Coupling Large Language Models with Logic Programming
for Robust and General Reasoning from Text

Zhun Yang, Adam Ishay !
! Arizona State University
{zyang90, aishay}@asu.edu

Abstract

While large language models (LLMs), such as
GPT-3, appear to be robust and general, their
reasoning ability is not at a level to compete
with the best models trained for specific natural
language reasoning problems. In this study, we
observe that a large language model can serve
as a highly effective few-shot semantic parser.
It can convert natural language sentences into
a logical form that serves as input for answer
set programs, a logic-based declarative knowl-
edge representation formalism. The combi-
nation results in a robust and general system
that can handle multiple question-answering
tasks without requiring retraining for each new
task. It only needs a few examples to guide
the LLM’s adaptation to a specific task, along
with reusable ASP knowledge modules that can
be applied to multiple tasks. We demonstrate
that this method achieves state-of-the-art perfor-
mance on several NLP benchmarks, including
bADI, StepGame, CLUTRR, and gSCAN. Ad-
ditionally, it successfully tackles robot planning
tasks that an LLM alone fails to solve.

1 Introduction

A typical way to handle a question-answering task
is to train a neural network model on large train-
ing data and test it on similar data. Such models
work well with linguistic variability and ambiguity
but often learn statistical features and correlations
rather than true reasoning (Ruder, 2021), which
makes them not robust, lack generalization, and
difficult to interpret.

Alternatively, transformer-based large language
models (LLMs) have recently shown wide success
on many downstream tasks, demonstrating general
reasoning capability on diverse tasks without being
retrained. However, when we restrict our atten-
tion to individual NLP reasoning benchmarks, they
usually do not perform as well as state-of-the-art
models despite various efforts to improve accuracy
through prompt engineering (Wei et al., 2022; Zhou

Joohyung Lee 2
2 Samsung Research
jooleelasu.edu

et al., 2022).

Similarly, LLMs gained attention for plan gener-
ation for robots due to the rich semantic knowledge
they acquired about the world (Ahn et al., 2022;
Huang et al., 2022; Zeng et al., 2022). However,
LLMs are known to perform shallow reasoning
and cannot find complex plans (Valmeekam et al.,
2022).

In another context, Nye et al. (2021) note that
while LLMs are good at System-1 thinking, their
outputs are often inconsistent and incoherent. This
is because LL.Ms are trained to predict subsequent
words in a sequence and do not appear to have a
deep understanding of concepts such as cause and
effect, logic, and probability, which are important
for reasoning.

Nevertheless, we note that the rich semantic
knowledge that LLMs possess makes them effec-
tive general-purpose few-shot semantic parsers that
can convert linguistically variable natural language
sentences into atomic facts that serve as input to
logic programs. We also note that the fully declara-
tive nature of answer set programs (Lifschitz, 2008;
Brewka et al., 2011) makes them a good pair with
the LLM semantic parsers, providing interpretable
and explainable reasoning on the parsed result of
the LLMs using background knowledge. Combin-
ing large language models and answer set programs
leads to an attractive dual-process, neuro-symbolic
reasoning that works across multiple QA tasks with-
out retraining for individual tasks.

We tested this idea with several NLP bench-
marks, bAbI (Weston et al., 2016), StepGame (Shi
et al., 2022), CLUTRR (Sinha et al., 2019), and
gSCAN (Ruis et al., 2020), by applying the same
dual-system model and achieved state-of-the-art
performance in all of them. Furthermore, the high
accuracy and transparency allow us to easily iden-
tify the source of errors, making our system a useful
data set validation tool as well. In particular, we
found a significant amount of errors in the original

5186

Findings of the Association for Computational Linguistics: ACL 2023, pages 5186-5219
July 9-14, 2023 ©2023 Association for Computational Linguistics

CLUTRR dataset that are hard to detect manually.

While the new version of GPT-3 (Brown et al.,
2020) (text-davinci-003) shows improvement over
its predecessors, we observe that it also retains
critical limitations. In the process, we develop
prompt methods for semantic parsing to overcome
some of them.

The implementation of our method is publicly
available online at https://github.com/
azreasoners/LLM-ASP.

