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Abstract

A neural ranker plays an indispensable role
in the de facto ‘retrieval & rerank’ pipeline,
but its training still lags behind due to the
weak negative mining during contrastive learn-
ing. Compared to retrievers boosted by self-
adversarial (i.e., in-distribution) negative min-
ing, the ranker’s heavy structure suffers from
query-document combinatorial explosions, so
it can only resort to the negative sampled by the
fast yet out-of-distribution retriever. Thereby,
the moderate negatives compose ineffective
contrastive learning samples, becoming the
main barrier to learning a robust ranker. To
alleviate this, we propose a multi-adversarial
training strategy that leverages multiple retriev-
ers as generators to challenge a ranker, where
i) diverse hard negatives from a joint distri-
bution are prone to fool the ranker for more
effective adversarial learning and ii) involv-
ing extensive out-of-distribution label noises
renders the ranker against each noise distribu-
tion, leading to more challenging and robust
contrastive learning. To evaluate our robust
ranker (dubbed R2ANKER), we conduct exper-
iments in various settings on the passage re-
trieval benchmarks, including BM25-reranking,
full-ranking, retriever distillation, etc. The em-
pirical results verify the new state-of-the-art
effectiveness of our model.

1 Introduction

Text retrieval plays a crucial role in many applica-
tions, such as web search (Brickley et al., 2019) and
recommendation (Zhang et al., 2019). Given a text
query, it aims to retrieve all relevant documents
from a large-scale collection1 (Qu et al., 2021;
Gao and Callan, 2022). For a better efficiency-
effectiveness trade-off, the text retrieval de facto
paradigm relies on a ‘retrieval & rerank’ pipeline

∗Work is done during internship at Microsoft.
†Corresponding author.

1while each collection entry could be a sentence, passage,
document, etc., we adopt document for a clear demonstration.
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Figure 1: Retrieval models, the retriever and ranker, trained
on in-distribution negatives and out-of-distribution negatives.

(Guo et al., 2022). That is, ‘retrieval’ is to use a fast
retriever to fetch a set of top document candidates
given a query, while ‘rerank’ is to re-calculate the
relevance of the query to each candidate by a heavy
yet effective ranker for better results.

Differing from most natural language under-
standing (NLU) tasks defined as categorical clas-
sification (Zhang et al., 2015), training retrieval
models, including the retriever and the ranker, are
usually formulated as a contrastive learning prob-
lem. However, there are merely positive query-
document pairs provided in most applications, re-
gardless of negative samples. Hence, a critical
prerequisite of the training is to sample negative
documents from the collection for training queries.

As random sampling is prone to mine triv-
ial negatives and proven less effective in train-
ing (a.k.a. in-batch negatives), a primary sam-
pling method was proposed to leverage BM25
(Karpukhin et al., 2020) to fetch relatively chal-
lenging negatives for more effective training. In
contrast to such an out-of-distribution negative sam-
pling technique where the negatives mined by one
retriever are used to train another, recent advanced
negative mining methods resort to in-distribution
sampling technique that leverages the retriever be-
ing trained to obtain the challenging-so-far nega-
tive documents from the collection. It has been
proven in-distribution sampling is superior to out-
of-distribution one as the former offers more model-
specific contrastive learning samples towards the
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nuance among the positive and negatives for a given
query (Qu et al., 2021; Ren et al., 2021b).

Nonetheless, a necessary condition of such an
in-distribution sampling technique is the efficiency
of the target model in large-scale retrieval. Unfortu-
nately, compared to the bi-encoder based retriever
that satisfies the efficiency requirement of large-
scale retrieval, a cross-encoder based ranker suffers
from combinatorial explosion brought by apply-
ing the heavy cross-encoder (e.g., the Transformer
encoder) to every query-document concatenation.
Thereby, the training of ranker can depend merely
on out-of-distribution negative sampling technique
– either by the BM25 retriever (Nogueira and Cho,
2019) or a trainable semantic retriever (Ren et al.,
2021b) – leading to sub-optimal ranker due to a
lack of adversarial training samples towards the
expressively powerful cross-encoder.

In this paper, we aim to train a robust ranker by
mining more challenging negatives and thus more
effective contrastive samples. To this end, we pro-
pose a simple yet effective multi-adversarial train-
ing framework towards a robust ranker (R2ANKER),
where multiple retrievers as generators are inte-
grated to mine diverse hard negatives and challenge
a single ranker as the discriminator.

As such, R2ANKER has certain merits regarding
the robustness of its model training. First, intu-
itively, sampling negative over a joint distribution
of various retrievers is more likely to offer more
challenging hard negatives, which compensates the
weakness of the previous single-retriever genera-
tor and makes the adversarial learning more ro-
bust. Second, as the false negatives are closely
subject to the relevance distribution over the collec-
tion by a specific retriever, various negative gener-
ators achieved by different retrievers are prone to
sample out-of-distribution or open-set label noise
(Wei et al., 2021) to each other. In light of ‘in-
sufficient capacity’ assumption (Arpit et al., 2017),
such open-set noise has been proven effective in im-
proving robustness (Wei et al., 2021) when learning
a ranker with open-set noises.

In experimentswe adopt several passage bench-
mark datasets (Nguyen et al., 2016) to evaluate
our proposed model in various settings. Specif-
ically, our method achieves new state-of-the-art
performance on BM25 reranking and full-ranking
on passage retrieval. Meantime, to verify the ex-
pressive power of our ranker model, we conduct
an experiment to distill our well-trained model to a

retriever, which shows state-of-the-art first-stage in
terms of passage retrieval performance. Moreover,
our extensive analyses unveil the essence regard-
ing negative distributions to reach a robust ranker
and also compare with negatives sampled by re-
distribution.

