
Findings of the Association for Computational Linguistics: ACL 2023, pages 5298–5314
July 9-14, 2023 ©2023 Association for Computational Linguistics

Honey, I Shrunk the Language: Language Model Behavior
at Reduced Scale

Vijeta Deshpande1, Dan Pechi2, Shree Thatte1, Vladislav Lialin1, Anna Rumshisky1,3

1University of Massachusetts Lowell, Computer Science Department
2New York University, Center for Data Science

3Amazon Alexa AI
{vijeta_deshpande,shree_thatte}@student.uml.edu, danpechi@nyu.edu

{vlialin,arum}@cs.uml.edu

Abstract

In recent years, language models have drasti-
cally grown in size, and the abilities of these
models have been shown to improve with scale.
The majority of recent scaling laws studies fo-
cused on high-compute high-parameter count
settings, leaving the question of when these
abilities begin to emerge largely unanswered.
In this paper, we investigate whether the ef-
fects of pre-training can be observed when the
problem size is reduced, modeling a smaller,
reduced-vocabulary language. We show the
benefits of pre-training with masked language
modeling (MLM) objective in models as small
as 1.25M parameters, and establish a strong
correlation between pre-training perplexity and
downstream performance (GLUE benchmark).
We examine downscaling effects, extending
scaling laws to models as small as 1M pa-
rameters. At this scale, we observe a break
of the power law for compute-optimal models
and show that the MLM loss does not scale
smoothly with compute-cost (FLOPs) below
2.2 × 1015 FLOPs. We also find that adding
layers does not always benefit downstream per-
formance.1

1 Introduction

In the past few years, large language models
(LLMs) have grown ever larger (Brown et al., 2020;
Shoeybi et al., 2019; Chowdhery et al., 2022; Fe-
dus et al., 2022), and the emergent abilities of these
models improve with scale. While several stud-
ies have looked at the relationship between model
size, the amount of training, and performance for
LLMs (Kaplan et al., 2020; Hoffmann et al., 2022),
the main focus has been on scaling laws for high-
compute settings. Very few studies have consid-
ered the effects of pre-training at a smaller scale
(Turc et al., 2019; Huebner et al., 2021). Thus, the

1Our filtered pre-training data, reduced English vocabu-
lary, and code are available at https://github.com/text-machine-
lab/mini_bert.

Figure 1: Power law breaks in low FLOPs region.
Faded gray lines are unique model configurations. The
green dots are compute-optimal instances i.e., the model
instance with a minimum value of MLM loss for a given
range of FLOPs. We observe that there exists a disconti-
nuity in the power curve around 2.2× 1015 FLOPs

question of when exactly model abilities begin to
emerge remains largely unanswered.

In this study, we were interested in understand-
ing whether the emergent phenomena can be ob-
served at a drastically reduced scale, and what the
relationship is between upstream and downstream
performance at this scale. We also wanted to exam-
ine model shapes, configurations, and other factors
that might affect whether we see the benefits of
pre-training when downscaling a model.

Smaller models have been shown to do poorly
when trained even on large volumes of data (Turc
et al., 2019), which makes studying downscaling
non-trivial. However, during language acquisition,
humans are exposed to a reduced-size language
before gradually expanding their vocabulary, yet
they become fluent even when their vocabulary is
limited. Taking our cue from humans, we explore

5298

https://github.com/text-machine-lab/mini_bert
https://github.com/text-machine-lab/mini_bert


the hypothesis that reducing language size might
allow us to observe the effects of pre-training in
small models.

There has been one previous attempt to reduce
language size (Huebner et al., 2021), but it was
quite limited: one reduced-size Transformer en-
coder was trained with a non-standard version of
masked language modeling (MLM) loss on a rel-
atively small corpus of child-directed speech and
evaluated for its ability to pass linguistic tests from
a custom grammar test suite.

We use a vocabulary of 21,000 words derived
from AO-CHILDES (Huebner and Willits, 2021), a
corpus of child-directed speech, to create a filtered
corpus containing a subset of standard pre-training
corpora: C4 (Raffel et al., 2020), Wikipedia, Book
Corpus (Zhu et al., 2015), and others. We pre-
train over 70 Transformer encoder models in the
1-100M parameter range, varying model shape, and
configuration, including the number of layers, hid-
den size, the number of attention heads, and the
feed-forward layer dimension (intermediate size).
We fine-tune and evaluate a series of checkpoints
at different FLOPs count on the subset of GLUE
filtered with the same vocabulary.

We present evidence that for a realistically
downscaled language, the benefits of pre-training
are observable even in smaller models with as
few as 1.25M parameters. Our results also indi-
cate that models with fewer layers achieve bet-
ter performance on GLUE tasks. In contrast to
Tay et al. (2022), we find a strong correlation
between upstream and downstream performance
(here, model perplexity and GLUE score). How-
ever, pre-training compute optimality does not ap-
pear to be crucial for downstream results. We also
show that for compute-optimal models at this scale,
parameter count does not reliably predict MLM
loss, suggesting a limitation to scaling laws. We
observe a departure from the FLOPs-Perplexity
law, characterized by a sudden shift in the expo-
nent value in the low-compute region of FLOPs
≤ 2.2 × 1015 (cf. Figure 1). This represents a
divergence from previous observations regarding
scaling laws (Kaplan et al., 2020; Hoffmann et al.,
2022).

2 Related Work

Scaling Laws Kaplan et al. (2020) has demon-
strated and popularized power law dependency be-
tween language model parameter count and per-

plexity. This further motivated the existing trend
for increasing model size (Brown et al., 2020;
Chowdhery et al., 2022; Fedus et al., 2022). In-
vestigation of smaller models has mostly focused
on distillation (Sanh et al., 2019; Turc et al., 2019)
and achieving the best performance given the pa-
rameter count. In contrast, we are interested in
understanding at what scale pre-training works and
the emergence of language model abilities to help
downstream tasks.

Changing pre-training data size via training to-
ken volume (Pérez-Mayos et al., 2021; Zhang et al.,
2020), vocabulary size (Gowda and May, 2020),
or the number of epochs (Voloshina et al., 2022)
has also been explored for effects on language ac-
quisition. These studies have generally demon-
strated low-level linguistic tasks involving syntax
require relatively little data volume compared to
more complex tasks like WinoGrande (Sakaguchi
et al., 2019). The relationship between model size,
input data, and downstream performance remains
the subject of much debate as to the nature of scal-
ing laws. Hoffmann et al. (2022) concluded data
size and model size should be scaled equally to
achieve compute-optimal training for LLM’s. Fur-
ther credence to reducing LLM compute is lent by
Sorscher et al. (2022), who found input data prun-
ing can improve models to scale exponentially, and
Chan et al. (2022), who showed LLM in-context
learning derives from the Zipfian distribution of
pre-training data.

