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Abstract

Dialogue state tracking (DST) aims to convert
the dialogue history into dialogue states which
consist of slot-value pairs. As condensed
structural information memorizes all dialogue
history, the dialogue state in the previous turn
is typically adopted as the input for predicting
the current state by DST models. However,
these models tend to keep the predicted slot
values unchanged, which is defined as state
momentum in this paper. Specifically, the
models struggle to update slot values that need
to be changed and correct wrongly predicted
slot values in the previous turn. To this end, we
propose MoNET to tackle state momentum via
noise-enhanced training. First, the previous
state of each turn in the training data is noised
via replacing some of its slot values. Then,
the noised previous state is used as the input
to learn to predict the current state, improving
the model’s ability to update and correct slot
values. Furthermore, a contrastive context
matching framework is designed to narrow the
representation distance between a state and its
corresponding noised variant, which reduces
the impact of noised state and makes the
model better understand the dialogue history.
Experimental results on MultiWOZ datasets
show that MoNET outperforms previous DST
methods. Ablations and analysis verify the
effectiveness of MoNET in alleviating state
momentum issues and improving the anti-
noise ability'.

1 Introduction

Dialogue state tracking (DST) is a core component
in modular task-oriented dialogue systems
(Hosseini-Asl et al., 2020; Yang et al., 2021;
Sun et al., 2022, 2023). It extracts users’ intents
from the dialogue history and converts them into
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1 need a hotel reservation for 4 GT: hotel-book day-Saturday |

nights starting Saturday. Pred: hotel-book day-Saturday
Turn 1 i

I am sorry, but there is nothing
available at that time at either hotel.
Would you like to try fewer nights
or perhaps a different arrival day? H
R
GT: hotel-book day-Sunday

update
|

Will you try Sunday arrival?

Pred: hotel-book day-Saturday

1

Yes, I tried Sunday but it is not !

available. Can you shorten your '
stay at all? correct | L, )

1

Yes, can you try it for 3 nights? GT: hotel-book day-Sunday

Turn 3 Pred: hotel-book day-Saturday

Figure 1: A dialogue example of three turns, containing
the system utterance (U), the user response (R), the
ground truth dialogue state (GT), and the prediction
of each turn (Pred). The state ‘“hotel-book day-
Saturday” is predicted in the first turn (marked in
blue). The dotted arrow represents the ideal predictions,
i.e., update slot values that need to be changed (Turn
2) and correct wrongly predicted slot values in the
previous turn (Turn 3). The solid arrow represents
the predictions (marked in red) with state momentum
issues.

structural dialogue states, i.e., sets of slot-value
pairs. An accurate dialogue state is crucial for
generating correct dialogue action and suitable
natural language responses, which are the main
tasks of dialogue management and natural
language generation components (Williams and
Young, 2007; Thomson and Young, 2010; Young
et al., 2010). Earlier DST approaches predict the
state directly from the dialogue history (natural
language utterances) (Mrksi¢ et al., 2017; Xu
and Hu, 2018; Wu et al., 2019; Chen et al.,
2020a). Since the dialogue state is condensed
structural information memorizing all dialogue
history, recent methods incorporate the previously
predicted state as the input besides the dialogue
history (Ouyang et al., 2020; Kim et al., 2020; Ye
et al., 2021).
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Conventional DST models taking the previous
state as the input usually show the characteristic
that the previously predicted slot values tend to
be kept unchanged when predicting the current
state, defined as state momentum in this paper.
The state momentum makes DST models struggle
to modify the previous prediction, which affects
the performance when the values of some slots
need to be updated as the user’s intent changes,
and there exist wrongly predicted slot values
that need to be corrected. Figure 1 gives an
example of a dialogue involving three turns with
two types of state momentum issues. The state
hotel-book day-Saturday is predicted in Turn 1
and keeps unchanged in the next two turns, while
the user’s request is updated into Sunday in Turn
2. Consequently, the predicted state becomes
wrong in the following two turns. The dotted
arrow represents the ideal prediction cases: the
value is updated with the ground truth changes
and is corrected when becoming a wrong input.
The solid arrow represents the state momentum
issues, where the state is kept unchanged, leading
to two consecutive wrong predictions. One possible
reason for the state momentum issue is that in the
training data, most slot values in the previous turn
are the same as those in the current turn, which
limits the ability of conventional DST models to
modify slot values during inference. To address
this limitation, an intuitive idea is to augment
training instances with a higher ratio of slots whose
previous values differ from those in the current turn.
By incorporating such examples, the DST model
can learn to deal with more cases where modifying
previous predictions is required. Besides, if the
DST model can treat wrong and correct dialogue
states similarly in representations, then the former
will typically help make further predictions. In
other words, by treating incorrect dialogue states
as valuable information, the DST model can
potentially identify and correct erroneous slot
values.