2 Related Work

Ranker for Information Retrieval. To achieve
both efficiency and effectiveness, a de facto
pipeline for large-scale retrieval is ‘retrieval &
rerank’ (Guo et al., 2022). The ‘retrieval’ is to use
a bi-encoder based retriever to encode queries and
documents into dense representations and fetch out
candidate documents relevant to the query through
a lightweight metric (Gao and Callan, 2021). The
‘rerank’ aims to conduct a more accurate ranking on
pairs of query and candidate documents by a cross-
encoder based ranker (Ren et al., 2021b). Thereby,
the ranker is a crucial part of the pipeline and di-
rectly affects the final performance of passage or
document retrieval (Ren et al., 2021b; Zhou et al.,
2022). In addition, rankers are currently widely
used as a teacher in retriever training. The scores
derived by the ranker are demonstrated that they
can guide the retriever learning through knowledge
distillation (Ren et al., 2021b; Zhang et al., 2022a).
Moreover, rankers can be used to filter out top-
retrieved documents that are likely to be false neg-
atives (Qu et al., 2021). Therefore, the ranker not
only directly affects the final performance of in-
formation retrieval but also can improve the per-
formance of the retriever through knowledge dis-
tillation and false negative filtering. In this work,
we propose a simple yet effective multi-adversarial
training framework toward a robust ranker.

Ranker Training. Using negatives to train a
ranker has proven effective in many works (Zhang
et al., 2022a; Ren et al., 2021b). Since the ranker
is based on the cross-encoder structure, a query
and document need to be concatenated and passed
to the ranker for relevance calculation. However,
directly using the ranker to sample negatives on the
collection suffers from combinatorial explosion.
Therefore, many methods (Khattab and Zaharia,
2020; Qu et al., 2021) adopt the static hard neg-
atives sampled from a retriever, which are fixed
during ranker training. In addition, some methods
(Zhang et al., 2022a; Ren et al., 2021b) introduce a
joint training approach for dense passage retrieval
and passage reranking, which dynamically update

5388



both the parameters of the ranker and the retriever.
Nevertheless, these methods can depend merely on
out-of-distribution negative sampling techniques
leading to sub-optimal rankers due to a lack of ad-
versarial training samples towards the expressively
powerful cross-encoder. Therefore, we integrate
multiple retrievers regarded as generators to mine
diverse hard negatives and challenge a single ranker
as the discriminator.

Hard Negative Mining. Hard negative mining
(Khattab and Zaharia, 2020; Zhang et al., 2022a;
Qu et al., 2021) has been proven very effective in
contrastive learning for text representation of re-
trievers. In contrast to random or in-batch negative
sampling, it can find more challenging negatives
for a pair of an anchor (i.e., query) and its posi-
tive example. They compose effective contrastive
samples to help models learn against contextual nu-
ance between the positive and negatives. At early
stage, a large number of works employ the off-the-
shelf BM25 retriever to fetch negative from a large
collection (Karpukhin et al., 2020), which greatly
boosts the retrievers. Furthermore, recent works
(Gao and Callan, 2021, 2022) leverage a retriever
to sample retriever-specific hard negatives for each
query, which are considered the most challenging
negatives. In this study, we sample negatives over
a joint distribution of various retrievers, which is
likely to offer more challenging hard negatives.

3 R2anker: Robust Ranker

Task Formulation. Given a text query q, a ranker
model, K(q, d), is responsible for calculating a rel-
evance score between q and an arbitrary document
d from a large-scale collection D (i.e., d ∈ D). It
usually serves as a downstream module for an effi-
cient retriever, R, to compose a ‘retrieval & rerank’
pipeline, where a lightweight retriever R (e.g., bi-
encoder) is to retrieve top candidates and then a
relatively heavy-structured K (says cross-encoder
(Devlin et al., 2019)) to make the results better.

3.1 Contrastive Learning for Retrieval Model

Formally, the ranker K(q, d) is usually built upon
a deep Transformer encoder for dense interactions
in a pair of query and document (so called cross-
encoder, or one-stream encoder), i.e.,

K(q, d) := s(ce) = (1)

Transfm-Enc([CLS]q[SEP]d[SEP]; θ(ce)).

As each text query q must be concatenated with its
every candidate document d to pass into the heavy
Transformer encoder, it is impossible in terms of
computation overheads to apply a ranker to large-
scale retrieval (i.e., millions to billions of candi-
dates). In contrast, a retriever R(q, d) is usually
defined as a bi-encoder (a.k.a. dual-encoder, two-
stream encoder, and Siamese encoder) to derive
counterpart-agnostic representation vectors, i.e.,

R(q, d) := s(bi) =< u,v >, where, (2)

u = Transfm-Enc([CLS]q[SEP]; θ(be)),

v = Transfm-Enc([CLS]d[SEP]; θ(be)).

Here, < ·, · > denotes a lightweight relevance
metric, e.g., dot-product and cosine similarity. As
such, all the documents in D can be independently
embedded and used for large-scale retrieval via the
fast relevance metric.

Despite heterogeneous neural structures, train-
ing the retrieval models, i.e., the ranker in Eq.(1)
and the retriever in Eq.(2), are both formulated as a
contrastive learning problem. However, only posi-
tive document(s), dq+, is provided for each training
query q ∈ Q(trn), regardless of its negative ones,
i.e., Nq = {dq−}, for contrastive learning. Note
that if no confusion arises, we omit the subscript q
indicating a specific q for clear writing. Therefore,
to train a retrieval model, a prerequisite is deter-
mining a negative sampling strategy to make the
training procedure more effective, i.e.,

N = {d|d ∼ P (D\{d+}|q; θ(smp))}, (3)

where P denote a probability distribution over D,
which can be either non-parametric (i.e., θ(smp) =
∅) or parametric (i.e., θ(smp) ̸= ∅).