Most releavant to this work is Huebner et al.
(2021) who found a small language model trained
on child-directed speech can achieve comparable
performance to larger LMs on a set of probing
tasks. In contrast to them, we train multiple mod-
els, explore scaling in the low-compute region and
evaluate on a filtered version of GLUE instead of a
set of linguistic tests.

3 Methodology

This section discusses the language simplification
process, pre-training data, development of the data
tokenizer, language model configuration, and pre-
training objective in detail.

3.1 Simplifying language

To create a corpus of reduced English, we filter
large text corpora based on a word vocabulary from
AO-CHILDES (Huebner and Willits, 2021). The
AO-CHILDES corpus contains English transcripts

5299



Corpus name Sentences (mil.) Tokens (mil.)

C43 3 427
C4 27 428
Book Corpus 12 190
Wikipedia 4.8 76
Simplified Wikipedia 0.19 3
Children’s Book Test 0.08 1

Total 47.07 1,125

Table 1: Size of the filtered pre-training data used in this
study.

of child-directed speech. With the transcripts, we
generate a vocabulary by removing special char-
acters and tokenizing words by spaces. We also
remove gibberish words present in the transcripts
e.g. “bababa”. With this process, we construct a
set of 21 thousand unique words.

3.2 Pre-training data

We filter data from five text corpora: Wikipedia,
Simple English Wikipedia2, Book Corpus (Zhu
et al., 2015), Children’s Book Test (CBT) (Hill
et al., 2015), and Common Crawl (C4) (Raffel et al.,
2020), to obtain pre-training data. We filter C4 two
ways: span level (110 words span size, 30 words
stride) and sentence level. We select a text span (or
sentence) to include in the pre-training data if and
only if there are no words out of the vocabulary
of interest, ignoring any numeric characters. For
sentence-level filtration, we process text data on
all five corpora. With sentence-level filtration, we
collect approximately 44 million sentences which
we concatenate to construct six million spans. The
combination of both span- and sentence-level data
filtration provided us with over nine million pre-
training sequences of an average length of 127 BPE
tokens. Finally, we split the filtered data into three
sets: train, development, and test, of sizes nine mil-
lion, 100 thousand, and 100 thousand, respectively.
We provide the amount of filtered data from each
text corpus in Table 1.

For the rest of the paper, we use the word “vo-
cabulary” to refer to the number of unique tokens
instead of unique whitespace-separated words, un-
less otherwise mentioned.

3.3 Tokenizer

Since we are working with a reduced language,
commonly used subword vocabulary sizes for En-

2https://simple.wikipedia.org
3Span-level filtering.

glish might be suboptimal. We want to achieve
a reasonable balance between over-splitting (split-
ting the words into units smaller than the smallest
meaningful morphological units, e.g., splitting into
characters) and under-splitting (e.g., retaining full
words instead of splitting them into meaningful
subwords).

We conducted a series of experiments in which
we tuned the vocabulary size to find the right bal-
ance. While varying the vocabulary size, we track
two metrics for the tokenized text: word-split ratio
and another metric we define, the exact sub-token
matching score (ESMS). Word-split ratio is the
number of tokens into which a word is split, where
words are separated by whitespace. For example,
if the word “cooking” is converted to “cook” and
“ing”, then the word-split ratio value is two. We
measure and report the word-split ratio value for
5,000 examples sampled from the set of collected
pre-training data without replacement.

To measure ESMS, we compare the tokenizer
performance with morpheme-based subword to-
kens. For example, in case of the word “cooking”,
we check whether the tokenizer is splitting the word
into two tokens, ‘cook’ and ‘ing’. For this purpose,
we used a manually-curated list of 127 words with
their corresponding morpheme-based sub-tokens,
(see Table 5 in the Appendix for some examples).
ESMS is computed as an exact match to the refer-
ence tokenization. For one example, it is equal to 1
if the word is tokenized exactly as in the reference
and 0 in any other case.

We experiment with three types of tokenizers,
Byte-Pair Encoding (BPE) (Radford et al., 2019),
WordPiece (Devlin et al., 2018), and SentencePiece
(Raffel et al., 2020). Similar to the study conducted
by FitzGerald et al. (2022), we select vocabulary
size for each type of tokenizer by minimizing the
absolute difference of word-split ratio compared
to the reference tokenizer. We consider separate
reference tokenizers for each tokenizer type. For
BPE, WordPiece, and SentencePiece, we select pre-
trained tokenizers published by (Liu et al., 2019),
(Devlin et al., 2018), and (Raffel et al., 2020), re-
spectively, as our reference tokenizers. After se-
lecting the vocabulary size for each tokenizer type,
we select the tokenizer with the highest value of
ESMS as our final choice.

With the above-mentioned selection process, we
find that the BPE tokenizer with a vocabulary size
of 19,000 and ESMS of 0.2604, is the best-suited

5300

https://simple.wikipedia.org


tokenizer for our study. We provide the results of
our tokenizer selection experiments in Appendix B.

3.4 Model architecture and configuration

The models we pre-train in our experiments closely
follow the configuration setting of RoBERTa (Liu
et al., 2019). We scale down and vary the model’s
hidden size, intermediate size (FFN hidden dimen-
sion size), number of hidden layers, and number of
attention heads such that the total number of train-
able parameters does not exceed 20 million. To
separately control model hidden size and embed-
ding size, we also add a linear layer, followed by a
normalization layer (Ba et al., 2016) between the
embedding block and the first Transformer layer.

3.5 Pre-training objective

In our study, we pre-train models on a Masked
Language Modeling (MLM) task (Devlin et al.,
2018). We chose MLM instead of regular (causal)
language modeling, because of its effectiveness for
natural language understanding tasks at a smaller
scale as demonstrated by BERT.

We conducted an exploratory set of experiments
to observe the effect of various MLM objective
settings on validation perplexity. We found that
using a random word replacement strategy and
same-word replacement strategy doesn’t improve
the model at a small scale. Hence, to enable con-
siderable learning in the limited parameter setting,
we do not use random replacement and same-word
replacement of the token selected for masking. In
other words, we always replace the token selected
for masking with the mask token <mask> before
inputting it into the model. Otherwise, we adopt
the same strategy as BERT pre-training by masking
15% of tokens.