2 Preliminaries

2.1 Semantic Parsing and LLMs

Semantic parsing involves converting a natural lan-
guage query or statement into a structured represen-
tation that a computer can understand and manip-
ulate. Statistical methods have increased in popu-
larity (Zelle and Mooney, 1996; Miller et al., 1996;
Zettlemoyer and Collins, 2005; Wong and Mooney,
2007), and encoder-decoder models in particular
have been widely used (Dong and Lapata, 2016; Jia
and Liang, 2016; Kocisky et al., 2016). However,
these statistical methods require annotated input
and output pairs. Furthermore, machine learning
models often fail to compositionally generalize to
unseen data (Lake and Baroni, 2018).

More recently, pre-trained language models have
been applied to semantic parsing tasks (Liu et al.,
2021), such as generating SQL queries, SPARQL
queries, logical forms, or programs, from natu-
ral language, together with fine-tuning or prompt-
tuning on pre-trained models, such as BART,
RoBERTa and GPT-2 (Chen et al., 2020a; Shin
et al., 2021; Schucher et al., 2022). With larger
pre-trained networks, such as GPT-3, prompting ap-
pears to yield a reasonable semantic parser without
the need for fine-tuning (Shin et al., 2021; Drozdov
etal., 2022).

Another line of related work is to apply pre-
trained language models to relation extraction, the
task of extracting semantic relationships from a text
given two or more entities (Liu et al., 2021). Wang
et al. (2022) do zero-shot relation extraction with
pre-trained language models from the BERT family
and GPT-2 variants. Zhou and Chen (2022) fine-
tune BERT and RoBERTa models for the extraction
of sentence-level relations. Chen et al. (2022) apply
prompt-tuning to ROBERT_LLARGE for relation ex-
traction. Similar to ours, Agrawal et al. (2022) use
a few-shot prompt with GPT-3 for the extraction of
clinical relations.

2.2 Dual-System Model

There is increasing interest in combining neural
and symbolic systems (Marcus, 2018; Lamb et al.,
2020; Sarker et al., 2021). Such dual-system mod-
els achieved new state-of-the-art results in visual
question answering (Goldman et al., 2018; Sampat
and Lee, 2018; Yi et al., 2019; Chen et al., 2020b;
Ding et al., 2021). In the case of textual prob-
lems, to improve LLMs to generate more consis-
tent and coherent sentences, Nye et al. (2021) sug-
gest that generation be decomposed into two parts:
candidate sentence generation by an LLM (sys-
tem 1 thinking) and a logical pruning process (sys-
tem 2 thinking) implemented via a separate sym-
bolic module. They demonstrate that this neuro-
symbolic, dual-process model requires less training
data, achieves higher accuracy, and exhibits better
generalization. However, the main limitation of
their work is that the symbolic module is manu-
ally constructed in Python code for the specific
task at hand, requiring subtantial efforts. Addition-
ally, their Python symbolic module is not readily
reusable or composable. Furthermore, their main
results primarily focus on the problem of consistent
text generation, rather than evaluating the method
on the datasets and comparing it with existing mod-
els. This is because writing the world models in
Python is not a scalable approach.

In our work, we follow the idea presented
in (Nye et al., 2021) but adopt logic programming
in place of the System 2 process. We argue that
this combination is much more appealing than the
approach in (Nye et al., 2021), as it can achieve the
promised results without the limitations mentioned
above.

2.3 Answer Set Programming

Answer Set Programming (ASP) (Lifschitz, 2008;
Brewka et al., 2011) is a declarative logic program-
ming paradigm that has been shown to be effective
in knowledge-intensive applications. It is based
on the stable model (a.k.a. answer set) semantics
of logic programs (Gelfond and Lifschitz, 1988),
which could express causal reasoning, default rea-
soning, aggregates, and various other constraints.
There are several efficient solvers, such as CLINGO,
DLV, and WASP. We use CLINGO v5.6.0 as the
answer set solver. For the language of CLINGO, we
refer the reader to the textbook (Lifschitz, 2019) or

5187

https://github.com/azreasoners/LLM-ASP
https://github.com/azreasoners/LLM-ASP

the CLINGO manual.!

It is also known that classical logic-based ac-
tion formalisms, such as the situation calculus (Mc-
Carthy and Hayes, 1969; Reiter, 2001) and the
event calculus (Shanahan, 1995), can be formu-
lated as answer set programs. For example, the
following is one of the axioms in Discrete Event
Calculus stating the commonsense law of inertia,
saying that fluent F" holds at the next time if there
is no action affecting it.