Then, we take the ranker training for a demon-
stration: it calculates a probability distribution over
{d+} ∪ N, i.e.,

P (d|q,{d+}∪N; θ(ce))=
exp(K(q, d))∑

d′∈{d+}∪N
exp(K(q, d′))

. (4)

Lastly, the ranker is trained via a contrastive learn-
ing objective, whose training loss is defined as

L=−
∑

q,d+
logP (d=d+|q,{d+}∪N; θ(ce)). (5)

3.2 Multi-Adversarial Ranker Training
A large amount of previous works (Qu et al., 2021;
Ren et al., 2021b) have proven that the quality of
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negative mining strategy significantly affects the
performance of contrastive learning. As exhaustive
training (i.e., N = D\{d+}) is infeasible in prac-
tice, how to train the model effectively with limited
computation resources remains an open question.

Instead of random sampling, i.e., N(rdm) =
{d|d ∼ Uniform(D\{d+}|q)}, a recent trend is
to leverage a retrieval model, especially a retriever
R(·, ·), to fetch the model-specific top-challenging
negatives to train the retrieval model itself. This
strategy is also known as self-adversarial training
or hard negative mining (Zhang et al., 2022a; Qu
et al., 2021). Formally, such a self-adversarial train-
ing technique to sample in-distribution negatives to
train a retrieval model (i.e., θ(smp) in Eq.(3) equal-
ing to θ(ce) of K) can be written as

J=maxθ(*) EN(*)={d|d∼P (d|q,D\{d+};θ(*))}[

logP (d = d+|q,{d+}∪N(*); θ(*))], (6)

where θ(*) parameterizes a retrieval model.
Despite efficacy, this self-adversarial technique

cannot be applied to our targeted ranker train-
ing as it depends on the retrieval model’s capa-
bility of large-scale retrieval, i.e., feasibility of
calculating P (d|q,D\{d+}; θ(*)) in Eq.(7) where
D is huge. This is because K as a sampler over
P (d|q,D\{d+}; θ(ce)) suffers from a combinatorial
explosion problem brought from the cross-encoder,
leading to intractable computation overheads. Prac-
tically, θ(smp) is must as efficient as possible to
circumvent the problem, which could be a heuristic
strategy (e.g., uniform sampling), lightweight term-
based retriever (e.g., BM25), or later-interaction
representation models (e.g., Siamese encoder).

As a remedy, the ranker training can resort to
adversarial training (Zhang et al., 2022a), where an
efficient retriever is used to sample top-hard out-
of-distribution negatives for challenging the ranker.
This can be formally written as

JR∗,K∗
=minθ(be) maxθ(ce)

EN(be)={d|d∼P (d|q,D\{d+};θ(be))}[

logP (d = d+|q,{d+}∪N(be); θ(ce))], (7)

where the θ(be)-parameterized R can be either a
frozen and well-trained (Qu et al., 2021) or a jointly
optimized (Zhang et al., 2022a) retriever.

Although learning from (adversarial) hard neg-
atives has been proven effective to obtain a high-
performing ranker (Ren et al., 2021b; Zhang et al.,
2022a), a single retriever R, even well-trained with

various advanced techniques (Qu et al., 2021; Lu
et al., 2022), is hard to provide hard enough nega-
tives to challenge the ranker R for robust training.

Hence, we propose a multi-adversarial training
strategy for ranker, where multiple heterogeneous
retrievers are integrated to jointly sample negatives
and challenge the only ranker for effective learning.
As such, this ranker learning strategy is defined as

J{R∗
j}Mj=1,K∗

=minΘ(mul)={θ(be)}Mj=1
maxθ(ce)

EN(mul)={d|d∼P (d|q,D\{d+};Θ(mul))}[

logP (d = d+|q,{d+}∪N(mul); θ(ce))], (8)

where θ(be)
j parameterizes a retriever Rj (if appli-

cable) and N(mul) is a set of negatives sampled by

P (d|q,D\{d+}; Θ(mul)) =
∏

θ(be)
j ∈Θ(mul)

P (d|q,D\{d+}; θ(be)
j ). (9)

Remark. Using heterogeneous retrievers can pro-
vide more diverse hard negatives – seen as different
negatives distributions – prone to be more challeng-
ing for ranker training – leading to robust ranker.
Here, the heterogeneity can assure by matching
paradigm (term-based matching (Yang et al., 2017)
v.s. semantic match (Gao and Callan, 2021)), rep-
resenting paradigm (dense-vector embedding (Gao
and Callan, 2022) v.s. lexicon-weighting embed-
ding (Formal et al., 2021)), etc. By Zhang et al.
(2022b), dense and lexical negatives are proven to
provide more diverse views cf. BM25 negatives.
As verified in experiments, the joint negative distri-
bution is closer to the negative distribution under
θ(ce), i.e., in-distribution P (d|q,D\{d+}; θ(ce)).

3.3 Robustness by Open-set Noise
Due to limited crowd-sourcing resources, it is im-
possible to exhaustively annotate the relevance
of every query ∀q ∈ Q(trn) to every document
∀dq+ ∈ D. As such, sampling negatives by a strong
retriever usually introduces a label-noise problem.

Fortunately, from the view of noise-labeling
problem, we could employ the concept of ‘open-set
noise’ to verify robustness of our ranker. As proven
by a recent “insufficient capacity” (Arpit et al.,
2017) assumption, learning a variety of out-of-
distribution (OOD) or open-set noise can improve
robustness against inherent label noises that are sub-
ject to one dataset or one distribution. Therefore,
as multiple heterogeneous retrievers are involved in
our multi-adversarial training framework to provide
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mutually-OOD hard negatives, the ranker trained
on these samples can be robust to the noises from
every single retriever, resulting in a superior ranker
after the training. Please see §A for more details.