4 Experimental Setup

In our experiments, we explore the relationship
between training data size, model size (number of
parameters), model shape, cost of training (FLOPs),
and performance during pre-training and down-
stream. In the following subsections, we will
discuss our strategy for exploring various model
shapes followed by a discussion on hyperparameter
settings in detail.

4.1 Exploration of model configuration

To investigate the impact of reduced model size,
we start by scaling down the base configuration of

RoBERTa (Liu et al., 2019) from its initial hidden
size of 768 to 256, and the number of hidden layers
and attention heads from 12 to 8. For intermediate
layer size, we follow the common practice of set-
ting it to a value four times that of the hidden size.
We refer to this configuration as the anchor con-
figuration. We pre-train a model with the anchor
configuration and explore three values for embed-
ding size, hidden size, intermediate size, number
of hidden layers, and number of attention heads,
varying one hyperparameter at a time. With such
unidirectional exploration, we pre-train 16 mod-
els. We refer to this set of 16 models as set-1. To
explore more model configurations, we randomly
sample 16 configurations that are not included in
set-1. For random sampling, we only explore val-
ues that are powers of two and are upper-bounded
by 256, 256, 1024, 8, and 8, for the embedding size,
hidden size, intermediate size, number of attention
heads, and number of hidden layers, respectively.
We refer to this set of 16 models as set-2. Further-
more, we pre-train 30 more models by performing
unidirectional explorations of hidden size and the
number of hidden layer values by anchoring other
hyperparameter values. We refer to this set of 30
models as set-3.

4.2 Pre-training

For every model configuration, we keep the input
sequence length fixed at 128 tokens. All models
are initialized with a fixed random seed value of
zero.

Once initialized, we train the model for one
epoch with a batch size of 256 for 35,000 weight
updates. We use an inverse square root learning
rate scheduler with 5% warmup.

We conducted a few trials guided to decide the
peak learning rate value for our experiments. We
started with values higher than 6e-4, based on find-
ings published by Liu et al. (2019) and Kaplan
et al. (2020), and kept on reducing the learning
rate until we observed a stable training loss curve.
We observed 1 × 10−1 to be suitable for models
with more than 18 million parameters and 5×10−1

otherwise.
For optimization, we use the AdamW optimizer

(Loshchilov and Hutter, 2017) with β1, β2, and
ϵ values set to 0.9, 0.95, and 10−8, respectively.
After preliminary experiments we set the weight
decay parameter to 0.01. Besides the learning
rate, we keep all optimizer-related hyperparameters

5301



constant across all model configurations. For all
dropout layers in the model, we adopt the same
value of 10% as that of the RoBERTa model (Liu
et al., 2019).

4.3 Fine-tuning

We evaluate pre-trained models on GLUE (Wang
et al., 2018). Because our pre-trained data con-
sists of a limited vocabulary, we fine-tune and test
on GLUE task datasets with the same vocabulary
filtering, in addition to unfiltered variants.

For all tasks, we fine-tune our pre-trained models
for 5 epochs and report the performance of the best
performance value on the validation set averaged
over three seed values. For all fine-tuning exper-
iments, we keep the batch size fixed at 32. Over
the five training epochs, we vary the learning rate
value with a linear scheduler with a warmup of 5%.
We set the peak-learning rate within the range from
2e-5 to 2e-4 value, according to the task. In addi-
tion to these pre-trained models, we fine-tune and
evaluate GLUE for randomly-initialized versions
of pre-trained models as well.

4.4 Evaluation metrics

Pre-training For pre-training results, we mea-
sure and report the cross-entropy loss and perplex-
ity on the test split of the data. We use the cross-
entropy loss and perplexity calculated on the de-
velopment set for curve fitting. In both cases, we
calculate the cross-entropy loss only for the masked
tokens, and the perplexity value is calculated by ex-
ponentiating the cross-entropy loss value. We also
calculate the FLOPs (compute cost) as defined by
Hoffmann et al. (2022). We first calculate FLOPs
per training sequence based on the model param-
eters (including the embedding parameters) and
multiply it by the amount of training data seen by
the model to get a total number of FLOPs. We
provide a detailed formula of FLOPs calculation in
Appendix A.

Cost-effectiveness analysis We use the Incre-
mental Cost-Effectiveness Ratio (ICER) (Bambha
and Kim, 2004) to conduct cost-effectiveness anal-
ysis of different model configuration hyperparam-
eters. We treat the FLOPs and model perplexity
values as proxies for the expenditure and the out-
come of expenditure, respectively. Therefore,

ICER =
∆Outcomes

∆Cost
=

∆Perplexity

∆FLOPs
(1)

We calculate the difference (the ∆ values) by
comparing a model configuration with the next
cheaper option (e.g., we compare the model with a
hidden size of 28 to the model with a hidden size
of 27). For the specific case of increasing hidden
size from 27 to 28, ICER represents performance
gain (reduction in perplexity) per additional FLOPs
spent on increasing the hidden size value from 27

to 28. We calculate ICER values for four hyper-
parameters namely, embedding size, hidden size,
intermediate size, and the number of hidden layers.

Fine-tuning We use standard metrics for the
GLUE benchmark: accuracy, Matthew’s correla-
tion score, and combined correlations score depend-
ing on the task. For our conducted experiments, we
report the average value of all performance metrics
across tasks.

5 Results and Discussion

5.1 Curve fitting
To assess the empirical relationship between model
performance and data size, model size, and FLOP
values, we fit a power curve of the form y = C ·xe,
separately, to model size, data size, and FLOP val-
ues. We only consider the compute-optimal in-
stances for curve fitting. To find compute opti-
mal instances, we first divide the FLOPs values
into over 30 bins and fetch the checkpoint cor-
responding to the minimum value MLM loss for
each FLOPs bin. We use an implementation of
the Levenberg-Marquardt (Moré, 1978) algorithm
provided under the SciPy library for curve fitting.

We observe that the optimal values of the expo-
nents for data size and model size are, −0.2459
and −0.2805. Note that these values are expected
to be different from those in Kaplan et al. (2020),
since we work with a different loss and a reduced-
vocabulary language. The small difference between
both exponent values suggests that the MLM loss
reduces with a similar pace for data and model
scaling. Hence, in our downscaled problem, we
find data and model scaling equally important for
compute-optimality. Although, we find R24 values
for both curves i.e., loss vs. data size and loss vs.
model size, are low (Figures 2 and 3). Moreover,
we observe that for FLOPs values greater than 215,
a power curve nearly perfectly predicts the com-
pute optimal MLM loss value for a given compute

4R2 is the coefficient of determination and we adopt the
default definition of R2 in the Scipy Python library. Please
refer to Scipy for more details.

