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Abstract

Since conventional knowledge embedding mod-
els cannot take full advantage of the abundant
textual information, there have been extensive
research efforts in enhancing knowledge em-
bedding using texts. However, existing en-
hancement approaches cannot apply to tem-
poral knowledge graphs (tKGs), which con-
tain time-dependent event knowledge with com-
plex temporal dynamics. Specifically, existing
enhancement approaches often assume knowl-
edge embedding is time-independent. In con-
trast, the entity embedding in tKG models usu-
ally evolves, which poses the challenge of align-
ing temporally relevant texts with entities. To
this end, we propose to study enhancing tem-
poral knowledge embedding with textual data
in this paper. As an approach to this task, we
propose Enhanced Temporal Knowledge Em-
beddings with Contextualized Language Repre-
sentations (ECOLA), which takes the temporal
aspect into account and injects textual infor-
mation into temporal knowledge embedding.
To evaluate ECOLA, we introduce three new
datasets for training and evaluating ECOLA.
Extensive experiments show that ECOLA sig-
nificantly enhances temporal KG embedding
models with up to 287% relative improvements
regarding Hits@1 on the link prediction task.
The code and models are publicly available‡.

1 Introduction

Knowledge graphs (KGs) have long been consid-
ered an effective and efficient way to store struc-
tural knowledge about the world. A knowledge
graph consists of a collection of triples ps, p, oq,
where s (subject entity) and o (object entity) cor-
respond to nodes, and p (predicate) indicates the
edge type (relation) between the two entities. Com-
mon knowledge graphs (Toutanova et al., 2015;

˚Zhen Han’s work done prior to joining Amazon.
† Equal contribution.
‡ https://github.com/mayhugotong/ECOLA

Dettmers et al., 2018) assume that the relations be-
tween entities are static connections. However, in
the real world, there are not only static facts but
also temporal relations associated with the entities.
To this end, temporal knowledge graphs (tKGs)
(Tresp et al., 2015) were introduced that capture
temporal aspects of relations by extending a triple
to a quadruple, which adds a timestamp to describe
when the relation is valid, e.g., (R.T. Erdoğan, visit,
US, 2019-11-12). If the temporal relationship lasts
for several timestamps, most tKGs represent it by a
sequence of quadruples, e.g., {(R.T. Erdoğan, visit,
US, 2019-11-12), (R.T. Erdoğan, visit, US, 2019-
11-13)}.

Conventional knowledge embedding approaches
learn KGs by capturing the structural informa-
tion, suffering from the sparseness of KGs. To
address this problem, some recent studies incor-
porate textual information to enrich knowledge
embedding. KG-BERT (Yao et al., 2019) takes
entity and relation descriptions of a triple as the
input of a pre-trained language model (PLM) and
turns KG link prediction into a sequence classifi-
cation problem. Similarly, KEPLER (Wang et al.,
2021) computes entity representations by encoding
entity descriptions with a PLM and then applies
KG score functions for link prediction. However,
they could not be applied to tKGs. Specifically,
existing approaches (e.g., KEPLER) encode an en-
tity, no matter at which timestamp, with the same
static embedding based on a shared entity descrip-
tion. In comparison, entity embeddings in tKG
models usually evolve over time as entities often
involve in different events at different timestamps.
Therefore, an entity might be aligned with differ-
ent textual knowledge at different time. And it
should be taken into account which textual knowl-
edge is relevant to which entity at which timestamp.
We name this challenge as temporal alignment
between texts and tKGs, which is to establish a cor-
respondence between textual knowledge and their
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Figure 1: An example of a temporal knowledge graph
with textual event descriptions.

tKG depiction. Another challenge is that many tem-
poral knowledge embedding models (Goel et al.,
2020; Han et al., 2020a) learn the entity representa-
tions as a function of time. However, the existing
enhancement approaches cannot be naturally ap-
plicable to such tKG embedding. We refer to this
challenge as dynamic embedding challenge. In
this work, we propose to study enhancing tempo-
ral knowledge embedding with textual data. As an
approach to this task, we develop Enhanced Tem-
poral Knowledge Embeddings with Contextualized
Language Representations (ECOLA), which uses
temporally relevant textual knowledge to enhance
the time-dependent knowledge graph embedding.
Specifically, we solve the temporal alignment
challenge using tKG quadruples as an implicit
measure. We pair a quadruple with its relevant
textual data, e.g., event descriptions, which corre-
sponds to the temporal relations between entities
at a specific time. Then we use the event descrip-
tion to enhance the representations of entities and
the predicate involved in the given quadruple. Be-
sides, ECOLA solves the dynamic embedding
challenge using a novel knowledge-text predic-
tion (KTP) task which injects textual knowledge
into temporal knowledge embeddings. Specifically,
given a quadruple-text pair, we feed both the tem-
poral knowledge embeddings of the quadruple and
token embeddings of the text into a PLM. The
KTP task is an extended masked language mod-
eling task that randomly masks words in texts and
entities/predicates/timestamp in quadruples. With
the help of the KTP task, ECOLA would be able
to recognize mentions of the subject entity and the
object entity and align semantic relationships in the
text with the predicate in the quadruple.