In this paper, we propose MoNET to tackle
the state momentum issue via a noise-enhanced
training strategy. The core idea is to manually add
noise into the previous state to simulate scenarios
with wrong state input. First, the previous state of
each turn in the training data is noised via replacing
some of its slot values. Specifically, for each
active slot (with a non-none value), we replace its
value with a certain probability. Then, the noised

previous state, concatenated with the dialogue
history, is used as the input to learn to predict
the current state, improving the model’s ability
to update and correct slot values. Furthermore,
a contrastive context matching framework is
designed to narrow the representation distance
between a state and its corresponding noised
variant, which reduces the impact of the noised
state and makes the DST model better understand
the dialogue history. Such approaches make the
model less sensitive to the noise, and enhance its
ability to modify the slot values of previous states
in current predictions. Experiments on the multi-
domain dialogue datasets MultiwOZ 2.0, 2.1, and
2.4 show that our MoNET outperforms previous
DST models. Ablation studies and analysis further
verify the effectiveness of the proposed noised
DST training and the contrastive context matching
framework in alleviating state momentum and
improving the model’s anti-noise ability.

The contributions are summarized as follows:
(1) We define the state momentum issue in DST,
where models tend to keep the predicted slot
values unchanged, namely, struggling to update
and correct them from the previous turn. (2) We
propose MoNET to tackle the state momentum
issue via noised DST training and the contrastive
context matching framework. (3) We conduct
comprehensive experiments on three datasets,
MultiwOzZ 2.0, 2.1, and 2.4. The results
demonstrate that MoNET outperforms previous
DST methods, showcasing its effectiveness in
alleviating the state momentum issue.

2 Related Work

2.1 Dialogue State Tracking

Traditional DST approaches focus on single-
domain dialogue state tracking (Williams and
Young, 2007; Thomson and Young, 2010; Lee
and Kim, 2016). Recent researches pay more
attention to multi-domain DST using distributed
representation learning (Wen et al., 2017; Mrksi¢
et al., 2017). Previous works implement Seq2seq
frameworks to encode the dialogue history, then
predict the dialogue state from scratch at every turn
(Rastogi et al., 2017; Ren et al., 2018; Lee et al.,
2019; Wu et al., 2019; Chen et al., 2020a). Utilizing
dialogue history is limited for larger turns, since the
state of each turn is accumulated from all previous
turns, while it’s hard to retrieve state information
from a long history.
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Current works mainly incorporate the previous
state as the model input, which is regarded as
an explicit fixed-sized memory (Ouyang et al.,
2020; Ye et al., 2022a; Wang et al., 2022). Kim
et al. (2020) propose a state operation sub-task,
where the model is trained to first predict the
operation of each slot-value pair, such as UPDATE,
CARRYOVER, etc., then only the value of a
minimal subset of slots will be newly modified
(Zeng and Nie, 2020; Zhu et al., 2020). These
methods enhance model prediction efficiency and
the ability to update slot-value pairs. Tian et al.
(2021) deal with the error propagation problem
that mistakes are prone to be carried over to the
next turn, and design a two-pass generation process,
where a temporary state is first predicted then used
to predict the final state, enhancing the ability
to correct wrong predictions. In this paper, we
use “state momentum” to define the issue where
the wrong dialogue state is predicted due to that
the previous prediction keeps unchanged, either it
should be updated or corrected. To the best of our
knowledge, this is the first time to systematically
tackle the issue caused by continuous unchanged
predictions in the multi-turn DST task.