5302



Figure 2: Reduction of MLM loss for increasing size
of pre-training tokens. The green dots represent the
compute-optimal instances found in our experiments.
The solid black line represents the fitted power curve
with the exact equation in the top left corner. The gray
highlighted regions are examples of regions where we
find a model configuration (of the format (embedding
size, hidden size, intermediate size, number of layers,
number of attention heads)) consistently being compute-
optimal.

budget. In this region, we find the exponent for the
FLOPs values to be −0.1412 with an R2 value of
0.9888.

In our experiments, we find few model config-
urations to be effective for a long range of FLOP
values. We highlight a couple of examples of such
configurations in Figures 2 and 3. The occurrence
of such a configuration causes a discontinuous tran-
sition of MLM loss with respect to data size, model
size, and FLOP values. We observe this effect to
be more pronounced in the lower FLOPs region.
Consequentially, a power curve does not fit in the
region of lower FLOP values (≤ 2× 1015). With
the exponent value of −0.0929, we observe the
best value of R2 to be 0.68.

In order to illustrate the effects of parameter
count increase in the downscaled setting, we ex-
tended our pre-training experiments to include
models of larger size in Figures 2 and 3. We ob-
served that increasing the parameter count up to
100 million does not allow the model to beat the
perplexity achieved by a smaller 16 million param-
eter model (See Appendix D).

Figure 3: Reduction in the MLM loss for increas-
ing model size. The green dots represent the compute-
optimal instances found in our experiments. The solid
black line represents the fitted power curve with the ex-
act equation in the top left corner. The gray highlighted
regions are examples of regions where we find a model
configuration (of the format (embedding size, hidden
size, intermediate size, number of layers, number of
attention heads)) consistently being compute-optimal.

5.2 Incremental cost-effectiveness analysis

For the cost-effectiveness analysis, we focus on
the pre-trained model configurations in set-1. We
calculate the ICER values separately for four hyper-
parameters: embedding size, hidden size, interme-
diate size, and the number of hidden layers. We ar-
range the models in increasing order of FLOPs and
calculate ICERs by comparing each model to the
next cheapest option. The ICER values presented
in Table 2 represent performance gain (reduction
in perplexity) per an additional expenditure of a
billion FLOPs, scaling only one hyperparameter at
a time.

We observe the highest ICER value of 3.0075
for scaling the hidden size from 32 to 64, refer to
Table 2. For further scaling of hidden size, from
64 to 128, and from 128 to 256, ICER values drop
at least by 3x for each increment. Besides rapidly
reducing values, ICERs for hidden size were al-
ways the highest, making it the most cost-effective
choice. Comparably high ICERs were observed for
scaling the model by increasing the number of hid-
den layers. For increasing the hidden layers from
one to two, we record an ICER of 2.6271. This
value reduces to 0.6810 and 0.2089, when scaling

5303



Model config. (E, H, I, L, A) ICER

(256, 32, 1024, 8, 8) –
(256, 64, 1024, 8, 8) 3.0075
(256, 128, 1024, 8, 8) 0.8316
(256, 256, 1024, 8, 8) 0.2411

(256, 256, 1024, 1, 8) –
(256, 256, 1024, 2, 8) 2.6271
(256, 256, 1024, 4, 8) 0.6810
(256, 256, 1024, 8, 8) 0.2089

(32, 256, 1024, 8, 8) –
(64, 256, 1024, 8, 8) 0.6277
(128, 256, 1024, 8, 8) 0.2105
(256, 256, 1024, 8, 8) 0.1669

(256, 256, 128, 8, 8) –
(256, 256, 256, 8, 8) 0.4002
(256, 256, 512, 8, 8) 0.4127
(256, 256, 1024, 8, 8) 0.1970

Table 2: Incremental cost-effectiveness ratio values for
increasing values of various hyperparameters. Model
hyperparameters map accordingly, E: embedding size,
H: hidden size, I: intermediate size, H: number of hid-
den layers, A: number of attention heads. Because we
calculate ICER values relative to the model with the
next lowest value of hyperparameter, ICERs are not cal-
culated for the lowest values of hyperparameters.

the model with two layers to have four layers, and
a model with four layers to have eight layers, re-
spectively.

We find the ICER values for embedding size
and intermediate size significantly lower than the
values for hidden size and the number of hidden
layers. The differences between ICERs were higher
for the lower values of each hyperparameter. Al-
though, when all hyperparameter values reached
the corresponding highest values, the difference in
ICERs diminished. A comparison between ICER
values for embedding size and intermediate size
shows that increasing embedding size from 32 to
64 brings 0.2275 more improvement in the per-
plexity per million FLOPs, compared to increasing
intermediate size from 128 to 256. However, for
all further increments in the hyperparameter values,
increasing intermediate size results in at least 0.03
more ICER value than for embedding size.

5.3 Downstream evaluation
We report fine-tuning performance on vocabulary-
filtered GLUE benchmark in Table 3 (cf. Section
3.1). For reference, we also report performance
on unfiltered GLUE. We find that GLUE perfor-
mance peaks for models with 2 and 4 hidden layers
with average scores of 59.39 and 60.67, respec-
tively. Interestingly, we find the average GLUE

Figure 4: GLUE scores by model size and FLOPs for
compute-optimal and non-compute-optimal models

score decreases for the model with 8 hidden lay-
ers to 56.29. Such reduction is not observed when
increasing the hidden size or the embedding size.
As expected, models consistently demonstrate bet-
ter performance on vocabulary-filtered GLUE. We
also see that model performance is strongest for
models with 2 and 4 hidden layers assessed on
vocabulary-filtered GLUE.