For training ECOLA, we need datasets with tKG
quadruples and aligned textual event descriptions,

which are unavailable in the existing temporal KG
benchmarks. Thus, we construct three new tempo-
ral knowledge graph datasets by adapting two ex-
isting datasets, i.e., GDELT (Leetaru and Schrodt,
2013) and Wiki (Dasgupta et al., 2018), and an
event extraction dataset (Li et al., 2020).

To summarize, our contributions are as follows:
(i) We are the first to address the challenge of en-
hancing temporal knowledge embedding with tem-
porally relevant textual information while preserv-
ing the time-evolving properties of entity embed-
ding. (ii) We construct three datasets to train the
text-enhanced tKG models. Specifically, we adapt
three existing temporal KG completion datasets by
augmenting each quadruple with a relevant textual
description. (iii) Extensive experiments show that
ECOLA is model-agnostic and can be potentially
combined with any temporal KG embedding model.
ECOLA also has a superior performance on the
temporal KG completion task and enhances tempo-
ral KG models with up to 287% relative improve-
ments in the Hits@1 metric. (iv) As a joint model,
ECOLA also empowers PLMs by integrating tem-
poral structured knowledge into them. We select
temporal question answering as a downstream NLP
task, demonstrating that ECOLA can considerably
enhance PLMs.

2 Preliminaries and Related Work

Temporal Knowledge Graphs Temporal knowl-
edge graphs are multi-relational, directed graphs
with labeled timestamped edges between entities
(nodes). Let E and P represent a finite set of en-
tities and predicates, respectively. A quadruple
q “ pes, p, eo, tq represents a timestamped and la-
beled edge between a subject entity es P E and an
object entity eo P E at a timestamp t P T . Let
F represent the set of all true quadruples, the tem-
poral knowledge graph completion (tKGC) is the
task of inferring F based on a set of observed facts
O. Specifically, tKGC is to predict either a miss-
ing subject entity p?, p, eo, tq given the other three
components or a missing object entity pes, p, ?, tq.
We provide related works on temporal knowledge
representations in Appendix A.

Joint Language and Knowledge Models Re-
cent studies have achieved great success in jointly
learning language and knowledge representations.
Zhang et al. (2019) and Peters et al. (2019) fo-
cus on enhancing language models using external
knowledge. They separately pre-train the entity em-
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Figure 2: Model architecture. ECOLA jointly optimizes the knowledge-text prediction (KTP) objective and the
temporal knowledge embedding (tKE) objective.

bedding with knowledge embedding models, e.g.,
TransE (Bordes et al., 2013), and inject the pre-
trained entity embedding into PLMs, while fixing
the entity embedding during training PLMs. Thus,
they are not real joint models for learning knowl-
edge embedding and language embedding simul-
taneously. Yao et al. (2019), Kim et al. (2020),
and Wang et al. (2021) learn to generate entity
embeddings with PLMs from entity descriptions.
Moreover, He et al. (2019), Sun et al. (2020), and
Liu et al. (2020) exploit the potential of contextu-
alized knowledge representation by constructing
subgraphs of structured knowledge and textual data
instead of treating single triples as training units.
Nevertheless, none of these works consider the tem-
poral aspect of knowledge graphs, which makes
them different from our proposed ECOLA.

3 ECOLA

In this section, we present the overall framework of
ECOLA, including the model architecture in Sec-
tion 3.1 - 3.3, a novel task designed for aligning
knowledge embedding and language representa-
tion in Section 3.4, and the training procedure in
Section 3.5. As shown in Figure 2, ECOLA implic-
itly incorporates textual knowledge into temporal
knowledge embeddings by jointly optimizing the
knowledge-text prediction loss and the temporal
knowledge embedding loss. Note that, at infer-
ence time, we only take the enhanced temporal
knowledge embeddings to perform the temporal

KG completion task without using PLM and any
textual data for preventing information leakage and
keeping a fast inference speed.

3.1 Embedding Layer

In tKG embedding models, entity representations
evolve over time. Thus, the key point of enhancing
a time-dependent entity representation eiptq is to
find texts that are relevant to the entity at the time
of interest t. To this end, we use tKG quadruples
(e.g., pei, p, ej , tq) as an implicit measure for the
alignment. We pair a quadruple with its relevant
textual data and use such textual data to enhance the
entity representation eiptq. Therefore, a training
sample is a pair of quadruple from temporal KGs
and the corresponding textual description, which
are packed together into a sequence. As shown
in Figure 2, the input embedding is the sum of
token embedding, type embedding, and position
embedding. For token embedding, we maintain
three lookup tables for subwords, entities, and
predicates, respectively. For subword embedding,
we first tokenize the textual description into a se-
quence of subwords following (Devlin et al., 2018)
and use the WordPiece algorithm (Wu et al., 2016).
As the light blue tokens shown in Figure 2, we de-
note an embedding sequence of subword tokens
as tw1, ...,wnu. In contrast to subword embed-
ding, the embeddings for entities and predicates
are directly learned from scratch, similar to com-
mon knowledge embedding methods. We denote
the entity embedding and predicate embedding as e
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and p, respectively, as the dark blue tokens shown
in Figure 2. We separate the knowledge tokens,
i.e., entities and predicates, and subword tokens
with a special token [SEP]. To handle different
token types, we add type embedding to indicate
the type of each token, i.e., subword, entity, and
predicate. For position embedding, we assign each
token an index according to its position in the input
sequence and follow Devlin et al. (2018) to apply
fully-learnable absolute position embeddings.