2.2 Contrastive Learning

Contrastive learning aims to generate high-quality
representations by constructing pairs of similar
examples to learning semantic similarity (Mnih
and Teh, 2012; Baltescu and Blunsom, 2015;
Peters et al., 2018). The goal is to help
the model semantically group similar instances
together and separate dissimilar instances. During
training, the neighbors with similar semantic
representations (positive pairs) will be gathered,
while the non-neighbors (negative pairs) will
be pushed apart, enabling the learning of more
meaningful representations. In the NLP area,
semantic representations can be learned through
self-supervised methods, such as center word
prediction in Word2Vec, next sentence prediction
in BERT, sentence permutation in BART, etc
(Mikolov et al.,, 2013; Devlin et al., 2019;
Lewis et al., 2020). Recent approaches build
augmented data samples through token shuffling,
word deletion, dropout, and other operations (Cai
et al., 2020; Klein and Nabi, 2020; Yan et al.,
2021; Wang et al., 2021; Gao et al., 2021; Zhang
et al., 2022). In this paper, we construct augmented
samples based on the noised and original dialogue

state. Given context inputs with the same dialogue
history and different states, the model is trained to
gather them into similar objects, aiming to learn
better representations, reduce the impact of noise,
and better understand the dialogue history.

3 Methodology

3.1 Problem Formulation

In this paper, we focus on building a dialogue state
tracking (DST) model which accurately predicts
the dialogue state based on the dialogue history
and the previous state during multi-turn dialogue
interactions. A dialogue state consists of domain-
slot-value tuples, typically corresponding to the
dialogue topic, the user’s goal, and the user’s intent.
Following previous studies, in the rest of this paper,
we omit “domain” and use “slot” to refer to a
“domain-slot” pair. All slot-value pairs are from
a pre-defined ontology.

Formally, let’s define D; = [Uy, Ry] as a pair
of system utterance U; and user response [; in
the ¢-th turn of a multi-turn dialogue, and By
as the corresponding dialogue state. Each state
B; contains a set of slot-value pairs, i.e., By =
{(S;, VJZ)L] €[1:J]}, where J is the total number
of slots, and Vy € V; is one of the values in V;
for the j-th slot S; in the ontology. Given the
dialogue history {Dy, ..., D;} and previous state
B;_1, the goal of the DST task is to predict the
current dialogue state B;.

3.2 MOoNET

As introduced in Section 1, solving the state
momentum issue is crucial to the DST task.
Therefore, in this paper, we propose MoNET
to tackle the state momentum issue via a noise-
enhanced training strategy to enhance the model’s
ability to update and correct slot values. The
architecture of MoNET is shown in Figure 2(a),
which consists of context BERT encoders, slot and
value BERT encoders, the slot-context attention
module, the slot-value matching module, and the
contrastive context matching framework. Each of
them will be elaborated on in this section.

3.2.1 Base Architecture

We first introduce the base architecture of our
MoNET, similar to the backbone model in (Ye
et al., 2022a). A model trained only with the base
architecture of MoNET is noted as “Baseline”, and
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Figure 2: The model description and noised input construction example. The left part (a) shows the architecture
of the MoNET model. A context input representation [1;* in an N-size batch is shown in the contrastive context
matching framework as an example, where H;'" is the context representation of its noised variant. The right
part (b) gives an example of constructing noised context input. For each active slot in state B;_1, given a noise
threshold p, a random number a is selected. If a < p, then its value is replaced with another one randomly selected
from the ontology (suppose the pair “train-day-Saturday” is replaced with “train-day-Friday”); otherwise the value
will be kept unchanged (suppose the pairs “train-departure-Birmingham” and “train-destination-Cambridge” are

unchanged).

evaluated in Section 5 to compare the difference in
performance with the whole MoNET model.

Context Encoder. A BERT encoder encodes the
context input, which is the concatenation of the
dialogue history and the state in the previous turn:

Xt = f(My, Bi—1, Dy)
= [OLS] O M; B Bi_1 P [SEP} ® Dy ® [SEP],
(1
where M; = D16, ..., D1 contains previous
utterances, B;_1 is the state containing the active
slots in the previous turn, [C'LS| and [SEP] are
special tokens of the BERT encoder. Then the
representations of the context input are derived:

H, = BERT(X;) € RXtIxd, )

where | X;| is the total number of tokens in X}, and
d is the encoded hidden size.

