in
Figure 1 and Figure 2.

on the adversarial test set and the robust test loss
continues to increase during robust testing.

3.2 More Empirical Evidence

To better support our hypothesis, we provide more
empirical evidence across different datasets and
model architectures, which can be found in Ap-
pendix A.

4 Mitigating Robust Overfitting

In this section, we make several attempts to prevent
PrLMs from getting overfitting in AT. In standard
training, regularization methods can mitigate over-
fitting and promote test performance. Thus, it is
intuitive to use regularization methods in AT to
avoid robust overfitting.
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Figure 4: (a) and (b) Robust test loss and accuracy when the dropout ratio varies in [0.1, 0.4]. (c) and (d) Robust
test loss and accuracy when the dropout ratio varies in [0.5, 0.9]. The AT method is FreeLB, and the base model is
BERT-base.

4.1 Ensemble Methods

Dropout (Srivastava et al., 2014) randomly drops
units from the model during training, which can
be recognized as sampling from an exponential
number of models. At test time, the model uses all
the units to make predictions, which can be seen as
an ensemble model.

Dropout is widely used in modern deep learning
as a regularizer. We vary the dropout ratio for the
attention probabilities and all the fully connected
layers in the embeddings, encoder, and pooler for
PrLMs. In this way, we aim to see whether dropout
can mitigate robust overfitting and whether a large
dropout ratio helps.

Figure 4(a) and Figure 4(b) show the robust test
loss and accuracy when the dropout ratio is in [0.1,
0.4]. For different dropout ratios, the robust loss
decreases as the ratio increases. However, the ro-
bust loss still increases as the epoch grows. The
robust accuracy also decreases as the dropout ratio
increases. In Figure 4(c), when the dropout ratio is
in [0.7, 0.9], the robust test loss begins to decrease
rather than increase. Nevertheless, we can observe
in Figure 4(d) that the corresponding robust test
accuracy maintains low because the robust loss is
still large. It indicates that a large dropout ratio can
hurt the robust test performance, though it ostensi-
bly alleviates robust overfitting. This finding also
suggests that a proper regularization technique may
address robust overfitting.

4.2 Weight Decay

Weight decay (Krogh and Hertz, 1991) aims to
adjust the effect of model complexity on the loss
function, also known as L2 regularization. It forces
the parameters to converge to smaller values and
avoids overfitting. Formally, weight decay adds a
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Figure 5: Robust test loss and accuracy with different co-
efficient λ for weight decay. The AT method is FreeLB,
and the base model is BERT-base.

regularization term in the loss function as follows:

J = J0 +
λ

2N

∑

w

w2, (2)

where J0 is the original loss function, λ is the coef-
ficient of the regularization term, N is the number
of samples in the training set, and w is the set of
model parameters.

To assess the effect of weight decay in mitigat-
ing robust overfitting, we vary the coefficient λ in a
wide range and report the robust loss during testing.
From Figure 5(a), we can observe that weight de-
cay can not avoid robust overfitting in AT since the
robust test loss continues to increase. Although a
slightly larger λ (5 and 10) can make the robust test
loss smaller in later epochs, a too-large λ increases
the robust test loss overall. Figure 5(b) shows the
robust test accuracy of different weight decay coef-
ficients. Similarly, large coefficients hurt the robust
accuracy, while small coefficients have little effect
on robust accuracy.

4.3 Flooding

Conventional regularization methods contribute lit-
tle to alleviating robust overfitting. However, we
have shown that proper regularization may help
mitigate robust overfitting in Section 4.1. Recall
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Figure 6: Robust test loss and accuracy against PGD-10 attacks with and without flooding. The flooding level is 0.1.
Dashed lines represent the robust test loss and acc. with flooding, and solid lines represent the robust test loss and
acc. without flooding. Due to the large time complexity, we train DeBERTa-v3-base models for 10 epochs.