3.4 Framework Grounding
Considering either diversity of hard negatives or
distributions of open-set noises, the choice of
heterogeneous retrievers in our multi-adversarial
ranker training framework is vitally important.
Based on the taxonomy of modern retrievers along
with two axes, i.e., matching and representing
paradigms, we opt in three representative retriev-
ers: i) BM25 retriever: A simple term-based BM25
retrieval model built on the whole collection; ii)
Den retriever: A dense-vector semantic retriever,
coCondenser (Gao and Callan, 2022); and iii) Lex
retriever: A lexicon-weighing semantic retriever,
SPLADE (Formal et al., 2021). Besides, we detail
retriever training and negatives sampling in §B.

4 Experiments

We evaluate our ranker on following 3 retrieval
tasks, and refer to §C for setups of ranker training,
retriever distillation, and retriever pre-training.

BM25 Reranking Task. BM25 reranking uses a
ranker to re-rank the top 1000 passages by BM25
for each query. Here, we adopt the popular pas-
sage retrieval datasets, MS-Marco (Nguyen et al.,
2016) and TREC Deep Learning 2019 (Craswell
et al., 2020), as well as their official BM25 retrieval
candidates. Following previous work, we report
the performance in MRR@10 on MS-Marco and
NDCG@10 on TREC Deep Learning 2019.

Full Ranking Task. Full ranking leverages a
ranker to rank the top-1000 passages retrieved from
the full collection by a specific retriever. We adopt
the MS-Marco dataset on which we will specify the
retriever and report the performance in MRR@10.

Large-scale Retrieval Task. Large-scale re-
trieval uses a retriever to fetch top-relevant pas-
sages from a collection. Here, a ranker only plays
a teaching role for knowledge distillation into a bi-
encoder based retriever. The retriever is then used
to perform this task on MS-Marco dataset, where
MRR@10 and R@50 are used as metrics.

4.1 Main Results
BM25-Reranking on MS-Marco Dev. The re-
sults of BM25-reranking on MS-Marco Dev are

listed in Table 1. Based on BM25-retrieved
top-1000 candidates (w/ an evaluation metric of
85.7% Recall@1000), it is shown that the proposed
R2ANKER outperforms the best previously reported
result, 40.1% MRR@10, from RocketQAv2, and
delivers state-of-the-art BM25 reranking perfor-
mance with 41.1 % MRR@10.

BM25-Reranking on TREC Deep Learning
2019. Furthermore, we also compare our method
with a strong baseline (RocketQAv2) on TREC
Deep Learning 2019 dataset for BM25-reranking.
As shown in Table 2, it is observed that our method
significantly outperforms RocketQAv2 by absolute
2.6% on NDCG@10. It further demonstrates the
effectiveness of our approach.

Full Ranking. To comprehensively verify the ef-
fectiveness of R2ANKER, we compare our method
with other strong baselines with different retrievers
other than BM25. As shown in the second part of
Table 1, our method outperforms other models by
about 1.4% ∼ 2.4% on MRR@10. Moreover, we
can observe that, our R2ANKER still performs bet-
ter than the ranker in RocketQA and RocketQAv2
even though ours is associated with the weakest re-
triever (i.e., coCondenser† whose R@50=83.5%),
demonstrating superiority of our R2ANKER.

Large-scale Retrieval. Recently, using a ranker
for knowledge distillation into a retriever becomes
a prevalent technique for large-scale retriever (Ren
et al., 2021b; Zhang et al., 2022a). This distil-
lation process can also be employed to evaluate
a ranker based on whether the ranker can pro-
vide valid and effective relevance scores for re-
triever training. As shown in Table 3, we inte-
grated our R2ANKER into the training pipeline of
two popular dense-vector retrievers, i.e., coCon-
denser and SimLM. It is observed that compared
to the methods (i.e., coCondenser and AR2) with
coCondenser as initialization, the retriever distilled
from our R2ANKER significantly upgrades: i) com-
pared to coCondenser w/o distillation, our distilla-
tion improves MRR@10 by 1.6%; and ii) com-
pared to AR2 co-training even with a retriever-
specific ranker, our distilled retriever can offer a
0.5% MRR@10 lift. On the other hand, we also in-
tegrated our ranker into a state-of-the-art bottleneck
pre-training framework, ED-MLM (Wang et al.,
2022), which demonstrates our method is capable
of surpassing the previous carefully-designed re-
trieval methods. Moreover, it is noteworthy that
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Ranker Retriever #Cand&Recall MRR@10

BM25-Reranking
BM25 (Yang et al., 2017) BM25 1000 (85.7) 18.7
BERTbase (Qiao et al., 2019) BM25 1000 (85.7) 33.7
ColBERT (Khattab and Zaharia, 2020) BM25 1000 (85.7) 34.9
SAN + BERTbase (Liu et al., 2018) BM25 1000 (85.7) 37.0
RocketQA (Qu et al., 2021) BM25 1000 (85.7) 37.0
Multi-stage (Nogueira et al., 2019) BM25 1000 (85.7) 39.0
CAKD (Hofstätter et al., 2020) BM25 1000 (85.7) 39.0
RocketQAv2 (Ren et al., 2021b) BM25 1000 (85.7) 40.1
R2ANKER (Ours) BM25 1000 (85.7) 41.1