Slot and Value Encoders. The BERT encoders
with fixed parameters are used to derive the slot
and value representations:

hs; = BERTtizea(S;)(cLs)»

; 3)
hyi = BERTfizea(V})icLs),

where states hg,,hy: € R are the [CLS]
J
representations of the slot and value.

Slot-Context Attention. For each slot S, its
slot-context-specific feature is extracted by the

multi-head attention mechanism (Vaswani et al.,
2017):

rs, = LN(MultiHead(hs,, Hy, Hy)) € R“i,b

where LN is the normalization layer.

Slot-Value Matching. The probability of
predicting the value Vji of the slot S is derived
by calculating the L2-distance between the
value representation hvji and the slot-context

representation rfgj , which is denoted as:

eap(=lrk, —hyill2)
J

Pp(V| Xy, Sj)

o Zke[l:h}jﬂ ewp(—Hngj _hvjk [l2)’

&)

where 6 are trainable parameters of the model.

Training and Inference. During training, the
ground dialogue state is used to form the context
input X (teacher-forcing). For the ¢-th turn, the
loss is the sum of the negative log-likelihood
among all J slots as follows:

J

Lq,,, = Y _ —log(Py(V]"| Xy, S;)),
j=1

(6)
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where Vf* is the ground truth value of the slot S; at
turn ¢. During inference, the previously predicted
state is used to form the context input X;, and the
value of the slot S; is predicted by selecting the
one with the smallest distance, corresponding to
the largest probability:

Vji = argmazx Pg(VﬂXt, S;). @)

ie[1:|Vs]]

3.2.2 Noised Data Construction

As described previously, an intuitive idea to tackle
the state momentum issue is to increase the number
of training instances where the slot-value pairs in
the previous turn are different from those in the
current turn. Based on this point, we attempt to
utilize noised data to train the DST model.
Generally, for each active slot (with a non-
none value) in the previous dialogue state, we
involve noise by replacing its original value with
another value with a probability p (used as the noise
threshold), e.g., as the example shown in Figure
2(b). Formally, at each training step, given a batch
of training instances, a noised context input X, is
constructed for each instance based on its original
context input X; = f(My, By—1, Dy) as follows:

Xt+ :f(Mt7 B;r—lv Dt)7

o @®)
B ={(S;,V} )lje:J]}.

For each active slot S in B,y = {(S;,V})}, a
real number a € [0, 1] is sampled to determine
whether the original V]’ is replaced with a randomly
selected value V}k eV\ {V]’} from the ontology

or kept unchanged:

+ {V]k, if a<p

= Vji7 if a>p. ©)

J

3.2.3 Noised State Tracking

Similar to X, the noised context instance X, is
also used as the model input to predict the state
B; as the training target, aiming to improve the
model’s ability to dynamically modify the previous
slot values in current predictions. Specifically, the
representation H," of X, is first derived by the
BERT context encoder mentioned in Section 3.2.1:

Hj = BERT(X;") e R Ixd (10)

Then, similar to the previous process, for each slot
S;, Xt+ is used to predict its value based on the

distribution Pg(‘/'jiler ,S;). Eventually, the loss
for the noised state tracking can be denoted as:

J

Ldnos = Z _log(PQ(V]Z* |Xt—‘r7 SJ))
j=1

(11)

3.2.4 Contrastive Context Matching

Inspired by contrastive learning approaches which
group similar samples closer and diverse samples
far from each other, a contrastive context matching
framework is designed to narrow the representation
distance between X; and its noised variant X",
aiming to reduce the impact of the noised state
B; | and help the model better understand the
dialogue history. Specifically, in a batch of N
instances with the original context input X; =
{XP}NV_,, we construct N corresponding noised
instances with the context input X;” = {X;""}1_,.
To clearly describe the context inputs, in this
section, we temporarily involve n into X; & H;
as X{* & H to indicate the in-batch index.

For each context input X}*, its noised sample
th+ is regarded as its positive pair, and the rest
(2N —2) instances in the same batch with different
dialogue histories are considered negative pairs.
Then the model is trained to narrow the distance
of the positive pair and enlarge the distance of
negative pairs in the representation space with the
following training objective:

cap(sim(H L)

SN Lpggexp(sim(HP g ) 7

(12)

where H,' sl and H/ el are  the [CLS]

representations of H}' and H;'", 7 is the

temperature parameter, and sim(-) indicates the
cosine similarity function (Chen et al., 2020c).