To assess whether pre-training effects are ben-
eficial in the downscaled setting, we compare the
average GLUE score of each pre-trained model
with the score of the same model fine-tuned with-
out pre-training. Table 3 shows that for each model
shape, the fine-tuned model outperforms its respec-
tive randomly initialized counterpart. Our results
show that in a reduced-vocabulary setting, the ad-
vantages of pre-training are observable even for
smaller models, starting with a 1.25M parameter

5304



Model config.
(E, H, I, L, A)

Model size
(mil. parameters)

FLOPs
(×1015) Perplexity GLUE score

(unfiltered)
GLUE score

(filtered)
GLUE score

(filtered, w/o PT)

(256, 256, 1024, 8, 8) 16.24 110 4.80 51.73 56.29 40.24

(32, 256, 1024, 8, 8) 11.89 80 5.60 46.99 48.39 49.80
(64, 256, 1024, 8, 8) 12.51 84 5.31 45.12 51.09 51.99
(128, 256, 1024, 8, 8) 13.75, 92 5.11 48.07 52.73 52.09

(256, 32, 1024, 8, 8) 6.10 42 10.42 47.98 50.23 45.93
(256, 64, 1024, 8, 8) 7.34 50 7.56 49.34 53.78 50.67
(256, 128, 1024, 8, 8) 10.04 69 5.88 51.16 55.63 50.60

(256, 256, 128, 8, 8) 7.63 85 5.61 57.65 57.18 41.62
(256, 256, 256, 8, 8) 8.15 88 5.45 54.91 56.48 41.28
(256, 256, 512, 8, 8) 9.20 96 5.12 51.60 57.36 40.55

(256, 256, 1024, 1, 8) 10.71 73 7.60 50.87 55.99 50.53
(256, 256, 1024, 2, 8) 11.50 79 6.07 54.31 59.39 51.17
(256, 256, 1024, 4, 8) 13.08 89 5.28 53.85 60.67 47.15

(256, 256, 1024, 8, 1) 16.24 110 4.74 50.47 53.68 40.30
(256, 256, 1024, 8, 2) 16.24 110 4.67 50.39 54.98 40.10
(256, 256, 1024, 8, 4) 16.24 110 4.75 49.55 54.21 39.66

(32, 32,128, 2, 2) 1.27 8.57 20.07 46.25 49.03 48.68
(32, 32, 128, 1, 1) 1.25 8.60 23.40 44.97 48.22 47.98
(32, 32, 64, 1, 1) 1.25 8.71 23.42 44.91 47.20 48.69

Table 3: Performance on vocabulary-filtered and unfiltered GLUE benchmarks. These models have access to the
same number of tokens during pre-training. Model hyperparameters map accordingly: Embedding Size: E, Hidden
Size: H, Intermediate Size: I, Hidden Layers: L, Attention Heads: A. In the last column, we report the fine-tuning
results for the randomly initialized (without pre-training) counterpart of the model.

count.
We further fine-tune a set of 27 models, compris-

ing a mix of compute-optimal and non-compute-
optimal checkpoints, to better understand the re-
lation between upstream and downstream perfor-
mance. In Figure 4, we plot each model’s GLUE
score against its size and number of FLOPs, with
color indicating the test perplexity of each model.
We observe that for a given parameter count,
compute-optimal models do not necessarily out-
perform the undertrained models on the GLUE
benchmark.

Lastly, considering all fine-tuning results to-
gether, we conduct a test to measure the correlation
between perplexity (upstream performance) and av-
erage GLUE score (downstream performance). We
find that the correlation between the average GLUE
score for unfiltered GLUE datasets and model per-
plexity is inconclusive with the Spearman coeffi-
cient value of -0.17 and a p-value of 0.28. On the
other hand, we find average GLUE score calculated
for filtered GLUE datasets highly correlates with
model perplexity with the Spearman coefficient
value of -0.67 and a p-value ≤ 0.01.5

5Our reported values of the test metric are calculated over
a sample size of 32. The exact p-value is 6.25× 10−7.

5.4 Comparison with unconstrained text

To highlight the ability of smaller models to benefit
from pre-training when the language size is reduced
(rather than unconstrained), we also pre-trained 10
models on unconstrained language (i.e., without
any vocabulary reduction). We provide the details
of the data collection, tokenizer training, and the
experimental setup in Appendix C.

Table 4 shows the relative performance figures
for the models trained on unconstrained language.
We fix the model configuration and report the
change in performance relative to the constrained
(limited-vocabulary) case. The training data size
and hyperparameter setting for pre-training and
fine-tuning are kept the same.

Note that for the unconstrained case, there is a
considerable increase in the model size due to an
increase in the Byte-BPE vocabulary (from 19,000
to 29,000). The increased model size also increases
the compute cost by at least 32.87%. Despite
the increased model size and compute cost, no
corresponding improvement in pre-training perfor-
mance is observed, as shown in Table 4. In fact,
although the perplexity on reduced-vocabulary data
decreases with model size, none of the model con-
figurations studied reach the MLM perplexity of

5305



Model config.
(E, H, I, L, A)

∆ Model size
(mil. parameters)

% ∆
FLOPs

% ∆
Perplexity

% ∆ GLUE score
(filtered)

% ∆ GLUE score
(unfiltered)

(256, 256, 1024, 8, 8) 5.13 32.87 23.96 -18.28 -11.79

(256, 32, 1024, 8, 8) 2.89 47.59 17.86 -3.58 2.15
(256, 64, 1024, 8, 8) 3.21 44.01 16.16 -3.32 1.60

(256, 128, 1024, 8, 8) 3.85 38.99 20.85 -4.97 -0.08

(256, 256, 1024, 1, 8) 5.13 49.44 18.90 -15.39 -1.90
(256, 256, 1024, 2, 8) 5.13 46.12 17.24 -18.99 -7.80
(256, 256, 1024, 4, 8) 5.13 40.66 16.93 -19.93 -7.61

(32, 32, 128, 2, 2) 0.65 51.23 18.90 -8.69 -1.00
(32, 32, 128, 1, 1) 0.65 51.89 25.79 -9.06 1.19
(32, 32, 64, 1, 1) 0.65 52.07 14.78 -8.94 -2.05

Table 4: Relative performance of the models trained on text data without any vocabulary filtration (unconstrained
case). In this table, we present the results relative to the same configuration model trained on limited-vocabulary lan-
guage data (constrained case). The ∆ symbol represents the difference ∆ = valueunconstrained−valueconstrained
in the results and %∆ represents the percentage difference ∆ = 100×∆/valueconstrained. Perplexity values are
calculated on the test split of constrained data. Positive values for %∆ perplexity mean a degradation of performance
for the unconstrained case. Note that for the unfiltered GLUE, we do not expect limited-vocabulary models to do
well. However, we observe that besides adding a compute overhead, pre-training language models on unconstrained
data degrade the pre-training and downstream performance in the models with ≤ 22 million parameters.

the reduced-scale model, when evaluated on the
test split of the data.

Since perplexity values are directly impacted
by the increase in the Byte-BPE vocabulary size,
we also evaluate the unconstrained data models on
GLUE benchmarks for fairer evaluation. Similar to
pre-training results, we observe a consistent degra-
dation of the performance for the filtered versions
of the GLUE benchmark. For all model config-
urations considered, the average GLUE score for
filtered datasets reduces by up to ≈ 20% due to pre-
training on unconstrained data. On the other hand,
for the unfiltered version of the GLUE datasets, we
do not expect models trained in limited-vocabulary
data to do well. However, we find that the average
GLUE score on unfiltered datasets improves only
in three of the 10 model configurations we consid-
ered. These results further confirm that limiting the
vocabulary benefits the models with ≤ 22 million
parameters.