3.2 Temporal Knowledge Encoder

As shown in Figure 2, the input embedding for en-
tities and predicates consists of knowledge token
embedding, type embedding, and position embed-
ding. In this section, we provide details of the
temporal knowledge embedding (tKE) objective.

A temporal embedding function defines en-
tity embedding as a function that takes an en-
tity and a timestamp t as input and generates a
time-dependent representation in a vector space.
There is a line of work exploring temporal embed-
ding functions. Since we aim to propose a model-
agnostic approach, we combine ECOLA with three
temporal embedding functions, i.e., DyERNIE-
Euclid (Han et al., 2020a), UTEE (Han et al.,
2021c), and DE-SimplE (Goel et al., 2020). In
the following, we refer to DyERNIE-Euclid as
DyERNIE and take it as an example to introduce
our framework. Specifically, the entity represen-
tation is derived from an initial embedding and a
velocity vector eDyER

i ptq “ ēDyER
i ` veit, where

ēDyER
i represents the initial embedding that does

not change over time, and vei is an entity-specific
velocity vector. The combination with other tem-
poral embedding functions is discussed in Section
4. The score function measuring the plausibility of
a quadruple is defined as follows,

ϕDyERpei, p, ej , tq “
´ dpP d eDyER

i ptq, eDyER
j ptq ` pq ` bi ` bj ,

(1)
where P and p represent the predicate matrix and
the translation vector of predicate p, respectively; d
denotes the Euclidean distance, and bi, bj are scalar
biases. By learning tKE, we generate M negative
samples for each positive quadruple in a batch. We
choose the binary cross entropy as the temporal

knowledge embedding objective

LtKE “ ´1

N

Nÿ

k“1

pyk logppkq`p1´ykq logp1´pkqq,
(2)

where N is the sum of positive and negative train-
ing samples, yk represents the binary label indicat-
ing whether a training sample is positive or not, pk
denotes the predicted probability σpϕDyER

k q, and
σp¨q represents the sigmoid function.

3.3 Masked Transformer Encoder
To encode the input sequence, we use the pre-
trained language representation model BERT (De-
vlin et al., 2018). Specifically, the encoder feeds a
sequence of N tokens including entities, predicates,
and subwords into the embedding layer introduced
in Section 3.1 to get the input embeddings and then
computes L layers of d-dimensional contextualized
representations. Eventually, we get a contextual-
ized representation for each token, which could be
further used to predict masked tokens.

3.4 Knowledge-Text Prediction Task
To incorporate textual knowledge into temporal
knowledge embedding, we use the pre-trained lan-
guage model BERT to encode the textual descrip-
tion and propose a knowledge-text prediction task
to align the language representations and the knowl-
edge embedding. The knowledge-text prediction
task is an extension of the masked language model-
ing (MLM) task. As illustrated in Figure 2, given
a pair of a quadruple and the corresponding event
description, the knowledge-text prediction task is
to randomly mask some of the input tokens and
train the model to predict the original index of the
masked tokens based on their contexts. As different
types of tokens are masked, we encourage ECOLA
to learn different capabilities:

• Masking entities. To predict an entity token
in the quadruple, ECOLA has the following
ways to gather information. First, the model
can detect the textual mention of this entity
token and determine the entity; second, if the
other entity token and the predicate token are
not masked, the model can utilize the available
knowledge token to make a prediction, which
is similar to the traditional semantic matching-
based temporal KG models. Masking entity
nodes helps ECOLA align the representation
spaces of language and structured knowledge,

5436



and inject contextualized representations into
entity embeddings.

• Masking predicates. To predict the predicate
token in the quadruple, the model needs to de-
tect mentions of the subject entity and object
entity and classify the semantic relationship
between the two entity mentions. Thus, mask-
ing predicate tokens helps the model integrate
language representation into the predicate em-
bedding and map words and entities into a
common representation space.

• Masking subwords. When subwords are
masked, the objective is similar to traditional
MLM. The difference is that ECOLA con-
siders not only the dependency information
in the text but also the entities and the logi-
cal relationship in the quadruple. Addition-
ally, we initialize the encoder with the pre-
trained BERTbase. Thus, masking subwords
helps ECOLA keep linguistic knowledge and
avoid catastrophic forgetting while integrating
contextualized representations into temporal
knowledge embeddings.

In each quadruple, the predicate and each entity
have a probability of 15% to be masked. Similarly,
we mask 15% of the subwords of the textual de-
scription at random. We ensure that entities and
the predicate cannot be masked at the same time
in a single training sample, where we conduct an
ablation study in Section 6 to show the improve-
ment of making this constraint. When a token is
masked, we replace it with (1) the [MASK] token
80% of the time, (2) a randomly sampled token
with the same type as the original token 10% of
the time, (3) the unchanged token 10% of the time.
For each masked token, the contextualized repre-
sentation in the last layer of the encoder is used for
three classification heads, which are responsible for
predicting entities, predicates, and subword tokens,
respectively. At last, a cross-entropy loss LKTP is
calculated over these masked tokens.