Full-Ranking
RocketQA (Qu et al., 2021) RocketQA (Qu et al., 2021) 50 (85.5) 40.9
RocketQAv2 (Ren et al., 2021b) RocketQA (Qu et al., 2021) 50 (85.5) 41.8
RocketQAv2 (Ren et al., 2021b) RocketQAv2 (Ren et al., 2021b) 50 (86.2) 41.9
R2ANKER (Ours) coCondenser† (Gao and Callan, 2022) 50 (83.5) 42.7
R2ANKER (Ours) coCondenser§ (Gao and Callan, 2022) 50 (86.4) 43.3
R2ANKER (Ours) SPLADE† (Formal et al., 2021) 50 (84.3) 43.0
R2ANKER (Ours) SPLADE§ (Formal et al., 2021) 50 (86.1) 43.3

Table 1: BM25-reranking and full-ranking results on MS-Marco Dev. ‘#Cand&Recall’ denotes the number of retriever-provided
top candidates for reranking, as well as the retriever’s top-N recall metric (%). † denotes the retriever trained on BM25 negatives,
whereas § denotes the retriever trained on hard negatives sampled by its corresponding † retriever.

Method NDCG@10

RocketQAv2 (Ren et al., 2021b) 71.4
R2ANKER (Ours) 73.0

Table 2: BM25-reranking results on TREC 2019.

our R2ANKER is not retriever specific and does
not depend on retriever-ranker co-training, making
it flexible and applicable enough to any retriever
training pipeline for superior performance.

4.2 Various Negative Generators
First of all, we need to detail more about the retriev-
ers, i.e., coCondenser (Den) and SPLADE (Lex),
involved in this work. In particular, training both
retrievers following the pipeline Gao and Callan
(2022), where the model is first trained over BM25
negatives (i.e., Den-BN & Lex-BN) and then con-
tinually trained over self-adversarial hard negatives
(i.e., Den-HN & Lex-HN). In contrast to the mere
use of Den-HN & Lex-HN in the above main re-
sults, we also involve the first-stage retrievers for
extensive analyses. In the remainder, D1, D2, L1,
and L2 denote Den-BN, Den-HN, Lex-BN, and
Lex-HN retrievers, respectively.

Ranker-Retrievers Combinations. In Table 4,
we first split the results into two parts: given vari-
ous retrievers (i.e., the columns), we compare the
re-ranking performance with different model struc-
tures – the bi-encoder based retriever and cross-
encoder based ranker. It is obvious that any trained

ranker beats all the retrievers by a large margin,
which explains why the hard negatives generated by
one single retriever cannot effectively fool a ranker.
Meanwhile, we find that in contrast to stacking
more retrievers, the best strategy to sample nega-
tives and train a ranker is combining the best from
every world (i.e., BM25+D2+L2), which achieves
the best re-ranking results upon various retrievers.

Adversary w/ Stronger Retrievers. To check
whether using more sophisticated retrievers as gen-
erators could improve the multi-adversarial process
and boost the ranker’s performance, we introduce
two latest retrievers (before ranker-distillation), i.e.,
ED-MLM (Wang et al., 2022) for dense-vector re-
trieval (+1.3% cf. D2) and LexMAE (Shen et al.,
2022) for lexicon-weighting retrieval (+2.0% cf.
L2), for negative mining. But, as listed in Table 5,
the two trained rankers achieve very competitive
results, demonstrating that our method is not sensi-
tive to retrievers’ performance but their types.

4.3 Training-test Distribution Shift

A key evaluation metric for rankers is BM25 re-
ranking, where BM25 retrieval is used to provide
model-agnostic top-1000 negatives for reranking.
Due to generality of BM25, it is more likely its
top-1000 results include the hard negatives (even
if few) that are also considered hard for an arbi-
trary retriever (Karpukhin et al., 2020; Chen et al.,
2021). Therefore, we would like to figure out the
correlation between divergence of training-test dis-
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Method Pre-train Teacher Specific? Co-train? MRR@10 R@50

BM25 (Yang et al., 2017) - - - 18.7 59.2
ANCE (Xiong et al., 2021) RoBERTabase - - 33.0 -
ColBERT (Khattab and Zaharia, 2020) BERTbase - - 36.0 82.9
RocketQA (Qu et al., 2021) ERNIEbase ERNIEbase ✓ ✓ 37.0 85.5
COIL (Gao et al., 2021) BERTbase - - 35.5 -
ME-BERT (Luan et al., 2021) BERTlarge - - 33.8 -
PAIR (Ren et al., 2021a) ERNIEbase - - 37.9 86.4
DPR-PAQ (Oguz et al., 2021) BERTbase - - 31.4 -
Condenser (Gao and Callan, 2021) Condenserbase - - 36.6 -
coCondenser (Gao and Callan, 2022) coCondenserbase - - 38.2 -
RocketQAv2 (Ren et al., 2021b) RocketQAbase ERNIEbase ✓ ✓ 38.8 86.2
AR2 (Zhang et al., 2022a) coCondenserbase ERNIElarge ✓ ✓ 39.5 87.8
ERNIE-Search (Lu et al., 2022) ERNIEbase ERNIElarge ✓ ✓ 40.1 87.7
SimLM (Wang et al., 2022) SimLMbase ELECTRAbase ✓ 41.1 87.8
Ours coCondenserbase R2ANKERbase 40.0 87.6
Ours ED-MLMbase R2ANKERbase 41.4 88.6

Table 3: First stage retrieval performance on MS-Marco Dev, where a non-empty ‘Teacher’ column denotes that the retriever is
trained with a ranker. The ‘Co-Train’ denotes the ranker is also updated during training, otherwise frozen. The ‘Specific’ denotes
whether the ranker is (co-)trained for a specific retriever, and note that all the rankers in our competitors are also fully trained.