% (DEC5)

holds_at (F,T+1) :— timepoint(T), fluent(F),
holds_at (F,T), -released_at (F,T+1),
not terminated(F,T) .

Such a rule is universal and applies to almost all
objects.

Answer set programs are also known to be elab-
oration tolerant (McCarthy, 1998). There has been
work on modularizing knowledge bases in ASP,
such as module theorem (Oikarinen and Janhunen,
2006; Babb and Lee, 2012) and knowledge mod-
ules (Baral et al., 2006). While ASP has been
widely applied to many reasoning problems, it has
not been considered as much in reasoning with nat-
ural language text because its input is expected to
be strictly in a logical form, giving little flexibil-
ity in accepting diverse forms of natural language
input.

3 Our Method

We refer to our framework as [LLM]+ASP where
[LLM] denotes a large pre-trained network such as
GPT-3, which we use as a semantic parser to gen-
erate input to the ASP reasoner. Specifically, we
assume data instances of the form (S, ¢, a), where
S is a context story in natural language, ¢ is a nat-
ural language query associated with S, and « is
the answer. We use an LLM to convert a prob-
lem description (that is, context .S and query q)
into atomic facts, which are then fed into the ASP
solver along with background knowledge encoded
as ASP rules. The output of the ASP solver is inter-
preted as the prediction for the given data instance.
Figure 1 illustrates the inference flow in the context
of StepGame. The pipeline is simple but general
enough to bke applied to various tasks without the
need for retraining. It only requires replacing the
few-shot prompts to the LLM and the ASP back-
ground knowledge with those suitable for the new

"https://github.com/potassco/quide/
releases.

tasks.

By combining LLLMs and ASP in this manner,
we enable robust symbolic reasoning that can han-
dle diverse and unprocessed textual input. The ASP
knowledge modules remain unaffected by the di-
verse forms of input text that express the same facts.
Our method does not rely on training datasets. In-
stead, a few examples that turn natural language
sentences into atomic facts are sufficient to build a
semantic parser due to the learned representations
in LLMs. Furthermore, ASP knowledge modules
can be reused for different tasks.

3.1 Prompts for Fact Extraction

We use GPT-3 to extract atomic facts from the
story and query. Most of the time, giving several
examples yields accurate semantic parsing. The
following is an example prompt for bAbI.

Please parse the following statements into facts
. The available keywords are: pickup, drop,
and go.

Sentence: Max journeyed to the bathroom.

Semantic parse: go(Max, bathroom) .

Sentence: Mary grabbed the football there.
Semantic parse: pickup(Mary, football).

We find that GPT-3 is highly tolerable to linguis-
tic variability. For example, in StepGame, GPT-3
can turn various sentences below into the same
atomic fact top_right ("C", "D").

C is to the top right of D.

C is to the right and above D at an angle of
about 45 degrees.

C is at a 45 degree angle to D, in the upper
righthand corner.

C is directly north east of D.

C is above D at 2 o’clock.

In the experiments to follow, we find that the
following strategy works well for fact extraction.

1. In general, we find that if the information in
a story (or query) can be extracted indepen-
dently, parsing each sentence separately (us-
ing the same prompt multiple times) typically
works better than parsing the whole story.

2. There is certain commonsense knowledge that
GPT-3 is not able to leverage from the exam-
ples in the prompt. In this case, detailing the
missing knowledge in the prompt could work.
For example, in StepGame, clock numbers are
used to denote cardinal directions, but GPT-3
couldn’t translate correctly even with a few

5188

https://github.com/potassco/guide/releases
https://github.com/potassco/guide/releases

Prompt:

Sentence: H is below J at 4 o'clock.
Semantic Parse: down_right("H", "J").

g

Please parse each sentence into a fact. If the sentence is describing clock-wise information,
then 12 denotes top, 1 and 2 denote top_right, 3 denotes right, 4 and 5 denote down_right, ...

Story: !

1. R is directly south east of C.

2. If C is the center of a clock face, D
is located between 1 and 2.

3. Kiis sitting at the top position to C.

4. R presents right to .

uery
What is the relation of the D to the R?

LLM

offset(above,0,1). offset(top_left,-1 1) offset(top_right, 1, 1)

1 define the offsets of spacial relation

down_right("R", "C").
top_right("D", "C").
top("K", "C").

right("

query("D", "R").

Prediction:
answer(top)

Symbolic
Reasoner

I

Knowledge
Modules

R", “I").