3.5 Training Procedure and Inference

We initialize the transformer encoder with
BERTbase

§ and the knowledge encoder with ran-
dom vectors. Then we use the temporal knowl-
edge embedding (tKE) objective LtKE to train the
knowledge encoder and use the knowledge-text

§https://huggingface.co/bert-base-uncased

prediction (KTP) objective LKTP to incorporate
temporal factual knowledge and textual knowledge
in the form of a multi-task loss:

L “ LtKE ` λLKTP ,

where λ is a hyperparameter to balance tKE loss
and KTP loss. Note that those two tasks share the
same embedding layer of entities and predicates.
At inference time, we aim to answer link predic-
tion queries, e.g., pes, p, ?, tq. Since there is no
textual description at inference time, we take the
entity and predicate embedding as input and use
the score function of the knowledge encoder, e.g.,
Equation 1, to predict the missing links. Specifi-
cally, the score function assigns a plausibility score
to each quadruple, and the proper object can be
inferred by ranking the scores of all quadruples
tpes, p, ej , tq, ej P Eu that are accompanied with
candidate entities.

4 The Model-Agnostic Property of
ECOLA

ECOLA is model-agnostic and can enhance differ-
ent temporal knowledge embedding models. Be-
sides ECOLA-DyERNIE, we introduce here two
additional variants of ECOLA.

ECOLA-DE enhances DE-SimplE, which ap-
plies the diachronic embedding (DE) function
(Goel et al., 2020). DE-function defines the tempo-
ral embeddings of entity ei at timestamp t as

eDE
i ptqrns “

#
aeirns if 1 ď n ď γd,

aeirns sinpωeirnst ` beirnsq else.
(3)

Here, eDE
i ptqrns denotes the nth element of the em-

beddings of entity ei at time t. aei ,ωei ,bei P Rd

are entity-specific vectors with learnable parame-
ters, d is the dimensionality, and γ P r0, 1s repre-
sents the portions of the time-independent part.

ECOLA-UTEE enhances UTEE (Han et al.,
2021c) that learns a shared temporal encoding
for all entities to address the overfitting problem
of DE-SimplE on sparse datasets. Compared to
ECOLA-DE, ECOLA-UTEE replaces Equation
3 with eUTEE

i ptq “ rēi||a sinpωt ` bqs, ēi P
Rγd;a,w,b P Rp1´γqd, where ēi denotes entity-
specific time-invariant part, || denotes concatena-
tion, a, ω, and b are shared among all entities.
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Table 1: Datasets Statistics

Dataset # Entities # Predicates # Timestamps # training set # validation set # test set

GDELT 5849 237 2403 755166 94395 94395
DUEE 219 41 629 1879 247 247
WIKI 10844 23 82 233525 19374 19374

5 Datasets

Training ECOLA requires both temporal KGs
and textual descriptions. Given a quadruple
pes, p, eo, tq, the key point is to find texts that are
temporally relevant to es and eo at t. Existing tKG
datasets do not provide such information. To facili-
tate the research on integrating textual knowledge
into temporal knowledge embedding, we reformat
GDELT¶, DuEE||, and Wiki**. We show the dataset
statistics in Table 1.

GDELT is an initiative knowledge base storing
events across the globe connecting people and orga-
nizations, e.g., (Google, consult, the United States,
2018/01/06). For each quadruple, GDELT provides
the link to the news report which the quadruple
is extracted from. We assume each sentence that
contains both mentions of the subject and object
is relevant to the given quadruple, and, thus, tem-
porally aligned with the subject and object at the
given timestamp. We pair each of these sentences
with the given quadruple to form a training sample.
This process is similar to the distant supervision
algorithm (Mintz et al., 2009) in the relation extrac-
tion task. The proposed dataset contains 5849 enti-
ties, 237 predicates, 2403 timestamps, and 943956
quadruples with accompanying sentences.

DuEE is originally a human-annotated dataset
for event extraction containing 65 event types and
121 argument roles. Each sample contains a sen-
tence and several extracted event tuples. We se-
lect 41 event types that could be represented by
quadruples and reformat DuEE by manually con-
verting event tuples into quadruples and then pair-
ing quadruples with their corresponding sentence.

Wiki is a temporal KG dataset proposed by
Leblay and Chekol (2018). Following the post-
processing by Dasgupta et al. (2018), we discretize
the time span into 82 different timestamps. We
align each entity to its Wikipedia page and extract

¶https://www.gdeltproject.org/data.html#googlebigquery
||https://ai.baidu.com/broad/download

**https://www.wikidata.org/wiki/Wikidata:Main_Page

the first section as its description. To construct
the relevant textual data of each quadruple, we
combine the subject description, relation, and ob-
ject description into a sequence. In this case, the
knowledge-text prediction task lets the subject en-
tity learn the descriptions of its neighbors at dif-
ferent timestamps, thus, preserving the temporal
alignment between time-dependent entity represen-
tation and textual data.

6 Experiments

We evaluate the enhanced temporal knowledge
embedding on the temporal KG completion task.
Specifically, we take the entity and predicate em-
bedding of ECOLA-DyERNIE and use Equation
1 to predict missing links. The textual descrip-
tion of test quadruples could introduce essential
information and make the completion task much
easier. Thus, to make a fair comparison with other
temporal KG embedding models, we take the en-
hanced lookup table embedding of temporal KGs
to perform the link prediction task at test time but
use neither textual descriptions of test quadruples
nor the language model. We report such results in
Table 2. As additional results, we also show the
prediction outcome that takes the text description
of test quadruples as input in Figure 4a.