Retriever BM25 D1 D2 L1 L2

Retriever as reranker.
BM25 21.23 22.50 21.90 21.61 21.58
Den-BN (abbr. D1) 35.51 36.15 36.14 36.28 36.24
Den-HN (abbr. D2) 36.76 38.12 38.12 38.14 38.14
Lex-BN (abbr. L1) 35.31 36.17 36.20 36.11 36.13
Lex-HN (abbr. L2) 36.86 38.24 38.26 38.18 38.18

Our ranker trained with retriever(s) as reranker.
R2ANKER
- BM25 39.82 41.38 41.44 41.39 41.41
- D1 40.50 42.81 42.82 42.78 42.82
- D2 40.47 42.62 42.67 42.60 42.62
- L1 39.81 41.56 41.56 41.92 41.77
- L2 40.78 41.51 41.60 42.92 42.88
- D1,D2 40.71 42.96 43.00 42.93 42.94
- L1,L2 40.44 42.19 42.03 42.93 42.81
- D1,L1 40.70 42.98 42.92 42.98 42.98
- D2,L2 40.82 42.88 42.92 42.89 42.92
- BM25,D2,L2 41.12 43.24 43.26 43.28 43.29
- D1,L1,D2,L2 41.00 43.21 43.22 43.21 43.24
- BM25,D1,L1,D2,L2 40.78 42.99 42.95 42.97 42.99

Table 4: Full-ranking results in terms of MRR@10 by differ-
ent retriever-ranker combinations.

tributions and performance of final trained rankers,
where the training distribution is generated by an
adversarial generator upon one or more retrievers.

Correlation of BM25 test w/ Adversarial Train.
Straightforwardly, the divergence can be easily cal-
culated by applying a discrete KL divergence be-
tween the top retrieved results from a (joint) re-
triever and the BM25. As shown in Figure 2, the
ranker achieves roughly better performance when
the distribution of its training data is closer to that
of test data, except for the BM25. This is possi-
bly because i) the consistency of training-test data

Negative MRR@10

BM25,D2,L2 41.1
BM25,D’,L’ 41.0

Table 5: BM25 reranking results with a stronger negative gen-
erator. D’ & L’ denotes ED-MLM & LexMAE, respectively.
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Figure 2: BM25-reranking performance by various rankers
that were trained on negatives sampled from retrievers’ (joint)
distributions. ‘KL divergence’ denotes the difference between
the retrievers’ (joint) distribution and BM25 retriever’s, i.e.,
KL(P (·|q; Θ(be))|BM25(·|q;D)), which is used to measure
negatives’ distribution. For example, the point ‘bm25,D2,L2’
denotes that i) the KL between its joint retriever’s distribution
and BM25 retriever’s distribution is round 0.4, and ii) a ranker
trained on that joint negative distribution can achieve 41.1
MRR@10 on BM25 reranking.

distribution avoids the distribution shift problem
and achieves greater performance, and ii) though
training a ranker on BM25 negatives seems perfect
in distribution matching, the negatives are not chal-
lenging enough for effective training (Zhan et al.,
2021; Ren et al., 2021b; Zhang et al., 2022a).

BM25-Constrained Negative Mining. To avoid
the trivial (non-challenging) negatives from only
BM25 and further investigate the impact of BM25-

5393



Negatives to Train Dev
∆Train Ranker MRR@10 MRR@10

BM25 46.9 39.8 -7.1
BM25,D2,L2 48.7 41.1 -7.6

BM25 ∩ (D2,L2) 48.7 40.6 -8.1

Table 6: BM25-dependent negative sampling for ranker train-
ing, where the last denotes BM25-constrained sampling.
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Figure 3: BM25-reranking performance of rankers vs. rel-
evance score distribution changes from the negative gen-
erator to the trained ranker. As such, the smaller |∆|,
the negative sampling distribution closer to the ideal nega-
tive distribution of the ranker, as learning on the retriever-
sampled negatives will not shift the distribution. In formal,
upon Figure 2, ∆ = KL(P (·|q; Θ(be))|BM25(·|q;D))−
KL(P (·|q; θ(ce))|BM25(·|q;D)), where θ(ce) is trained with
a specific Θ(be).

sourced negatives for ranker training, we present a
BM25-constrained negative mining strategy. Here,
a negative document, sampled from a generator
comprised of D2 and L2, will be kept only if it also
appears in BM25 top-1000 results. As such, the
resulting training samples for the ranker would not
be as trivial as those based on top BM25 negatives,
where the trained ranker is prone to distinguish
hard negatives in BM25 reranking. However, the
training and dev results shown in Table 6 demon-
strate that i) consistent with the above paragraph,
the ranker trained on BM25 is likely to be under-
fitting and ii) compared to a joint of diverse retriev-
ers as the negative generator (i.e., BM25,D2,L2),
focusing only on test-related BM25-constrained
negatives leads to more severe over-fitting problem.
This is likely because BM25 top-1000 reranking is
general to evaluate a ranker trained on any nega-
tive distribution, and its key is to involve diverse,
challenging negatives to make the ranker robust.

But, open questions remain about what kinds of
negative sampling distribution matter and whether
sampling in-distribution of a ranker leads to better
performance, which we will answer in the next.

Negative MRR@10

BM25,D2,L2 41.1
BM25,D1,D2,L1,L2 40.8

Re-dist(BM25 ∪ D1 ∪ D2 ∪ L1 ∪ L2; θce) 39.6

Table 7: Comparison of BM25 reranking with a ranker trained
with re-distributed hard negatives (i.e., the 3rd one).