2 assume the 2nd queried object is at location (0,0) location(Q2, 0, 0) :- query(Q1, Q2).

3 derive the location of every object

location(A, Xa, Ya) :- |s(A Rel, B) offset(ReI Dx, Dy)

Figure 1: The GPT-3+ASP pipeline for the StepGame dataset.

examples in the prompt. It works after enu-
merating all cases (“12 denotes top, 1 and 2
denote top_right, 3 denotes right, ...”) in the
prompt.

3. Semantic parsing tends to work better if we
instruct GPT-3 to use a predicate name that
better reflects the intended meaning of the
sentence. For example, "A is there and B
is at the 5 position of a clock face" is better
to be turned into down_right (B, A) than
top_left (A, B) although, logically speak-
ing, the relations are symmetric.

The complete set of prompts for semantic parsing
is given in Appendix C.

3.2 Knowledge Modules

Instead of constructing a minimal world model for
each task in Python code (Nye et al., 2021), we
use ASP knowledge modules. While some knowl-
edge could be lengthy to be described in English,
it could be concisely expressed in ASP. For exam-
ple, the location module contains rules for spatial
reasoning in a 2D grid space and is used for bAblI,
StepGame, and gSCAN. Below is the main rule
in the location module that computes the location
(Xa, Ya) of object A from the location (Xb, Yb)
of object B by adding the offsets (Dx, Dy) defined
by the spatial relation R between A and B.

The location module also includes 9 predefined
offsets, e.g., of fset (left, -1, 0), that can be
used to model multi-hop spatial relations of objects
or effects of a robot’s moving in a 2D space. For
example, queries in StepGame are about the spatial
relation R of object A to B. Using the location
module, one can fix B’s location to be (0, 0) and
compute the spatial relation R based on the location
of A as follows.

location(B, 0, 0) :— query(A, B).

answer (R) :— query(d, B), location(d, X, Y),
offset (R, Dx, Dy),
Dx=1: X<0; Dx=0: X=0; Dx=1: X>0;
Dy=-1: ¥<0; Dy=0: Y=0; Dy=1: Y>0.

location(A, Xa, Ya) :— location(B, Xb, Yb),
is(A, R, B), offset(R, Dx, Dy),
Xa=XbtDx, Ya=YbtDy.

The second rule above contains six conditional
literals among which Dx=-1 : X<0 says that “Dx
must be -1 if X<0.” For example, if A’s location
(X,Y) is (=3,0), then (Dx,Dy) is (-1,0)
and the answer R is 1eft. Similar rules can also
be applied to bAbI task 17, which asks if A is R of
B.

In the above rules, the relation R in, e.g.,

s (A, R, B), is a variable and can be substituted
by any binary relation. Such high-order representa-
tion turns out to be quite general and applicable to
many tasks that query relation or its arguments.

StepGame | | bAbl

| Pick&Place | |CLUTRR|

Figure 2: The knowledge modules at the bottom are
used in each task on the top.

5189

Figure 2 shows the knowledge modules used in
this paper, where DEC denotes the Discrete Event
Calculus axioms from (Mueller, 2006; Lee and
Palla, 2012). In this section, we explained the main
rules in the location module. The complete ASP
knowledge modules are given in Appendix E.

4 Experiments

We apply the method in the previous section to four
datasets.”> As a reminder, our approach involves
few-shot in-context learning and does not require
training. We use the same pipeline as shown in
Figure 1, but with different prompts and knowl-
edge modules for each dataset. For more detailed
information about the experimental settings, please
refer to the appendix.

4.1 bADbI

The bADbI dataset (Weston et al., 2016) is a collec-
tion of 20 QA tasks that have been widely applied
to test various natural language reasoning problems,
such as deduction, path-finding, spatial reasoning,
and counting. State-of-the-art models, such as
self-attentive associative-based two-memory model
(STM) (Le et al., 2020) and Query-Reduction net-
works (QRN) (Seo et al., 2017) achieve close to
100% accuracy after training with 10k instances
while QRN’s accuracy drops to 90% with 1k train-
ing instances.

We first designed two GPT-3 baselines, one with
few shot prompts (containing a few example ques-
tions and answers) and the other with Chain-of-
Thought (CoT) prompts (Wei et al., 2022), which
state the relevant information to derive the answer.