Baselines We include both static and temporal
KG embedding models. From the static KG embed-
ding models, we use TransE (Bordes et al., 2013),
DistMult (Yang et al., 2014), and SimplE (Kazemi
and Poole, 2018). These methods ignore the time
information. From the temporal KG embedding
models, we compare our model with several state-
of-the-art methods, including ATiSE (Xu et al.,
2019), TNTComplE (Lacroix et al., 2020), Dy-
ERNIE†† (Han et al., 2020a), TeRO (Xu et al.,
2020), and DE-SimplE (Goel et al., 2020). We
provide implementation details in Appendix B and
attach the source code in the supplementary mate-
rial.

††For a fair comparison with other baselines, we choose
DyERNIE-Euclid.
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Table 2: Temporal link prediction results: Mean Reciprocal Rank (MRR, %) and Hits@1/3(%). The results of the
proposed fusion models (with prefix ECOLA-) and their counterpart KG models are listed together.

Datasets GDELT - filtered Wiki - filtered DuEE - filtered

Model MRR Hits@1 Hits@3 MRR Hits@1 Hits@3 MRR Hits@1 Hits@3

TransE 8.08 0.00 8.33 27.25 16.09 33.06 34.25 4.45 60.73
SimplE 10.98 4.76 10.49 20.75 16.77 23.23 51.13 40.69 58.30
DistMult 11.27 4.86 10.87 21.40 17.54 23.86 48.58 38.26 55.26

TeRO 6.59 1.75 5.86 32.92 21.74 39.12 54.29 39.27 63.16
ATiSE 7.00 2.48 6.26 35.36 24.07 41.69 53.79 42.31 59.92
TNTComplEx 8.93 3.60 8.52 34.36 22.38 40.64 57.56 43.52 65.99

DE-SimplE 12.25 5.33 12.29 42.12 34.03 45.23 58.86 44.74 68.62
ECOLA-DE 19.67 ˘ 16.04 ˘ 19.50 ˘ 43.53 ˘ 35.78 ˘ 46.42 ˘ 60.78 ˘ 47.43 ˘ 69.43 ˘

00.11 00.19 00.04 00.08 00.17 00.02 00.16 00.13 00.64

UTEE 9.76 4.23 9.77 26.96 20.98 30.39 53.36 43.92 60.52
ECOLA-UTEE 19.11 ˘ 15.29 ˘ 19.46 ˘ 38.35 ˘ 30.56 ˘ 42.11 ˘ 60.36 ˘ 46.55 ˘ 69.22 ˘

00.16 00.38 00.05 00.22 00.18 00.14 00.36 00.51 00.93

DyERNIE 10.72 4.24 10.81 23.51 14.53 25.21 57.58 41.49 70.24
ECOLA-DyERNIE 19.99 ˘ 16.40 ˘ 19.78 ˘ 41.22 ˘ 33.02 ˘ 45.00 ˘ 59.64 ˘ 46.35 ˘ 67.87 ˘

00.05 00.09 00.03 00.04 00.06 00.27 00.20 00.18 00.53

Evaluation Protocol For each quadruple q “
pes, p, eo, tq in the test set Gtest, we create two
queries: pes, p, ?, tq and p?, p, eo, tq. For each
query, the model ranks all possible entities E ac-
cording to their scores. Let Rankpesq and Rankpeoq
represent the rank for es and eo of the two queries,
respectively, we evaluate our models using standard
metrics across the link prediction literature: mean
reciprocal rank (MRR): 1

2¨|Gtest|
ř

qPGtest
p 1

Rankpesq `
1

Rankpeoq q and Hits@kpk P t1, 3, 10uq: the percent-
age of times that the true entity candidate appears
in the top k of ranked candidates.

Quantitative Study Table 2 reports the tKG com-
pletion results on the test sets, which are averaged
over three trials. Firstly, we can see that ECOLA-
UTEE improves its baseline temporal KG embed-
ding model, UTEE, by a large margin, demonstrat-
ing the effectiveness of our fusing strategy. Specifi-
cally, ECOLA-UTEE enhances UTEE on GDELT
with a relative improvement of 95% and 99% in
terms of mean reciprocal rank (MRR) and Hits@3,
even nearly four times better in terms of Hits@1.
Thus, its superiority is clear on GDELT, which
is the most challenging dataset among benchmark
tKG datasets, containing nearly one million quadru-
ples. Secondly, ECOLA-UTEE and ECOLA-DE
generally outperform UTEE and DE-SimplE on
the three datasets, demonstrating that ECOLA is
model-agnostic and can enhance different tKG em-
bedding models. Besides, in the DuEE dataset,
ECOLA-DyERNIE achieves a better performance
than DyERNIE in Hits@1 and MRR, but the gap

reverses in Hits@3. The reason could be that
ECOLA-DyERNIE is good at classifying hard neg-
atives using textual knowledge, and thus has a high
Hits@1; however, since DuEE is much smaller
than the other two datasets, ECOLA-DyERNIE
may overfit in some cases, where the ground truth
is pushed away from the top 3 ranks.