One possible explanation for this is the relative
contribution of embedding parameters to model
size. In an unconstrained setting, vocabulary em-
bedding parameters account for most of the model,
with no parameters left for transformer blocks.6

There is prior work showing that pre-training loss
improves only minimally for models with zero
transformer blocks (Kaplan et al., 2020). Thus, con-

6For example, for a model with 10M parameters, if the
embedding size is 200 with a vocabulary of 50,000, no trans-
former block can be added. But if the vocabulary size is
20,000, 6M parameters can be used in transformer blocks.

straining vocabulary allows one to increase trans-
former block capacity while otherwise maintaining
a small parameter count.

6 Conclusions & Future Work

In this study, we investigated whether reducing lan-
guage size allows the benefits of pre-training to be
observed in a downscaled setting for models with
≤ 20M parameters. We evaluated a range of model
configurations and found that the advantages of
pre-training are observable even for models with as
few as 1.25M parameters, with a strong correlation
between upstream and downstream performance.
However, we also observed that compute-optimal
training does not appear to be crucial for down-
stream results and that parameter count does not
reliably predict upstream performance. Further-
more, we observed a break of the FLOP-Perplexity
power law at the 2.2 × 1015 FLOP region, which
shows the limited applicability of scaling laws.

Overall, our experiments provide insight into
the behavior of small language models in a down-
scaled language setting. The next logical steps as a
follow-on to this work would be to check whether
generative models would demonstrate any emer-
gent abilities in a downscaled setting.

7 Limitations

While we do explore a range of models in the 1-
20M parameter space, our work does not constitute
a complete study of downscaling. In this work,

5306



we aimed to explore the more fundamental compo-
nents of model shape, model size, and input data.

However, our findings may not generalize to
other models with alternative applications of down-
scaling methods. Considering it to be out of scope
for this study’s assessment of pre-training effects,
we did not compare our results to knowledge dis-
tillation methods of similar model shape and size.
Furthermore, our exploration of model shape and
size was limited to a model’s hidden size, number
of hidden layers, embedding size, and intermediate
size, and number of attention heads as these are the
most commonly-tuned hyperparameters.

Our usage of vocabulary filtration as a means of
downscaling input data size may not be the most ef-
fective means of limiting input data. While shown
to be effective, alternative approaches for input data
manipulation such as curriculum learning, and data
pruning merit study beyond the scope of this paper.

Ethics Statement

Our exploration of smaller language models
presents a number of implications for accessibil-
ity, environmental impact, and cost. By explor-
ing models in the space of 1-20M parameters, our
findings can inform language modeling work for
those without access to large, GPU-enabled envi-
ronments. This is important as it can encourage
further research work in this space by those who are
otherwise unable to work with SoTA LLMs. We ac-
knowledge that our resources enabled the breadth
of study in this paper; most of this study was con-
ducted using a single GPU. This consideration un-
derscores our commitment to improving accessi-
bility for under-resourced technologists throughout
the world. Furthermore, in working with down-
scaled LLMs, we hope to encourage methods that
reduce overall carbon footprint and bolster sustain-
able practices in NLP. These considerations are
especially important given the particular burden
placed on those with limited access to electricity
and technology. The cost of running and experi-
menting with these models may prove quite costly
in terms of person-hours and compute resources.
As such, we hope our work at smaller scale can
help lessen these burdens, and positively impact
the lives of technologists, and others. Any model
from the study can be trained in less than a day on
a single consumer-grade GPU.

References
Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-

ton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450.

Kiran Bambha and W Ray Kim. 2004. Cost-
effectiveness analysis and incremental cost-
effectiveness ratios: uses and pitfalls. European
journal of gastroenterology & hepatology, 16(6):519–
526.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Stephanie CY Chan, Adam Santoro, Andrew Kyle
Lampinen, Jane X Wang, Aaditya K Singh,
Pierre Harvey Richemond, James McClelland, and
Felix Hill. 2022. Data distributional properties drive
emergent in-context learning in transformers. In Ad-
vances in Neural Information Processing Systems.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2022. Palm: Scaling language mod-
eling with pathways. arxiv:2204.02311.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

William Fedus, Barret Zoph, and Noam Shazeer. 2022.
Switch transformers: Scaling to trillion parameter

5307

https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2204.02311
http://jmlr.org/papers/v23/21-0998.html


models with simple and efficient sparsity. Journal of
Machine Learning Research, 23(120):1–39.

Jack FitzGerald, Shankar Ananthakrishnan, Konstan-
tine Arkoudas, Davide Bernardi, Abhishek Bha-
gia, Claudio Delli Bovi, Jin Cao, Rakesh Chada,
Amit Chauhan, Luoxin Chen, et al. 2022. Alexa
teacher model: Pretraining and distilling multi-
billion-parameter encoders for natural language un-
derstanding systems.

Thamme Gowda and Jonathan May. 2020. Finding the
optimal vocabulary size for neural machine transla-
tion. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, pages 3955–3964,
Online. Association for Computational Linguistics.

Felix Hill, Antoine Bordes, Sumit Chopra, and Jason
Weston. 2015. The goldilocks principle: Reading
children’s books with explicit memory representa-
tions. arXiv preprint arXiv:1511.02301.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch,
Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes
Welbl, Aidan Clark, Tom Hennigan, Eric Noland,
Katie Millican, George van den Driessche, Bogdan
Damoc, Aurelia Guy, Simon Osindero, Karen Si-
monyan, Erich Elsen, Jack W. Rae, Oriol Vinyals,
and Laurent Sifre. 2022. Training compute-optimal
large language models.

Philip A Huebner, Elior Sulem, Fisher Cynthia, and
Dan Roth. 2021. Babyberta: Learning more gram-
mar with small-scale child-directed language. In Pro-
ceedings of the 25th Conference on Computational
Natural Language Learning, pages 624–646.

Philip A Huebner and Jon A Willits. 2021. Using lexi-
cal context to discover the noun category: Younger
children have it easier. In Psychology of learning and
motivation, volume 75, pages 279–331. Elsevier.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Jorge J Moré. 1978. The levenberg-marquardt algo-
rithm: implementation and theory. In Numerical
analysis, pages 105–116. Springer.

Laura Pérez-Mayos, Miguel Ballesteros, and Leo Wan-
ner. 2021. How much pretraining data do language
models need to learn syntax?