Lc= —lag(

3.2.5 Optimization
The total training loss for each instance is the sum
of losses from the slot-value matching for DST and
the contrastive context matching for representation
learning, where the former is the average of the
losses using the original or the noised context input
mentioned in Section 3.2.1 and 3.2.3:
Liot = (Ldyy; + Ldyos)/2 + Le.

ort

(13)

4 Experiment Setting

4.1 Datasets

We choose MultiwOZ, 2.0, 2.1, and 2.4 versions as
our datasets. MultiwWOZ 2.0 (Budzianowski et al.,
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Baseline Pre-trained Model MultiwOZ 2.0 MultiwOZ 2.1 MultiwOZ 2.4
Joint Slot Joint Slot Joint Slot

TRADE (Wu et al., 2019) - 48.62 96.92  45.60 96.55 55.05 97.62
SUMBT (Lee et al., 2019) BERT-base 42.40 - 49.01 96.76  61.86 97.90
PIN (Chen et al., 2020a) - 52.44 97.28 48.40 97.02 58.92 98.02
SOM-DST (Kim et al., 2020) BERT-base 51.72 - 53.01 - 66.78 98.38
CSEN-DST (Zhu et al., 2020) BERT-base 52.23 - 53.19 - - -
DST-Picklist (Zhang et al., 2020) BERT-base 54.39 - 53.30 97.40 - -
SAVN (Wang et al., 2020) BERT-base 54.52 97.42  54.86 97.55 60.55 98.05
SST (Chen et al., 2020b) BERT-base 51.17 - 55.23 - - -
SimpleTOD (Hosseini-Asl et al., 2020)  DistilGPT2 - - 55.26 - - -
Seq2SeqDU (Feng et al., 2021) BERT-base - - 56.10 - - -
STAR (Ye et al., 2021) BERT-base 54.53 - 56.36 97.59 173.62 98.85
SDP-DST (Lee et al., 2021) T5-base - - 56.66 - - -
DS-Graph (Lin et al., 2021) GPT2 54.86 9747 - - - -
DSGFNet (Feng et al., 2022) BERT-base - - 56.70 - - -
PPTOD (Su et al., 2022) T5-large 53.89 - 57.45 - - -
Baseline BERT-base 54.38 97.47 55.82 97.51 73.81 98.82
MoONET BERT-base 5548 (11.10) 97.55 5771 (11.89) 97.71 76.02 (12.21) 98.99
Use Modified Label

TripPy (Heck et al., 2020) BERT-base - - 55.29 - - -
TripPy + SCoRe (Yu et al., 2021) BERT-base - - 60.48 - - -
TripPy + CoCoAug (Li et al., 2021) BERT-base - - 60.53 - - -
TripPy + SaCLog (Dai et al., 2021) BERT-base - - 60.61 - - -

Table 1: Joint and slot goal accuracy of our MoNET and several previous methods on three MultiWOZ test sets.

2018) is a standard human-human conversational
dialogue corpus with seven domains. MultiwOZ
2.1 (Eric et al., 2020) has the same dialogues
as the 2.0 version, where some incorrect state
labels are re-annotated. Both of them are widely
used in previous DST approaches. MultiwOZ
2.4 (Ye et al., 2022b) is the latest refined version
correcting all the incorrect state labels in validation
and test sets. All three datasets contain the same
number of dialogues, which are 8438/1000/1000
in train/validation/test sets. For the three datasets,
we follow the previous work (Wu et al., 2019) to
use five domains (attraction, hotel, restaurant, taxi,
train) with 30 domain-slot pairs in experiments,
since the dialogues in the remaining domains are
not in the validation and test sets.

4.2 Evaluation Metrics

We use joint and slot goal accuracy as the
evaluation metrics. Joint goal accuracy is the
ratio of dialogue turns where the values of all
slots are correctly predicted. Slot goal accuracy
is the ratio of domain-slot pairs whose values are
correctly predicted. Both of them include correctly
predicting those inactive slots with the value none.