Ablation Study We compare DE-SimplE,
ECOLA-DE, and ECOLA-SF on GDELT in
Figure 3a. ECOLA-SF is the static counterpart
of ECOLA-DE, where we do not consider the
temporal alignment while incorporating textual
knowledge. Specifically, ECOLA-SF integrates all
textual knowledge into the time-invariant part of
entity representations. We randomly initialize an
embedding vector ēi P Rd for each entity ei P E ,
where ēi has the same dimension as the token
embedding in the pre-trained language model.
Then we learn the time-invariant part ēi via the
knowledge-text prediction task. For the temporal
KG completion task, we combine ēi with temporal
knowledge embeddings,

eSFi ptqrns “
#
Wsf ēirns if 1 ď n ď γd,

aeirns sinpωeirnst ` beirnsq else,

where eSFi ptq P Rd is an entity embedding
containing static and temporal embedding part.
aei ,ωei ,bei P Rd´γd are entity-specific vectors
with learnable parameters. Wsf P Rdˆγd is ma-
trix with learnable weights. As shown in Figure
3a, the performance gap between ECOLA-DE and
ECOLA-SF is significant, demonstrating the tempo-
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(a) (b)

Figure 3: Ablation Study. (a) Temporal alignment
analysis. We compare DE-SimplE, ECOLA-DE, and
ECOLA-SF in terms of MRR(%) and Hits@1(%) on
GDELT. (b) Masking strategy analysis. We compare
ECOLA-DE with different masking strategies and show
the results of MRR(%) and Hits@1(%) on GDELT.

ral alignment between time-dependent entity repre-
sentation and textual knowledge is more powerful
than the static alignment.

Moreover, Figure 3b shows the results of differ-
ent masking strategies on GDELT. The first strategy,
e.g., Masking E+R+W, allows to simultaneously
mask predicate, entity, and subword tokens in the
same training sample. The second strategy is Mask-
ing E/R+W, where we mask 15% subword tokens
in the language part, and either an entity or a pred-
icate in the knowledge tuple. In the third strategy
called Masking E/R/W, for each training sample,
we choose to mask either subword tokens, an entity,
or the predicate. Figure 3b shows the advantage of
the second masking strategy, indicating that remain-
ing adequate information in the knowledge tuple
helps the model to align the knowledge embedding
and language representations.

Qualitative Analysis To investigate why incor-
porating textual knowledge can improve the tKG
embedding models’ performance, we study the test
samples that have been correctly predicted by the
fusion model ECOLA-DE but wrongly by the tKG
model DE-SimplE. It is observed that language rep-
resentations help overcome the incompleteness of
the tKG by leveraging knowledge from augmented
textual data. For example, there is a test quadruple
(US, host a visit, ?, 2019-11-14) with ground truth
R.T. Erdoğan. The training set contains a quite rel-
evant quadruple, i.e., (Turkey, intend to negotiate
with, US, 2019-11-11). However, the given tKG
does not contain information indicating that the
entity R.T. Erdoğan is a representative of Turkey.
So it is difficult for the tKG model DE-SimplE to
infer the correct answer from the above-mentioned
quadruple. In ECOLA-DE, the augmented textual

(a) (b)

Figure 4: (a) Results of tKG completion task on GDELT
with and without using a textual description of test
quadruples. (b) ECOLA benefits language represen-
tations on the temporal question-answering task. The
BERT model means that we directly apply BERT on the
CronQuestions dataset, the CronKGQA is a model pro-
posed by Saxena et al. (2021), and ECOLA-CronKGQA
represents the model where we enhance CronKGQA
using ECOLA.

data do contain such information, e.g. "The presi-
dent of Turkey, R.T. Erdogan, inaugurated in Aug.
2014.", which narrows the gap between R.T. Er-
dogan and Turkey. Thus, by integrating textual
information into temporal knowledge embedding,
the enhanced model can gain additional informa-
tion which the knowledge base does not include.

7 Discussion

Inference with Textual Data In Section 6, we
compared different tKG embedding models, where
textual data of test quadruples is absent during in-
ference time. However, if the textual descriptions
of the test quadruples are given during inference,
will the contextualized language model incorporate
this information into tKG embeddings? We use
the entity predictor of the knowledge-text predic-
tion task to perform the tKG completion task on
GDELT. As shown in Figure 4a, the results show
significant improvement across all metrics, specif-
ically, 145% relatively higher regarding MRR of
ECOLA-UTEE when given textual data during in-
ference than not given. Thus, the results confirm
that KTP task is a good choice for successful align-
ment between knowledge and language space and
ECOLA utilizes the pre-trained language model
to inject language representations into temporal
knowledge embeddings.

Masking Temporal Information in KTP As
temporal alignment is crucial for enhancing tempo-
ral knowledge embeddings, we study the effect of
masking temporal information by extending the ex-
isting KTP task with an additional time prediction
task, where the timestamp in the input is masked,
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Table 3: Performance of masking temporal information on the knowledge-text prediction task.