4.4 Ranker-aware Sampling Distribution

As in Introduction, the in-distribution negative sam-
pling strategy has been proven effective in retrieval
model training but is non-applicable to ranker train-
ing because of the combinatorial explosion. There-
fore, we propose to approximately analyze the im-
pact of in-distribution sampling for the ranker.

Correlation of Ranker w/ Negative Generator.
As shown in Figure 3, we propose an approximate
calculation method, which leverages the general
BM25 results as mediums, to compare the distri-
butions between a negative generator and a trained
ranker. It is observed that there is a clear negative
correlation between distance of the two distribu-
tions and performance of the corresponding trained
ranker. This demonstrates that a generator could
achieve more robust performance roughly when its
distribution is more similar to that of a ranker.

Ranker-redistributed Negative Sampling. Al-
though sampling negatives from the in-distribution
of a ranker is practically impossible due to the com-
binatorial explosion, we present a re-distribution
strategy to simulate the in-distribution. Specifi-
cally, we first leverage all the retrievers to retrieve
top-1000 negatives from the collection individually
and then combine them into a negative pool for a
query. Next, we apply a BM25-trained ranker to
the pool for self-adversarial sampling. Last, we
employ the sampled negatives to train a new ranker
and report its result in Table 7. As we can see, the
re-distribution result is the worst among the three
models despite its promising in terms of the nega-
tives’ difficulty. This is because the top candidates
by the strong ranker are full of false negatives (this
explains why some previous works use a ranker
to de-noise (Qu et al., 2021; Formal et al., 2021)),
verifying the ineffectiveness of in-distribution neg-
atives for ranker training. In contrast, our multi-
adversarial training strategy by a joint generator
can provide mutually out-of-distribution negatives
and thus benefits from open-domain noises for ro-
bust training (Wei et al., 2021).
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ID:72809// can prozac cause nausea

ID:5467837// Side effects associated with
Prozac include headache, nervousness,
agitation, insomnia, tremor, fatigue, rash,
lightheadedness, drowsiness, dizziness,
depersonalization, nausea, upset stomach,
diarrhea, loss of appetite, stomach pain,
sweating and dry mouth.

D2: 5;  L2: 7;  BM25: 65

ID:189466// foods that help cortisol stress

ID:6115376// How to Lower High Cortisol Levels
Naturally<sep>Ways to Lower Cortisol Step 1.
Eat a balanced, nutritious diet that contains plenty
of fruits and vegetables. Low-glycemic index
foods like eggs help lower cortisol levels in the
blood while whole grain products help proteins
control the production of cortisol in the body. Stay
away from processed sugars and flours. Vitamin
B5 and folic acid help lower cortisol levels.
D2: 8;  L2: 33;  BM25: 131

ID:284072// how many gallons is liters

ID:6134923// What Is the Equivalent
of 1 Liter in Gallons?<sep>Quick
Answer. One liter is the equivalent
of approximately 0.2642 gallons. As
both terms are measurements of
volume, one can convert between the
two by utilizing the fact that there
are about 3.785 liters per gallon.

D2: 20;  L2: 1;  BM25: 207

Figure 4: BM25-reranking performance of the rankers trained on different negative distributions by specific retrievers (left) and
false negative labels brought by the two well-trained strong retrievers in contrast to BM25 retriever (right).

4.5 Case Study

To investigate how to learn an effective ranker, we
show the results of rankers trained from three re-
trievers, i.e., BM25, D2, and L2. In contrast to well-
trained D2 and L2, we can see the BM25 negatives
cannot challenge a high-capable ranker built upon
pre-trained language models with cross-encoder
structure, leading to sub-optimal results (see the
BM25 point in Figure 4(left)). However, a strong
well-trained retriever as the negative sampler is
more likely to introduce label noises, a.k.a. false
negative labels in the retrieval field (Qu et al., 2021).
Please refer to Figure 4(right) for several examples.
Therefore, we leverage multiple retrievers as the
generator to learn an effective ranker, where exten-
sive out-of-distribution label noises from retrievers
render the ranker against each noise distribution.

5 Conclusion

In this work, we propose a multi-adversarial strat-
egy for robust ranker training where a negative
generator built upon a joint of diverse retrievers
is proposed to sample challenging hard negatives
for effective adversarial learning. Empirically, our
proposed ranker, R2ANKER, achieves state-of-the-
art performance in both BM25-reranking and full-
ranking tasks on benchmark datasets. And empow-
ered by our R2ANKER as a teacher for distillation,
previous basic retrievers can now deliver state-of-
the-art results in large-scale retrieval tasks. More-
over, our insightful analysis also reveals the minor
impact of training-test distribution shift in BM25
reranking due to the generality of BM25 retriever.
Meantime, we also find that there is a negative cor-
relation between the ranker-generator distance and
performance of the ranker, and re-distribution to-
wards a ranker is toxic due to false negative labels.

Limitations

The limitations of our R2ANKER includes i) Perfor-
mance Bottleneck: As verified in our experiments,
the performance of multi-adversarial ranker train-
ing depends more on types of the comprising re-
trievers than their performance. Since the number
of the types is very limited, there is a performance
bottleneck of our method. and ii) Compromised
Adversary: Due to computation overheads, the ad-
versarial process is compromised in our training
framework in terms of real-time retriever updating.
This would negatively affect the performance of
the framework.
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A From the View of Open-set Noise

In this section, we introduce noise-labeling prob-
lem caused by false-negative samples, and then
elaborate on why our proposed multi-adversarial
learning strategy can mitigate the problem by open-
set noise (Wei et al., 2021) and improve robustness.