We also apply GPT-3+ASP. For example, we use
GPT-3 to turn “the kitchen is south of the bathroom”
into an atomic fact is (kitchen, southOf,
bathroom) by giving a few examples of the same
kind. Regarding knowledge modules, Tasks 1-3, 6—
9, 10-14, and 19 are about events over time and use
the DEC knowledge module. Tasks 4, 17, and 19
require various domain knowledge modules such
as location and action knowledge modules. The
remaining tasks do not require domain knowledge
and rely only on simple rules to extract answers
from parsed facts.

Table 1 compares our method with the two GPT-
3 baselines, as well as two state-of-the-art methods
on bAbI datasets, STM and QRN. Interestingly, the

Due to space restriction, we put the experiments about
Pick&Place in Appendix A.

new GPT-3, text-davinci-003 (denoted GPT-3 (d3)),
with basic few-shot prompting achieves 80.34%
accuracy, while CoT improves it to 86.18%. GPT-
3(d3)+ASP achieves state-of-the-art performance
on bAbI with 99.99% average performance among
all tasks, producing only two answers that disagree
with the labels in the dataset. It turns out that the
two questions are malformed since the answers
are ambiguous, and our model’s answers can be
considered correct.’

4.2 StepGame

Although bAbI has been extensively tested, it has
several problems. Shi et al. (2022) note data leak-
age between the train and the test sets where named
entities are fixed and only a small number of re-
lations are used. Palm et al. (2018) point out that
models do not need multi-hop reasoning to solve
the bADI dataset. To address the issues, Shi et al.
(2022) propose the StepGame dataset. It is a con-
textual QA dataset in which the system is required
to interpret a story .S about spatial relationships
among several entities and answers a query g about
the relative position of two of those entities, as
illustrated in Figure 1. Unlike the bAbI dataset,
StepGame uses a large number of named entities,
and requires multi-hop reasoning up to as many as
10 reasoning steps.

In the basic form of the StepGame dataset, each
story consists of k sentences that describe & spatial
relationships between k + 1 entities in a chain-like
shape. In this paper, we evaluate the StepGame
dataset with noise, where the original chain is ex-
tended with noise statements by branching out with
new entities and relations.

Similarly to bAbI, we designed two GPT-3 base-
lines and applied our method to the StepGame data
set. More details on the prompts are available in
Appendix C.2.

Foreach k € {1,...,10}, the StepGame dataset
with noise consists of 30,000 training samples,
1000 validation samples, and 10,000 test samples.
To save the API cost for GPT-3, we only evaluated
the two GPT-3 baselines on the first 100 test sam-
ples and evaluated our method on the first 1,000
test samples for each & € {1,...,10}. Table 2
compares the accuracy of our method with the two
baselines of GPT-3 and the current methods, i.e.
RN (Santoro et al., 2017), RRN (Palm et al., 2018),
UT (Dehghani et al., 2018), STM (Le et al., 2020),

3See Appendix F.1 for the examples.