4.3 Existing Methods

We compare the performance of our MOoNET with
several existing methods, i.e., TRADE, SUMBT,
PIN, SOM-DST, CSEN-DST, DST-Picklist, SAVN,
SST, SimpleTOD, TripPy, STAR, SDP-DST, DS-

Graph, DSGFNet, PPTOD shown in Table 1, and
our base architecture mentioned in Section 3.2.1,
denoted as Baseline.

4.4 Training Details

The BERT-base-uncased model is used as the
context, slot and value encoders, with 12 attention
layers and a hidden size of 768. During training,
only the parameters of the context BERT encoder
are updated, while the parameters of the slot and
value BERT encoders are not. The batch size is set
to 8. The AdamW optimizer is applied to optimize
the model with the learning rate 4e-5 and 1e-4 for
the context encoders and the remaining modules,
respectively (Loshchilov and Hutter, 2019). The
temperature parameter 7 is set to 0.1. The noise
threshold p defined in Section 3.2.2 is set to 0.3,
and its impact on model performance is discussed
in Section 5. All models are trained on a P40 GPU
device for 6-8 hours.

5 Results and Analysis

5.1

Table 1 shows performances of MoNET and
baselines on MultiwOZ 2.0, 2.1 and 2.4. Among
them, TripPy and its modified versions employ a
ground truth label map of synonyms replacement
as extra supervision, which increases their accuracy
scores and differs from other methods of testing
with common labels. As can be observed,
MOoNET achieves the joint goal accuracy scores of

Main Results
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Model NoisedCM  NoisedST  Accuracy
Baseline w/o state X X 64.94
Baseline X X 73.81
MOoNET-ST X v 75.54
MOoNET-CM v X 75.76
MoNET v v 76.02

Table 2: Joint goal accuracy on the MultiWOZ 2.4 test
set of MoNET and four ablated modifications.

55.48%, 57.71%, 76.02% in three datasets, which
are impressive results compared with previous
methods, and has improvements of 1.10%, 1.89%,
and 2.21% on the Baseline model, indicating that
our proposed noise-enhanced training helps the
model make better predictions.

Besides the general joint and slot goal accuracy,
we also calculate the slot-level proportion of state
momentum errors over all wrong predictions. We
train the Baseline model and make predictions on
the MultiwWOZ 2.4 test set. For each dialogue,
starting from the second turn, we add up each
wrong predicted slot-value pair which also exists in
the previous turn. Finally, there are 844 such wrong
slot-value pairs, and the number of all the wrong
predicted pairs is 2603, hence the proportion is
(844/2603)*100%=32.4%, and our MoNET model
modifies 47.0% of them (397 in 844 are correctly
predicted). Moreover, in MultiwOZ 2.4 training
set annotations, for each dialogue turn (also except
the first turn of each dialogue), around 78.1% slot-
value pairs exist in the previous turn, since the slot-
value pairs will be accumulated as the dialogue
progresses. The results further indicate the issue
caused by those unchanged slot-value pairs during
multi-turn interactions, and the effectiveness of our
method in enhancing the model’s ability to modify
previous predictions.

5.2 Ablation Study

To explore the individual contribution of each part
of our model, we compare the whole MONET with
several ablated versions. First, we remove the
previous dialogue state from the context input of
the Baseline model, where the modified context
input is Xt = [CLS] (5] Mt ) [SEP] D Dt D
[SEP], denoted as Baseline w/o state; besides, the
two noise-enhanced methods are removed from
the MoNET respectively, denoted as MoNET-CM
(context matching only) and MoNET-ST (noised
state tracking only).

Table 2 shows the joint goal accuracy

1.0 10
W MONET /’""

Baseline /

/
—==- Acccuracy Difference ,/

Joint Goal Accuracy
o =] o o
(o)) ~ © o
1
]

1
1
1
1
N
Y
N\
N,
©
Acccuracy Difference (%)

o
U
N

Turn

Figure 3: Turn-level joint goal accuracy and accuracy
difference between MONET and Baseline on the
MultiWOZ 2.4 test set.

performances of the full MONET model and its
four modifications on the MultiWwOZ 2.4 test
set. As can be observed, Baseline w/o state gets
the lowest accuracy, demonstrating that explicitly
using the previous dialogue state as part of the
model input is beneficial to make predictions,
even though there may exist wrong slot-value
pairs. Besides, both MoNET-CM and MoNET-
ST outperform the Baseline model, demonstrating
functionalities of the noised state tracking in
modifying slot-value pairs in further turns, and the
context matching framework in learning improved
semantic representations. Moreover, MoNET
derives the best performance, demonstrating the
effectiveness of integrating the two parts into a
unified noised-enhance training strategy.