Datasets GDELT - filtered Wiki - filtered

Model MRR Hits@1 Hits@3 MRR Hits@1 Hits@3

ECOLA-UTEE 19.11 15.29 19.46 38.35 30.56 42.11
tECOLA-UTEE 20.39 16.83 20.08 42.53 34.06 46.32

(6.7% Ò) (10.1% Ò) (3.2% Ò) (10.9% Ò) (11.5% Ò) (10.0% Ò)

and the model learns to predict the original times-
tamp. The extended model is named tECOLA-
UTEE and has significant performance gain on
both GDELT and Wiki datasets across all metrics
as shown in Table 3. We conjecture that the addi-
tional time prediction task forces the model to cap-
ture the temporal dynamics in temporal knowledge
embeddings and utilize the temporal information
in given textual descriptions. Since each temporal
knowledge embedding models the temporal infor-
mation in different ways, masking and predicting
temporal information will be specific to each tem-
poral knowledge embedding model. We leave this
finding to future work for further inspections.

Temporal Question Answering Although we
focus on generating informative temporal knowl-
edge embeddings in this work, joint models often
benefit both the language model and the temporal
KG model mutually. Unlike previous joint models
(Zhang et al., 2019; Peters et al., 2019), we do not
modify the Transformer architecture, e.g., adding
entity linkers or fusion layers. Thus, the language
encoder enhanced by external knowledge can be
adapted to a wide range of downstream tasks as eas-
ily as BERT. Besides the tKG completion task, we
evaluate the enhanced language model in ECOLA
on the temporal question-answering task to study
its enhancement. Natural questions often include
temporal constraints, e.g., who was the US presi-
dent before Jimmy Carter? To deal with such chal-
lenging temporal constraints, temporal question
answering over temporal knowledge base, formu-
lated as TKGQA task, has become trendy since
tKGs help to find entity or timestamp answers with
support of temporal facts. Saxena et al. (2021) in-
troduced the dataset CRONQUESTIONS containing
natural temporal questions with different types of
temporal constraints. They proposed a baseline
CRONKGQA that uses BERT to understand the
temporal constraints, followed by a scoring func-
tion for answer prediction. We apply ECOLA to en-
hance the BERT in CRONKGQA then plug it back
into CRONKGQA and finetune it on the question

answering dataset. We name the enhanced model
as ECOLA-CRONKGQA. The models are evalu-
ated with standard metrics Hits@kpk P t1, 3uq: the
percentage of times that the true entity or time can-
didate appears in the top k of ranked candidates.
Figure 4b shows that our proposed ECOLA con-
siderably enhances CronKGQA, demonstrating the
benefits of ECOLA to the language model.

8 Conclusion

We introduced ECOLA to enhance time-evolving
entity representations with temporally relevant tex-
tual data using a novel knowledge-text prediction
task. Besides, we constructed three datasets that
contain paired structured temporal knowledge and
unstructured textual descriptions, which can benefit
future research on fusing temporal structured and
unstructured knowledge. Extensive experiments
show ECOLA can improve various temporal knowl-
edge graph models by a large margin.

Limitations

To train ECOLA, we need to provide structured
knowledge with aligned unstructured textual data
to the model. Thus, we should either manually pair
quadruples with event descriptions or use some
matching algorithm to automatically build the pairs.
The former requires human labeling effort and is
hard to apply on large-scale datasets, while the lat-
ter would introduce noise into the dataset. Thus,
ECOLA is currently tailored for domain adapta-
tion and enhances pre-trained models with domain
knowledge. There is still work to be done to let
models be jointly trained on large-scale structured
and unstructured data.

Ethics Statement

ECOLA is tailored to integrate temporal knowl-
edge embedding and textual knowledge and can be
applied to a wide variety of downstream tasks, such
as temporal knowledge graph link prediction and
temporal question answering. It can also power
search and, thus, serve as a key intermediary of
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information in users’ lives. Since most temporal
knowledge graphs are automatically extracted from
web data, it’s important to ensure it does not contain
offensive content. ECOLA can be used to classify
the quadruples in temporal knowledge graphs using
the pre-trained language model and contribute to
the knowledge graph protection’s perspective.
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Appendix

A Related Work of Temporal Knowledge
Embedding

Temporal Knowledge Embedding (tKE) is also
termed Temporal Knowledge Representation
Learning (TKRL), which is to embed entities and
predicates of temporal knowledge graphs into low-
dimensional vector spaces. TKRL is an expres-
sive and popular paradigm underlying many KG
models (Jin et al., 2019; Han et al., 2020b, 2021b;
Sun et al., 2021; Lacroix et al., 2020; Ding et al.,
2022). To capture temporal aspects, each model
either embeds discrete timestamps into a vector
space or learns time-dependent representations for
each entity. Ma et al. (2019) developed exten-
sions of static knowledge graph models by adding
timestamp embeddings to their score functions.
Besides, HyTE (Dasgupta et al., 2018) embeds
time information in the entity-relation space by
learning a temporal hyperplane to each timestamp
and projects the embeddings of entities and rela-
tions onto timestamp-specific hyperplanes. Later,
Goel et al. (2020) equipped static models with a di-
achronic entity embedding function which provides
the characteristics of entities at any point in time
and achieves strong results. Moreover, Han et al.
(2020a) introduced a non-Euclidean embedding ap-
proach that learns evolving entity representations
in a product of Riemannian manifolds. It is the
first work to contribute to geometric embedding
for tKG and achieves state-of-the-art performances
on the benchmark datasets. Besides, Han et al.
(2021a) proposed a subgraph reasoning algorithm
for temporal knowledge graph forecasting, which
can provide human-understandable evidence to its
prediction.