5190

Task GPT-3(d3) | GPT-3(d3) | GPT-3(d3) | STM(Le et al., 2020) | QRN(Seo et al., 2017)
Few-Shot CoT +ASP (10K train) (10K train) | (1k train)
1: Single supporting fact 98.4 97.3 100.0 100.0 + 0.0 100.0 100.0
2: Two supporting facts 60.8 72.2 100.0 99.79 £ 0.23 100.0 99.3
3: Three supporting facts 39.6 54.1 100.0 97.87 £ 1.14 100.0 94.3
4: Two arg relations 60.4 72.7 100.0 100.0 = 0.0 100.0 100.0
5: Three arg relations 88.2 89.1 99.8 99.43 £ 0.18 100.0 98.9
6: Yes/no questions 97.4 97.3 100.0 100.0 + 0.0 100.0 99.1
7: Counting 90.6 88.6 100.0 99.19 £ 0.27 100.0 90.4
8: Lists/sets 96.2 97.1 100.0 99.88 £ 0.07 99.6 94.4
9 : Simple negation 98.4 98.2 100.0 100.0 £+ 0.0 100.0 100.0
10: Indefinite knowledge 93.6 92.4 100.0 99.97 £ 0.06 100.0 100.0
11: Basic coreference 93.6 99.2 100.0 99.99 + 0.03 100.0 100.0
12: Conjunction 88.6 88.8 100.0 99.96 £ 0.05 100.0 100.0
13: Compound coreference 98.4 97.3 100.0 99.99 £ 0.03 100.0 100.0
14: Time reasoning 78.0 91.5 100.0 99.84 £0.17 99.9 99.2
15: Basic deduction 57.0 95.0 100.0 100.0 0.0 100.0 100.0
16: Basic induction 90.8 97.5 100.0 99.71 £ 0.15 100.0 47.0
17: Positional reasoning 66.0 70.8 100.0 98.82 £ 1.07 95.9 65.6
18: Size reasoning 89.8 97.1 100.0 99.73 £0.28 99.3 92.1
19: Path finding 21.0 28.7 100.0 97.94 £2.79 99.9 21.3
20: Agents motivations 100.0 100.0 100.0 100.0 0.0 100.0 99.8
[“Average [8034 | 8618 | 9999 | 99.85 [9970 | 90.1 |
Table 1: Test accuracy on 20 tasks in bAbI data
Method | k=1 k=2 k=3 k=4 k=5 models (except for SynSup) for large &k values. CoT
RN 226 171 151 128 115 does not always help and decreases the accuracy
RRN 241 200 160 132 123 with big ks. This may be because there is a higher
uT 451 284 174 141 135
STM s34 360 230 185 151 chance of making a mistake in a long chain of
TPR-RNN 703 460 36.1 268 248 thought. GPT-3(d2)+ASP outperforms all state-
"é“P-l;/IANN ggi 32(3) ggg %? ;(l)g of-the-art methods and the GPT-3 baselines by a
yioup ’ ’ ’ i i large margin for £ = 4, ..., 10. Although SynSup
Few-Shot (d3) 550 37.0 250 300 320 achieves a higher accuracy for £ = 1,2, 3, this
CoT (d3) 61.0 450 30.0 350 350
GPT-3(c1)+ASP | 447 1388 405 588 624 is misleading due to errors in the dataset. As we
GPT-3(d2)+ASP | 92.6 89.9 89.1 938 929 analyze below, about 10.7% labels in the data are
Method | k=6 k=7 k=8 k=9 k=10 wrong. The SynSup training makes the model learn
to make the same mistakes over the test dataset,
RN 1.1 115 11.2 11.1 11.3 . . .
RRN 116 114 118 112 117 which is why its performance looks better than
UT 127 121 114 114 11.7 ours.
STM 13.8 12,6 11.5 113 11.8 .
TPR-RNN 23 199 155 130 127 The modular design of GPT—3{+ASP enables }Js
TP-MANN 285 265 237 225 215 to analyze the reasons behind its wrong predic-
SynSup 634 587 521 484 457 tions. We collected the first 100 data instances for
Few-Shot (d3) | 29.0 21.0 220 340 310 each k € {1,...,10} and manually analyzed the
g‘l’% (3d(3)1)+ASP ?;.g gé-g gg-g ?2'2 gi'? predictions on them. Among 1000 predictions of
-3(C
GPT-3(d2)+ASP | 91.6 91.2 904 89.0 88.3 GPT—3(d2)+ASP, 108 of them dlsagree with the

Table 2: Test accuracy on the StepGame test dataset,
where (c1), (d2), and (d3) denote text-curie-001, text-
davinci-002, and text-davinci-003 models, respectively

TPR-RNN (Schlag and Schmidhuber, 2018), TP-
MANN (Shi et al., 2022), and SynSup (with pre-
training on the SPARTUN dataset) (Mirzaee and
Kordjamshidi, 2022). Surprisingly, the GPT-3 base-
lines could achieve accuracy comparable to other

dataset labels, and we found that 107 of those have
errors in the labels. For example, given the story
and question “J and Y are horizontal and J is to
the right of Y. What is the relation of the agent Y
with the agent J?”, the label in the dataset is “right”
while the correct relation should be “left”.* Recall

*The remaining disagreeing case is due to text-davinci-
002’s mistake. For the sentence, “if E is the center of a clock
face, H is located between 2 and 3.” text-davinci-002 turns
it into “right(H, E)” whereas text-davinci-003 turns it into
“top-right(H, E)” correctly. To save API cost for GPT-3, we

5191

that our method is interpretable, so we could easily
identify the source of errors.

43 CLUTRR

CLUTRR (Sinha et al., 2019) is a contextual QA
dataset that requires inferring family relationships
from a story. Sentences in CLUTRR are generated
using 6k template narratives written by Amazon
Mechanical Turk crowd-workers, and thus are more
realistic and complex compared to those in bAbI
and StepGame.