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, Peter J Liu, et al. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(140):1–67.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2019. Winogrande: An adver-
sarial winograd schema challenge at scale. Commun.
ACM, 64:99–106.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. 2019. Megatron-lm: Training multi-billion
parameter language models using model parallelism.
arXiv preprint arXiv:1909.08053.

Ben Sorscher, Robert Geirhos, Shashank Shekhar, Surya
Ganguli, and Ari S. Morcos. 2022. Beyond neural
scaling laws: beating power law scaling via data prun-
ing. In Advances in Neural Information Processing
Systems.

Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus,
Samira Abnar, Hyung Won Chung, Sharan Narang,
Dani Yogatama, Ashish Vaswani, and Donald Met-
zler. 2022. Scale efficiently: Insights from pretrain-
ing and finetuning transformers. In International
Conference on Learning Representations.

Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. Well-read students learn better: On
the importance of pre-training compact models.

Ekaterina Voloshina, , Oleg Serikov, Tatiana Shavrina,
and and. 2022. Is neural language acquisition similar
to natural? a chronological probing study. In Com-
putational Linguistics and Intellectual Technologies.
RSUH.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. arXiv preprint
arXiv:1804.07461.

Yian Zhang, Alex Warstadt, Haau-Sing Li, and
Samuel R. Bowman. 2020. When do you need bil-
lions of words of pretraining data?

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut-
dinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies
and reading books. In The IEEE International Con-
ference on Computer Vision (ICCV).

5308

http://jmlr.org/papers/v23/21-0998.html
https://doi.org/10.18653/v1/2020.findings-emnlp.352
https://doi.org/10.18653/v1/2020.findings-emnlp.352
https://doi.org/10.18653/v1/2020.findings-emnlp.352
https://doi.org/10.48550/ARXIV.2203.15556
https://doi.org/10.48550/ARXIV.2203.15556
https://doi.org/10.48550/ARXIV.2109.03160
https://doi.org/10.48550/ARXIV.2109.03160
https://doi.org/10.48550/ARXIV.1910.01108
https://doi.org/10.48550/ARXIV.1910.01108
https://openreview.net/forum?id=UmvSlP-PyV
https://openreview.net/forum?id=UmvSlP-PyV
https://openreview.net/forum?id=UmvSlP-PyV
https://openreview.net/forum?id=f2OYVDyfIB
https://openreview.net/forum?id=f2OYVDyfIB
https://doi.org/10.48550/ARXIV.1908.08962
https://doi.org/10.48550/ARXIV.1908.08962
https://doi.org/10.28995/2075-7182-2022-21-550-563
https://doi.org/10.28995/2075-7182-2022-21-550-563
https://doi.org/10.48550/ARXIV.2011.04946
https://doi.org/10.48550/ARXIV.2011.04946


A Calculation of compute cost (FLOPs)

We adopt the same approach for calculating the
compute cost (FLOPs) as presented by Hoffmann
et al. (2022). For notational convenience, we de-
note the sequence length, vocabulary size, embed-
ding size, hidden size, intermediate size (hidden
dimension of the feed-forward network in the trans-
former block), number of attention heads, key size
(for the attention block), and number of layers by
S, V, E, H, I, A, K and L, respectively.

The FLOPs for the forward pass are calculated
as follows.

• Single embedding block:

Cemb = 2× S × (V E + EH)

• Single attention block:

- Cost of the key, query, and value projections

Catt = 2× 3× SH × (KA)

- Cost of the dot product operation of key and
query

Catt += 2× SS × (KA)

- Cost of the softmax operation

Catt += 3× SS × (A)

- Cost of the query reduction

Catt += 2× SS × (KA)

- Cost of the final linear layer

Catt += 2× SH × (KA)

• Single feed-forward layer:

Cint = 2× (HI + IH)

• Single language model head:

Clmh = 2× SHV

• Single forward pass:

Cforward = Cemb+Clmh+L×(Catt+Cint)

• Single backward pass:

Cbackward = 2× Cforward

• Cost per training sequence:

Cseq = Cforward + Cbackward

Therefore, we calculate the total compute cost as
Number of parameter updates ×batch size ×
Cseq.

B Tokenizer selection

B.1 List of reference words for ESMS
In Table 5 we provide a list of words we used for
calculating the Exact Sub-token Matching Score
(ESMS). We also provide the morpheme-based to-
kens per word and the maximum value of exact
matches per word.

B.2 Comparison of different vocabulary sizes
and tokenizer types

We provide the results of our experiments to de-
termine the best-suited tokenizer in this section.
Table 6 provides the vocabulary size, correspond-
ing word-split ratio, and ESMS value for the three
types of tokenizers we evaluated. The bolded row
is the final tokenizer we used in our pre-training
experiments.

C Comparison with unconstrained
language

Our main experiments were conducted on language
that is constrained by a predefined vocabulary. To
study the effect of the applied vocabulary constraint
in comparison with free text, we conduct a set of
experiments on unconstrained language i.e., with-
out any vocabulary-based filtering. In the following
subsections, we provide details of the data collec-
tion, tokenizer training, and pre-training process
adopted.

C.1 Pre-training data
Our objective in curating constrained language was
solely to impose a vocabulary constraint. However,
our filtering method (Section 3.2) resulted in con-
strained language comprised of non-consecutive
text sequences. To address differences beyond vo-
cabulary, we conducted unconstrained language
collection using the following approach. We di-
vided all instances in a specific corpus into spans of

5309



Reference word Morpheme sub-tokens Maximum exact matches per word

Cooking cook, ing 2
Dangerous danger, ous 2

Pretext pre, text 2
Fitness fit, ness 2

Antisocial anti, social 2
Podium pod, ium 2
Universe uni, verse 2
European europ, ean 2
Decode de, code 2
Subvert sub, vert 2

Proactive pro, active 2
Concentric con, centr, ic 3

Octopus octo, pus 2

Table 5: Reference words and corresponding sub-word tokens for calculating Exact Sub-token Matching Score
(ESMS) for the tokenized text

Tokenizer name Vocabulary
size

Word-split
ratio

ESMS

BPE (Radford et al., 2019) 18,000 1.34 0.2868
BPE (Radford et al., 2019) 19,000 1.32 0.2604
BPE (Radford et al., 2019) 20,000 1.31 0.2490
BPE (Radford et al., 2019) Pre-trained 1.32 0.1547

WordPiece (Devlin et al., 2018) 16,000 1.17 0.0339
WordPiece (Devlin et al., 2018) 17,000 1.17 0.0264
WordPiece (Devlin et al., 2018) 18,000 1.16 0.0188
WordPiece (Devlin et al., 2018) Pre-trained 1.17 0.0339

SentencePiece (Raffel et al., 2020) 9,000 1.32 0.0301
SentencePiece (Raffel et al., 2020) 10,000 1.29 0.0226
SentencePiece (Raffel et al., 2020) 11,000 1.26 0.0188
SentencePiece (Raffel et al., 2020) Pre-trained 1.29 0.0339

Table 6: Values of word-split ratio and ESMS for various tokenizer and vocabulary size settings.