Due to limited crowd-sourcing resources, it is
impossible to comprehensively annotate the rele-
vance of every query ∀q ∈ Q(trn) to every document
∀dq+ ∈ D. In general, the annotating process can
be roughly described as i) using the best on-hand
retriever (e.g., a commercial search engine) to fetch
top document candidates for a query q, and then
ii) distinguish positive document(s), d+, associated
to q from the very top candidates. Therefore, con-
strained by the retriever in the annotation process,
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there exists positive documents for q not included
in the top candidates, which are regarded as neg-
ative by mistake – false negative label – degrad-
ing standard ranker training. As such, sampling
hard negatives by a strong retriever usually intro-
duces the label-noise problem. Prior works focus
on ‘co-teaching’ or/and ‘boosting’ strategies (Qu
et al., 2021; Zhang et al., 2022a), but they assume
a ranker is robust enough for anti-noise while only
denoise for more fragile retrievers by the ranker.

Taking a step further, we could also formulate
the search problem (both retrieval and rerank) as
a many-class many-label classification problem,
where the number of classes equals to |D|, i.e.,
the number of documents in D. And |D| is usu-
ally very large, ranging from millions to billions.
Thus, the current solutions of the search problem
are analogous to label semantic matching paradigm
for many-class classification problems (Hsu et al.,
2019). As such, the mis-labeled class caused by
a single θ(be)

j -parameterized retriever Rj will be
subject to the following distribution:

y′ ∼ P (FN)(d|q,D\{d+}; θ(be)
j ), (10)

where P (FN)(·|·; θ(be)
j ) denotes an inherent label

noise distribution by the retriever θ(be)
j .

Fortunately, from the view of noise-labeling
problem in many-class many-label classification,
we could employ the concept of ‘open-set noise’
to verify robustness of our ranker. As proven by a
recent “insufficient capacity” (Arpit et al., 2017) as-
sumption2, learning a variety of out-of-distribution
(OOD) or open-set noise can improve robustness
against inherent label noises that are subject to one
dataset or one distribution. Therefore, as multi-
ple heterogeneous retrievers are involved in our
multi-adversarial training framework to provide
mutually-OOD hard negatives, the ranker trained
on these samples can be robust to the noises from
every single retriever, resulting in a superior ranker
after the training.

B Framework Grounding Detials

Retriever Training. In line with (Clark et al.,
2020) and (Ren et al., 2021b), we do not seek for

2By Wei et al. (2021), “increasing the number of examples
while keeping representation capacity fixed would increase the
time needed to memorize the data set. Hence, the larger the
size of auxiliary dataset is, the more time it needs to memorize
the open-set noises in the auxiliary dataset as well as the
inherent noises in the training set, relative to clean data.”

updating the generators (i.e., the retrievers in our
method) w.r.t performance of the discriminator (i.e.,
the ranker) with two considerations: On the one
hand, we try to avoid heavy computation overheads
to train the retrievers jointly and update the large-
scale index synchronously. On the other hand, due
to their intrinsic discrepancy in model structure, the
generators hardly fool the discriminator, making
the adversarial process less effective. As verified in
(Zhang et al., 2022a), cooperative learning (training
the retriever towards the reranker, regularized by a
Kullback–Leibler divergence) is also necessary for
competitive performance.

Sampling Negatives. The strategy to sample a
negative distribution in Eq.(3) plays an important
role in our method. Instead of directly sampling
from the softmax distribution over D\{d+} that
inclining to the very top candidates, we follow the
previously common practice to cap top-N (says
N=200 in our experiments) candidates and then
conduct a uniform sampling to ensure its diversity.
As for sampling over the joint negative distribution
in Eq.(9), we combine the capped top-N candidates
from multiple generators (retrievers) without de-
duplication to better simulate the joint distribution.

C Training Setup

Ranker Training. We use the ERNIE-2.0-en-
base model (Sun et al., 2019) as the initialization of
our ranker. To provide more diverse hard negatives
for ranker’s robust training, we sample them from
multiple retrievers: we use three kinds of retrievers,
including BM25 (Yang et al., 2017) for term-based
retrieval, coCondenser (Gao and Callan, 2022) for
dense-vector retrieval models and SPLADE (For-
mal et al., 2021) for lexicon-weighting retrieval
models. During ranker training, we sample 40 hard
negatives for each query. The maximum training
epoch, batch size and learning rate are set to 2,
12 and 1× 10−5. The maximum sequence length
is set to 128 and the random seed is fixed to 42.
For model optimizing, we use Adam optimizer
(Kingma and Ba, 2015) and a linear warmup. The
warmup proportion is 0.1, and the weight decay is
0.1. All experiments are conducted on an A100
GPU.

Retriever Distillation. To distill our trained
ranker to a retriever for first-stage retrieval, we
adopt the two-stage coCondenser retriever (Gao
and Callan, 2022) and apply our ranker scores
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to the second stage of coCondenser fine-tuning.
Specifically, instead of the mere contrastive learn-
ing, we leverage training data by Ren et al. (2021b)
and replace contrastive learning loss in coCon-
denser with a simple KL divergence loss. Its learn-
ing rate, batch size, and epoch number are set to
5× 10−5, 16× (1 positive and 10 negatives), and
4, respectively.

Retriever Pre-training. To make the distilled
results more competitive, we also involve the re-
cently sophisticated bottleneck pre-training tech-
nique, called ED-MLM (Wang et al., 2022). Upon
an initialization from BERT-base (Devlin et al.,
2019) and data from MS-Marco collection, the
learning rate is set to 1 × 10−4, the batch size is
set to 2048, the number of training epochs is set
to 20, max sequence length is set to 144, and the
random seed is set to 42. The other parameters
are strictly following Wang et al. (2022). Such a
corpus-aware pre-training procedure takes about
13 hours on eight A100 GPUs.
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