CLUTRR consists of two subtasks, systematic
generalization that evaluates stories containing un-
seen combinations of logical rules (Minervini et al.,
2020; Bergen et al., 2021) and robust reasoning
that evaluates stories with noisy descriptions (Tian
et al., 2021). Since we use ASP for logical rea-
soning, which easily works for any combination
of logical rules, we focus on the robust reasoning
task.

Method | CLU. | clean supp. irre. disc.
RN 1.0 49 68 50 45
MAC 1.0 63 65 56 40
Bi-att 1.0 58 67 51 57
GSM 1.0 68.5 48.6 629 528
GPT-3(d3)+ASP ‘ 1.0 ‘ 685 828 748 674

GPT-3(d3)+ASP ‘ 1.3 ‘ 97.0 84.0 92.0 90.0

Table 3: Test accuracy on 4 categories in CLUTRR 1.0
and CLUTRR 1.3 datasets

Table 3 compares our method with RN (Santoro
et al., 2017), MAC (Hudson and Manning, 2018),
BiLSTM-attention (Sinha et al., 2019), and GSM
(Tian et al., 2021) on the original CLUTRR dataset,
namely CLUTRR 1.0, in four categories of data
instances: clean, supporting, irrelevant, and discon-
nected (Sinha et al., 2019). Except for our method,
all other models are trained on the corresponding
category of CLUTRR training data. Although our
method achieves similar or higher accuracies in
all categories, they are still much lower than we
expected.

We found that such low accuracy is due to the
clear errors in CLUTRR, originating mostly from
errors in the template narratives or the generated
family graphs that violate common sense. The au-
thors of CLUTRR recently published CLUTRR 1.3
codes to partially resolve this issue. > With the new
code, we created a new dataset, namely CLUTRR
did not re-run the whole experiments with text-davinci-003.

*https://github.com/facebookresearch/
clutrr/tree/develop

1.3, consisting of 400 data instances with 100 for
each of the four categories. The last row in Table 3
shows that our method actually performs well on
realistic sentences in CLUTRR. Indeed, with our
method (using text-davinci-003) on CLUTRR 1.3
dataset, 363 out of 400 predictions are correct, 16
are still wrong due to data mistakes (e.g., the la-
bel says “Maryann has an uncle Bruno” while the
noise sentence added to the story is “Maryann told
her son Bruno to give the dog a bath”), and 21 are
wrong due to GPT-3’s parsing mistakes (e.g., GPT-
3 turned the sentence “Watt and Celestine asked
their mother, if they could go play in the pool” into
mother ("Watt", "Celestine"). Since
the sentences in CLUTRR 1.3 are more realistic
than those in bAbI and StepGame, GPT-3 makes
more mistakes even after reasonable efforts of
prompt engineering. More details on data errors
and GPT-3 errors are available in Appendix F.2 and
Appendix D.

Method \clean supp. irre. disc.

DeepProbLog | 100 100 100 94
GPT-3(d2)+ASP 100 100 97 97
GPT-3(d3)+ASP 100 100 100 100

Table 4: Test accuracy on CLUTRR-S dataset

We also evaluated our method on a simpler and
cleaner variant of the CLUTRR data set, namely
CLUTRR-S, that was used as a benchmark prob-
lem for a state-of-the-art neuro-symbolic approach
DeepProbLog (Manhaeve et al., 2021). Table 4
compares the accuracy of our method and Deep-
ProbLog in all 4 categories of test data. GPT-
3(d3)+ASP achieves 100% accuracy, outperform-
ing DeepProbLog without the need for training.

Remark: Due to the modular structure, our
method could serve as a data set validation tool to
detect errors in a dataset. We detected 107 wrong
data instances in the first 1000 data in StepGame
and 16 wrong data instances in the 400 data in
CLUTRR 1.3.

44 gSCAN

The gSCAN dataset (Ruis et al., 2020) poses a task
in which an agent must execute action sequences
to achieve a goal (specified by a command in a
natural language sentence) in a grid-based visual
navigation environment. The dataset consists of
two tasks, and we evaluate our method on the data
splits from the compositional generalization task.
There is one shared training set, one test set (split

5192

https://github.com/facebookresearch/clutrr/tree/develop
https://github.com/facebookresearch/clutrr/tree/develop

A) randomly sampled from the same distribution
of the training set, and seven test sets (splits B
to H) with only held-out data instances (i.e., not
appearing in the training set) in different ways.