Methods Flooding level Clean % RA %

BERT-base
(Devlin et al., 2019)

0 91.97 7.00
0.0125 91.82 4.93
0.025 91.76 7.49
0.05 91.97 4.13

Table 1: Adversarial robustness of models trained using
flooding only (w/o AT). We show that flooding can not
boost adversarial robustness by itself. The AT method is
FreeLB. “Clean %” is the accuracy on the clean test set,
and “RA %” is the robust accuracy against adversarial
attacks. The flooding level follows the original paper
(Liu et al., 2022).

our hypothesis that the model memorizes all the
adversarial training data and fails to generalize to
robust testing. Following the philosophy to pre-
vent the model from memorizing all the adversarial
data, it is intuitive and reasonable to calibrate the
model’s prediction when it gets zero robust train-
ing loss. Thus, making the model less confident in
some small-loss data is significant.

To this end, we propose to combine “flooding”
with AT methods. Ishida et al. (2020) have found

that flooding could help generalization. Flooding
intentionally prevents further reduction of the train-
ing loss when it reaches a reasonably small value b
as follows:

J = abs(J0 − b) + b, (3)

where J0 is the original loss function, b is the flood-
ing level, and abs() is the absolute value function.
Therefore, we expect that flooding can help miti-
gate robust overfitting in AT.

It is worth noting that Liu et al. (2022) have
claimed that flooding could improve adversarial
robustness without AT. However, through empirical
experiments, we find that flooding, as a regularizer,
can not promote adversarial robustness only by
itself, which contradicts their results. We first show
the adversarial robustness of models using flooding
only. Then we combine flooding with AT methods,
exploring its effect in avoiding robust overfitting
and improving adversarial robustness.

Table 1 reports the models’ adversarial robust-
ness regularized by flooding against TextFooler (Jin
et al., 2020). Although it is claimed that flooding
can boost adversarial robustness without AT, our
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Figure 7: Robust test loss and accuracy of different flooding levels. The AT method is FreeLB, and the base model
is BERT-base.

results indicate that flooding contributes little to
adversarial robustness. We then combine flooding
with AT to exploit its effect in avoiding overfitting
(Ishida et al., 2020).

Figure 6 shows the robust test loss and accuracy
against PGD attacks across datasets and model ar-
chitectures. With flooding, the robust test loss of
three AT methods maintains a low level and no
longer increases as the epoch grows, indicating that
flooding can mitigate robust overfitting and bridge
the adversarial generalization gap. The robust ac-
curacy also improves, verifying the regularization
effect of flooding in AT.

5 Discussion

In this section, we discuss the effect of flooding in
AT and investigate why flooding can help adversar-
ial generalization.

5.1 Effect of Flooding Levels

We investigate the effect of flooding levels in mit-
igating robust overfitting. We vary the flooding
level b from 0 to 0.5, and the corresponding robust
test loss and accuracy are shown in Figure 7.

When the flooding level is set to 0, the robust
test loss continues to increase, as we have shown
in previous sections. As the flooding level grows,
the overall robust loss decreases and reaches the
minimum when the flooding level is 0.2. Larger
flooding levels increase the robust loss. However,
the robust loss curve no longer rises, which verifies
that a reasonable flooding level not only helps al-
leviate robust overfitting issues but also promotes
adversarial robustness. Regarding robust accuracy,
similarly, we observe that a proper flooding level
can boost the adversarial robustness against PGD
attacks.

5.2 Memorization

We first give an intuitive explanation of the mem-
orization in AT from the perspective of loss mag-
nitude. Figure 8 demonstrates that the adversar-
ial loss without flooding dominates the training.
Therefore the adversarially trained model gets ro-
bust overfitting. The learning curves of adversarial
loss with flooding is not shown because its value
can predictably fluctuate around the flooding level.
We vary the adversarial search steps and report the
results in Appendix B.

To verify our hypothesis that flooding can pre-
vent the model from memorizing adversarial train-
ing data, we investigate if models can achieve zero
training error when their training loss are scaling
with flooding. We show in Figure 9(a) the learning
curves of training accuracy with BERT-base on the
SST2 dataset. We conclude that the model gives
up on memorizing all the adversarial training data
as the flooding level gets higher. In Figure 9(b)
we report the learning curves of training accuracy
with DeBERTa-v3-base on the AGNEWS dataset.
Similarly, the model gives up on memorizing all
the adversarial training data.