B Implementation

We use the datasets augmented with reciprocal re-
lations to train all baseline models. We tune the
hyperparameters of our models using the random
search and report the best configuration. Specifi-
cally, we set the loss weight λ to be 0.3, except for
ECOLA-DE model trained on Wiki dataset where
λ is set to be 0.001. We use the Adam optimizer
(Kingma and Ba, 2014). We use the implementa-
tion of DE-SimplE‡‡, ATiSE/TeRO§§. We use the
code for TNTComplEx from the tKG framework

‡‡https://github.com/BorealisAI/de-simple
§§https://github.com/soledad921/ATISE

(Han et al., 2021c). We implement TTransE based
on the implementation of TransE in PyKEEN¶¶.
We tune the model across a range of hyperparame-
ters as shown in Table 6. We provide the detailed
settings of hyperparameters of each baseline model
and ECOLA in Table 4.

C The amount of Compute and the Type
of Resources Used

We run our experiments on an NVIDIA A40 with
a memory size of 48G. We provide the training
time of our models and some baselines in Table
5. Note that there are no textual descriptions at
inference time, and we take the entity and predicate
embedding as input and use the score function of
KG models to predict the missing links. Thus, the
inference time of ECOLA (e.g., ECOLA-DE) and
its counterpart KG model (e.g., DE-SimplE) is the
same. The numbers of parameters are in Table 7 .

D The license of the Assets

We adapt three existing datasets, i.e., GDELT,
DuEE, and Wiki. We would first state the origi-
nal license.

• GDELT: as stated in the term of use of
GDELT***, the GDELT Project is an open
platform for research and analysis of global
society and thus all datasets released by the
GDELT Project are available for unlimited
and unrestricted use for any academic, com-
mercial, or governmental use of any kind with-
out fee. One may redistribute, rehost, repub-
lish, and mirror any of the GDELT datasets
in any form. However, any use or redistri-
bution of the data must include a citation to
the GDELT Project and a link to this website
(https://www.gdeltproject.org/).

• Wiki is proposed by Dasgupta et al. (2018)
and has Apache License 2.0.

• DuEE is released by Baidu Research. As
stated on its website†††, they have commit-
ted to provide these datasets at no cost for
research and personal uses.

For the derived datasets, we only release a short
version due to the size limit of uploads. Thus, we
will release the full version and give the license,

¶¶https://github.com/pykeen/pykeen
***https://www.gdeltproject.org/about.html#termsofuse
†††https://ai.baidu.com/broad/introduction?dataset=duee
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Table 4: Hyperparameter settings of ECOLA and baselines.

Parameters Embedding dimension Negative Sampling Learning rate Batch Size

Datasets GDELT DuEE Wiki GDELT DuEE Wiki GDELT DuEE Wiki GDELT DuEE Wiki

TransE 768 768 768 200 100 100 5e-4 5e-4 5e-4 256 128 256
SimplE 768 768 768 200 100 100 5e-4 5e-4 5e-4 256 128 256
TTransE 768 768 768 200 100 100 5.2e-4 5.2e-4 5.2e-4 256 256 256
TNTComplEx 768 768 768 200 100 100 1.5e-4 1.5e-4 1.5e-4 256 256 256
DE-SimplE 768 768 768 200 100 100 5e-4 5e-4 5e-4 256 128 256
ECOLA-SF 768 768 768 200 100 100 1e-4 2e-5 1e-4 64 16 64
ECOLA-DE 768 768 768 200 200 200 2e-5 2e-5 2e-5 4 8 4
ECOLA-UTEE 768 768 768 200 200 200 2e-5 2e-5 2e-5 4 8 4
ECOLA-dyERNIE 768 768 768 200 200 200 2e-5 e-4 2e-5 4 8 4

Table 5: The runtime of the training procedure (in
hours).

Dataset GDELT DuEE Wiki

DE-SimplE 17 0.5 5.0
ECOLA-DE 24.0 16.7 43.2
UTEE 67.3 0.5 11.3
ECOLA-UTEE 36.0 12.8 45.6
DyERNIE 25 0.1 5.9
ECOLA-DyERNIE 23.8 10.8 67.2

Table 6: Search space of hyperparameters.

Hyperparameter Search space
learning rate {e-5, 5e-5, e-4, 5e-4, e-3}
warm up {0.05, 0.2, 0.3}
weight decay {0.01, 0.05, 0.2}
batch size {16, 128, 256, 512}

Table 7: The number of parameters (M ).

Dataset GDELT DuEE Wiki
DyERNIE 159 140 174
UTEE 150 139 158
DE 175 140 173

copyright information, and terms of use once the
paper gets accepted.

E Documentation of the artifacts

This paper uses three datasets, GDELT, Wiki, and
DuEE. GDELT mainly covers social and political
events written in English. Wiki in this paper mainly
contains evolving knowledge, i.e., affiliation and
residence place information, which is also writ-
ten in English. DuEE is a dataset in Chinese and
mainly talks about social news, such as the launch
of new electronic products.
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