5310



110 words and randomly sampled spans. The num-
ber of randomly sampled spans was determined to
maintain the same data distribution across different
corpora, as indicated in Table 1. This method aimed
to minimize the impact of data features other than
vocabulary. We gathered an equivalent number of
training sequences (approximately nine million) as
in the constrained pre-training data. Finally, we
ensured a fair comparison of pre-training perfor-
mance by using the same evaluation and test split
for both pre-training datasets.

C.2 Tokenizer

After data curation, we conduct experiments with
various tokenizers to finalize the tokenizer type
and size of the token vocabulary for the language
model. These experiments were conducted in the
same manner described in Section 3.3. The final
tokenizer we select is the Byte-BPE tokenizer (Rad-
ford et al., 2019) with a vocabulary of 29,000 to-
kens (1.6× that of the vocabulary size for the con-
strained language). The word-split ratio and the
ESMS (exact sub-token matching score) for the
final tokenizer were 1.53 and 0.2339.

C.3 Experimental setup

After finalizing the token vocabulary, we measure
the pre-training as well as the downstream per-
formance of the models trained on unconstrained
language. We focus on the model configuration
explored in the set-1 (refer to section 4.1). Further-
more, guided by our results in the ICER analysis
(refer to section 5.2), we only consider the model
configurations that either perturb the hidden size
or the number of layers in the model. With such a
selection, we pre-train seven language models. In
addition, we pre-train the smallest model configura-
tion that highlighted the benefits of pre-training in
our main experiment (refer to Table 3). Overall, we
pre-train 10 models on the collected unconstrained
language. We keep all the hyperparameter values
the same as in our main experiments (refer to Sec-
tions 4.2 and 4.3). For the comparison of the pre-
training performance, we measure the MLM loss
and perplexity values calculated on the test split
of the limited-vocabulary pre-training data. For
comparison of the downstream performance, we
finetune the final checkpoint of all pre-trained mod-
els on GLUE tasks and record the average GLUE
score, separately for filtered and unfiltered versions
of the GLUE datasets.

D Training larger models

We continued our pre-training experiments with
the constrained language (limited vocabulary) data
to include larger models i.e., models with more
than 20 million parameters. We first set the anchor
configuration to have embedding size, hidden size,
intermediate size, number of layers, and number
of attention heads equal to 512, 512, 2048, 8, and
8, respectively. After defining the anchor config-
uration, we follow the same approach of varying
each configuration feature to explore and pre-train
various models. However, for the training of larger
models, we only focused on the hidden size and
number of layers.

We present the pre-training results of the larger
models in Table 7. In the larger model configu-
rations, we observe that the additional model pa-
rameters do not reduce the model perplexity below
4.67. However, within the set of larger models,
we observe an expected reduction in the perplexity
values with an increase in the size of the model.

For our main experiments, we calculated the
training data size for the expected largest model
size i.e., 20 million parameters based on the find-
ings provided by Hoffmann et al. (2022). The
data size value was between 500 to 600 million
tokens. Note that this data size is the size required
to train the 20 million parameter model ‘compute-
optimally’. Hence, we collected more data to ob-
serve the effect after the compute-optimal point.
Finally, we collected approximately double the
quantity of data (≥ 1100 million tokens). Find-
ings provided by (Hoffmann et al., 2022) are based
on decoder-only models but, at the time of the ex-
perimentation, this was the best available guide for
us to make a decision. Hence, we speculate that the
size of our filtered pre-training data is not sufficient
for the larger models that we consider in this set of
experiments where we pre-train considerably larger
models. Therefore, we do not include the model
configuration considered in this set of experiments
for our main results and figures.

5311



Model config.
(E, H, I, L, A)

Model size
(mil. parameters)

FLOPs
(×1015) Perplexity

(256, 256, 1024, 8, 2) 16.24 110 4.67

(512, 512, 2048, 8, 8) 45.30 302 5.57

(512, 256, 2048, 8, 8) 25.41 174 6.47
(512, 768, 2048, 8, 8) 69.52 452 5.22

(512, 1024, 2048, 8, 8) 98.06 624 4.94

(512, 512, 2048, 1, 8) 23.23 158 13.27
(512, 512, 2048, 2, 8) 26.38 179 6.67
(512, 512, 2048, 4, 8) 32.69 220 5.75

Table 7: Pre-training results of larger models trained on the limited-vocabulary text data. In this table, we provide
model configuration, model size, compute-cost (FLOPs), and model perplexity for the pre-training experiments
we conducted on language models larger than the models pre-trained in our main experiments (set-1). We provide
the best pre-training performance found in our main experiments (set-1) as a baseline (the first row). We find that
additional parameters do not reduce model perplexity.

5312



ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

6

�7 A2. Did you discuss any potential risks of your work?
Our study works with understanding models at a very small scale (<10M params). These models,
unlike LLMs do not present harm in terms of environmental impact or misuse as they are not as
capable.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
1

�3 A4. Have you used AI writing assistants when working on this paper?
We used ChatGPT and GPT-3 to help us rephrase our text to make it more naturally looking and
fluent. After rephrasing we could carefully read and edit the output of the system if nesessary. In some
cases we would completely discard the generated text in favor of manual text editing. Additionally,
we used Grammarly to check the typos, grammar, and phrasing. These methods were used throughout
the paper.

B �3 Did you use or create scientific artifacts?
Results

�3 B1. Did you cite the creators of artifacts you used?
I don’t understand the question. If this refers to pre-trained models and datasets, then the methods
and results section and a big chunk of the rest of the paper.

�7 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
We will provide the licence when the dataset is published. Also, legally, the license must include the
names of the authors, which contradicts anonymity.

�7 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
We use open-access datasets that are not restricted.

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Not applicable. Left blank.

�7 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
It will be provided upon dataset publication

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Left blank.

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

5313

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/


C �3 Did you run computational experiments?
Results

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Results

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Experimental setup

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Results

�7 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
It will be available in the published code, we can’t publish code now according to the anonymity
policy

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

5314