5.3 Turn-Level Evaluation

Figure 3 shows the turn-level joint goal accuracy
of MoNET and Baseline models, as well as the
percentage difference in accuracy (the difference
between the two models’ accuracy divided by
the accuracy of Baseline) on the MultiwOZ 2.4
test set. Generally, the state momentum issue
becomes more apparent in dialogues with larger
turns, since they always contain more active slot-
value pairs, and any one of the wrong pairs
kept unchanged will affect the further prediction
accuracy. With the increase of turns, the accuracy
of Baseline harshly degrades, while MoNET gets a
relatively smaller decline, resulting in a gradually
increasing and evident percentage difference in
accuracy. This demonstrates the superiority of
MOoNET in alleviating the accuracy decrease caused
by the state momentum issue, especially in those
dialogues with larger than 6-7 turns.
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Figure 4: Performance on the MultiWOZ 2.4 validation
set w.r.t the noise threshold of adding noise.
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Figure 5: Performances on the MultiWOZ 2.4 test set
w.r.t. the noise threshold (corresponding to the noised
slot-value pair ratio in the dialogue state input). The
left one is the joint goal accuracy, and the right one is
the active slot-context features similarity.

5.4 Noise Threshold Selection for Training

To explore the impact of different probabilities of
adding noise into the context input for training, we
vary the noise threshold p from 0 to 0.5 to train
our MoNET. The results on the MultiwOZ 2.4
validation set are shown in Figure 4, where MoNET
achieves the best performance when the noise
threshold p is set to 0.3. Intuitively, a small p makes
the noised context input contain fewer noised slot-
value pairs (hard to learn meaningful semantics
from the noised data); conversely, a large p makes
the noised context input far from the original
context input in the representation space (hard to
group them closer). Both two cases make the model
hard to learn effective features from the noised
context input, leading to lower prediction accuracy.
Hence, the empirical probability of adding noise
is important to derive the best performance of the
DST model.

5.5 Anti-noise Probing with Noise Testing

In this section, we conduct noise testing to explore
the impact of anti-noise ability on DST models.
We first evaluate DST performances of MoNET
and Baseline by introducing different ratios of
noise (with p from 0 to 1) into the oracle previous
dialogue state as the model input. Figure 5 shows
the performances of MoNET and Baseline on

Sys: I have many trains available. What day would you like to leave?
Usr: We will be leaving on Sunday afternoon.
GT: train-day-Sunday

Baseline: train-day-Sunday MONET: train-day-Sunday

Sys: There are still many trains to pick from, can you narrow down a
departure and arrival time frame?

Usr: Yes, it should leave after 20:15 and leave on Monday, not Sunday.
Please give me a price, travel time, and arrival time for any train.

GT: train-day-Monday

Baseline: train-day-Sunday MONET: train-day-Monday (update)

Sys: Great! You are booked at Autumn House for 1 night. Your reference
number is n4tvfkgs. Would you like more information?

Usr: I would also like a taxi between the places if possible.

GT: taxi-destination-Autumn House

Baseline: taxi-destination-Gonville and Caius College

MOoNET: taxi-destination-Gonville and Caius College

Sys: I can help with that. When would you like to either leave or arrive?
And do you want the taxi from the college to the hotel or the other
way around?

Usr: I need to go from the college to the hotel, and I want to leave the
college by 20:45, please.

GT: taxi-destination-Autumn House

Baseline: taxi-destination-Gonville and Caius College

MOoNET: taxi-destination-Autumn House (correct)

Table 3: Predictions of two dialogue examples on
MultiWOZ 2.4 separated by the double solid line,
corresponding to two state momentum cases. Wrong
and correct predicted values are marked in red and blue.