To conclude, we demonstrate that flooding can
mitigate memorization in AT with several model
architectures and datasets.

5.3 Robustness against Textual Adversarial
Attacks

We have shown that flooding can mitigate robust
overfitting against PGD attacks. To provide com-
prehensive evidence that flooding helps adversarial
generalization, we evaluate the model’s robustness
against textual adversarial attacks.
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Figure 8: The clean cross-entropy training loss and the adversarial loss with BERT-base on the SST2 dataset.
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(b) DeBERTa-v3-base & AGNEWS

Figure 9: Training accuracy of different flooding levels. The models are trained using FreeLB with BERT-base on
the SST2 dataset. Note that a flooding level of zero means that the model is trained without flooding.

5.3.1 Experimental Setup
Datasets We conduct experiments on two widely
used text classification datasets, SST2 (Socher
et al., 2013)2 and AGNEWS (Zhang et al., 2015)3.
SST2 is a sentiment analysis dataset which contains
67349 training samples and 872 validation samples.
We use the GLUE (Wang et al., 2019) version of
the SST2 dataset. The average text length is 17.
AGNEWS is a category classification dataset with
four news topics: World, Sports, Business, and
Science/Technology. It contains 12000 training
samples and 7600 test samples. The average text
length is 43. The maximum sentence length kept

2https://dl.fbaipublicfiles.com/glue/data/
SST-2.zip

3http://groups.di.unipi.it/~gulli/AG_corpus_
of_news_articles.html

for the two datasets is 40. For training, we split
10% of the training set as the validation set.
Adversarial Training Methods We adopt three
AT methods, FreeLB (Zhu et al., 2020), TAVAT
(Li and Qiu, 2021), and InfoBERT (Wang et al.,
2021a), as our AT baselines. The three AT meth-
ods help boost models’ generalization ability and
adversarial robustness. The adversarial settings are
set consistently. The number of adversarial steps is
10; the step size is 0.01; the adversarial maximum
norm is 1; the magnitude of initial adversarial per-
turbation is 0.02; and all the other settings follow
their original papers.
Attacking Methods We adopt TextFooler (Jin
et al., 2020), a word-level textual adversarial attack-
ing method, as our attacking baseline. TextFooler
is widely used in related literatures on adversarial
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Methods Clean % RA %

BERT-base (Devlin et al., 2019) 91.97 7.00

+FreeLB (Zhu et al., 2020) 92.32 8.94
+FreeLB & flooding 92.66 11.93

+TAVAT (Li and Qiu, 2021) 92.66 14.56
+TAVAT & flooding 93.58 11.24

+InfoBERT (Wang et al., 2021a) 92.32 6.31
+InfoBERT & flooding 93.35 6.77

Table 2: Adversarial robustness against textual adversar-
ial attacks. The dataset is SST-2. The attacking method
is TextFooler. The flooding level is set to 0.1.

attacks and robustness. We use TextAttack’s (Mor-
ris et al., 2020)4 implementation of TextFooler to
provide fair results.
Model Architectures We use BERT-base (De-
vlin et al., 2019) and DeBERTa-v3-base (He et al.,
2021b,a) as our baseline models and load their
weights from HuggingFace Transformers5. For
these models, BERT-base has achieved great per-
formance on NLP tasks as the first pre-trained lan-
guage model. DeBERTa-v3-base is an advanced
variant among the BERT family.

5.3.2 Attacking Results
Table 2 and Table 3 show the standard accuracy
(Clean %) and robust accuracy (RA %) across
datasets and model architectures.

On the SST2 dataset, all three AT methods obtain
improvements in the standard accuracy. FreeLB
and TAVAT boost the adversarial robustness com-
pared with BERT-base, while InfoBERT has de-
graded robustness. Furthermore, flooding can pro-
mote robustness upon FreeLB and InfoBERT, but
the combination of TAVAT and flooding has a rela-
tively low robust accuracy compared with TAVAT.