MultiwOZ 2.4. Both of them get high accuracy
when the noise ratio is 0, as we use the oracle
previous dialogue state as the model input; with the
increase of the noise ratio, the joint goal accuracy
of Baseline gets a sharp decline, while MoNET
degrades much more smoothly. Furthermore,
for each dialogue turn, we also show the L2-
distance between the original and noised context
representations, i.e., the mean pooling of all
token representations H; and H;“ . As can be
observed, along with the increase of noise ratio,
the distance between the two representations of
MOoNET is much lower than that of Baseline. These
results indicate that MoNET achieves a higher
anti-noise ability by generating relatively similar
representations for the original and noised contexts,
which helps the DST model maintain an acceptable
performance even with a high ratio of noise in its
input.

5.6 Case Study and Attention Visualization

Table 3 gives two prediction examples using
MOoNET and Baseline on the MultiWOZ 2.4 test set,
corresponding to the two types of state momentum
cases. In the first one, they correctly predict the slot-
value pair “train-day-Sunday”, while only MoNET
updates it in the next turn along with the ground
truth changing into “train-day-Monday”. In the
second one, they make a wrong prediction “taxi-
destination-Gonville and Caius College”. While
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Figure 6: Attention visualizations of the two dialogue examples mentioned in Table 3.

Model Accuracy
MinTL (Lin et al., 2020)  52.07
MTTOD (Lee, 2021) 53.56
PPTOD (Suetal., 2022)  53.37
T5-base 53.26

MOoNET (T5-base) 54.67 (1 1.41)

Table 4: Joint goal accuracy on MultiwOZ 2.0 test set
of baselines using the same T5-base pre-trained model.

Baseline keeps it unchanged in the next turn,
MOoNET corrects it, resulting in a joint goal
accuracy of 100% for the second turn. Besides, we
further explore these two examples by calculating
and visualizing the overall attention scores, which
are shown in Figure 6. For each slot, its overall
attention score over each token is the weighted
sum of the self-attended scores by all tokens in X;.
The weights come from the slot-context attention,
and the self-attended scores are the average of
attention scores over multiple layers in BERT. As
can be observed, Baseline pays more attention to
the values in the previously predicted state, and
fails to solve the state momentum issues; MoNET
pays relatively higher attention to the correct tokens
(“monday” in the first case and “autumn house” in
the second case), and consequently, successfully
updates Sunday into Monday and corrects Gonville
and Caius College into Autumn House. These
examples and attention visualizations indicate the
effectiveness of our MoNET in alleviating the two
types of state momentum issues.

5.7 Extension on Generation-based Models

In addition to the original classification-based
MoNET model, we also evaluate our approach
using a simple generation framework using T5-
base as the backbone pre-trained model (Raffel
et al., 2020). The ontology is built from the
database and training set annotations, which is

only used for noise value construction. The model
framework is similar to the BERT-based MoNET
in Figure 2(a), where the BERT encoders and
slot-value matching modules are replaced with
TS5 encoders and decoders. The TS5 encoders
encode the dialogue context inputs, slots, and
values. After deriving the slot-context attentive
representations, the TS5 decoders generate each
slot-value pair. Table 4 shows the joint goal
accuracy performance of the T5-based MoNET
on the MultiwOZ 2.0 test set, compared with
other end-to-end/generation-based models using
the same T5-base pre-trainied model. As can
be observed, our modified MoNET outperforms
the T5-base backbone and others with the same
T5-base model, indicating its effectiveness and
adaptability for the implementation of generation-
based methods.

6 Conclusion

In this paper, we define and systematically analyze
the state momentum issues in the DST task, and
propose MoNET, a training strategy equipped with
noised DST training and the contrastive context
matching framework. Extensive experiments on
MultiWOZ 2.0, 2.1, and 2.4 datasets verify its
effectiveness compared with existing DST methods.
Supplementary studies and analysis demonstrate
that MoNET has a stronger anti-noise ability which
helps alleviate the state momentum issues.

Limitations

Our proposed MoNET is a classification-based
method requiring the pre-defined ontology
containing all slot-value pairs. Moreover, during
prediction, for each slot, its distance with all
possible values is calculated, i.e., the prediction
has to process 30 times, which is the number
of slots in the MultiWOZ dataset. Compared
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with the generation methods that only process
once and do not need ontology, our method
is short in training efficiency and scalability.
However, most task-oriented dialogue datasets
contain their knowledge base containing slot value
information, so it’s acceptable to construct the
ontology for random sampling. Besides, the results
in Section 5.7 demonstrate that our method can
be implemented into generation-based backbone
models.
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