For the AGNEWS dataset, all the combinations
can promote standard accuracy except for TAVAT.
Like the robust accuracy on the SST2 dataset,
flooding can improve adversarial robustness upon
FreeLB and InfoBERT while having a degraded
robust accuracy compared with TAVAT.

It is an interesting observation that flooding
can not boost adversarial robustness upon TAVAT
against TextFooler. However, this work mainly fo-
cuses on mitigating robust overfitting issues against
PGD attacks. This observation indicates that ad-
versarial generalization gaps exist when the model

4https://github.com/QData/TextAttack
5https://huggingface.co/transformers

Methods Clean % RA %

DeBERTa-v3-base (He et al., 2021a) 93.10 12.60

+FreeLB (Zhu et al., 2020) 95.20 26.00
+FreeLB & flooding 94.70 26.60

+TAVAT (Li and Qiu, 2021) 91.90 25.60
+TAVAT & flooding 93.58 21.10

+InfoBERT (Wang et al., 2021a) 93.90 27.50
+InfoBERT & flooding 94.90 29.50

Table 3: Adversarial robustness against textual adver-
sarial attacks. The dataset is AGNEWS. The attacking
method is TextFooler. The flooding level is set to 0.1.

defends against different attacks (e.g., PGD-based
attacks and word-level textual adversarial attacks).
It may be the generalization gap caused by TAVAT
itself. Overall, we leave this question for another
promising direction of future work.

It is also surprising that InfoBERT can not pro-
mote robustness on the SST2 dataset with the
BERT-base architecture. This may be because we
fix the attack iterations to 10 instead of using the
settings in the original paper.

6 Conclusion

Robust overfitting prevents further improvement of
adversarial robustness on PrLMs. While we adopt
strong regularizers in AT, weight decay and dropout
contribute little to mitigating robust overfitting. To
prevent the model from simply memorizing the
adversarial training data, we combine flooding with
AT. Experimental results on extensive datasets and
model architectures demonstrate that a reasonable
flooding level helps mitigate robust overfitting.

As a preliminary study, this work identifies the
robust overfitting issue for PrLMs. We hope the
community can take robust overfitting into account
when performing AT to achieve adversarially ro-
bust models.

Limitations

In this work, we mainly identify robust overfitting
for PrLMs using PGD attacks instead of textual ad-
versarial attacks. The reasons are two folds. First,
we aim to check the learning curves during AT. Sec-
ond, the results of textual adversarial attacks may
not be generalizable since they integrate different
strategies. In practice, however, it is more inclined
to use some textual adversarial attack methods (e.g.,
TextFooler, TextBugger (Li et al., 2019)) to eval-
uate the robustness of NLP models. As we have
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clarified in Section 5.3.2, there exists an adversarial
generalization gap when the model defends against
PGD-based gradient attacks and textual adversarial
attacks. While it is difficult to check their robust
loss and accuracy curves during AT, it is necessary
and promising to explore robust overfitting under
textual adversarial attacks and provide helpful in-
sights for promoting the adversarial robustness of
PrLMs.
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A More Evidence for Robust Overfitting

We provide more results across datasets and model
architectures to identify robust overfitting for
PrLMs in Figure 10, which also empirically veri-
fies our hypothesis that the model’s memorization
of adversarial training data results in robust overfit-
ting.

B Comparison of the Clean Cross-entropy
Loss and the Adversarial Loss

We vary the adversarial search steps and report the
clean cross-entropy loss and the adversarial loss
during training. In Figure 11, the adversarial loss
becomes higher as the number of search steps gets
larger, which implies that the adversarial loss dom-
inates the training, leading to robust overfitting.
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Figure 10: Robust test loss and accuracy across datasets and model architectures.
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Figure 11: The clean cross-entropy training loss and the adversarial loss with BERT-base on the SST2 dataset.
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