In the gSCAN dataset, each data instance is a
tuple (G, q, a) where G is the grid configuration (in
JSON format) describing the size of the gird, the
location and direction of the agent, and the location
and features of each object in the grid; ¢ is a query
(e.g., “pull a yellow small cylinder hesitantly”); and
a is the answer in the form of a sequence of actions
(e.g., “turn right, walk, stay, pull, stay, pull, stay”).
For each data instance, we (i) use a Python script to
extract atomic facts (e.g., pos (agent, (2,3)))
from the grid configuration G; (ii) extract
atomic facts from query ¢ into atomic facts
(e.g., query (pull), queryDesc (yellow),
while (hesitantly)) using GPT-3; and (iii)
predict the sequence of actions for this query us-
ing ASP. The details of the prompts are given in
Appendix C4.

Method | A B C D
GECA 87.60 3492 78.77 0.00
DualSys 74.7 81.3 78.1 0.01
Vilbert+CMA 9995 9990 99.25 0.00
GPT-3(c1)+ASP | 98.30 100 100 100
GPT-3(d2)+ASP 100 100 100 100
Method | E F G H
GECA 33.19 8599 0.00 11.83
DualSys 53.6 76.2 0.0 21.8
Vilbert+CMA 99.02 99.98 0.00 22.16

GPT-3(c1)+ASP 100 100 100 100
GPT-3(d2)+ASP | 100 100 100 100

Table 5: Test accuracy on the gSCAN dataset

Table 5 compares the accuracy of our method
and the state-of-the-art methods, i.e., GECA (Ruis
et al., 2020), DualSys (Nye et al., 2021) and Vil-
bert+CMA (Qiu et al., 2021), on the gSCAN test
dataset in eight splits. To save API cost for GPT-
3, we only evaluated the first 1000 data instances
of each split. With text-davinci-002, our method
GPT-3+ASP achieves 100% accuracy. With text-
curie-001, the accuracy is slightly lower, making
17 errors in split A. The errors are of two kinds.
The language model fails to extract adverbs in the
correct format for 11 data instances (e.g., GPT-3 re-
sponded queryDesc (while spinning) in-
stead of while (spinning)) and didn’t ground
the last word in a query for 6 data instances (e.g.,
for query walk to a small square, GPT-

3 missed an atomic fact queryDesc (square)).
Once the parsed results are correct, ASP does not
make a mistake in producing plans.

4.5 Findings

The following summarizes the findings of the ex-
perimental evaluation.

* Our experiments confirm that LLMs like GPT-
3 are still not good at multi-step reasoning
despite various prompts we tried. Chain-of-
Thought is less likely to improve accuracy
when a long chain of thought is required.

* On the other hand, LLMs are surprisingly
good at turning a variety of expressions into
a "canonical form" of information extraction.
This in turn allows ASP knowledge modules
to be isolated from linguistic variability in the
input.

* Even for generating simple atomic facts,
larger models tend to perform better. For ex-
ample, in StepGame and gSCAN, text-curie-
001 performs significantly worse compared to
text-davinci-002 (Tables 2 and 5).

* The total amount of knowledge that needs
to be encoded for all of the above datasets
is not too large. This is in part due to the
fact that GPT-3 "normalized" various forms
of input sentences for ASP to process and that
knowledge modules could be reused across
different datasets.

* The modular design of our approach makes it
possible to locate the root cause of each failed
prediction in the training data and improve
upon it. There are three sources of errors: se-
mantic parsing in LLMs, symbolic constraints,
and the dataset itself, and we can resolve the
first two issues by improving the prompts and
updating the constraints, respectively.

* Our framework could serve as a few-shot
dataset justifier and corrector. Among all pre-
dictions by our method that do not align with
the labels, almost all of them (with only a few
exceptions discussed in the paper) are due to
errors in the dataset.

5 Conclusion

Symbolic logic programming was previously con-
sidered limited in its ability to reason from text due

5193

to its inability to handle various and ambiguous
linguistic expressions. However, combining it with
a large language model that has learned distributed
representations helps alleviate this problem. The
method not only achieves high accuracy but also
produces interpretable results, as the source of the
errors can be identified. It is also general; by using
pre-trained networks with few-shot prompts and
reusable knowledge modules, adapting to a new
domain does not require extensive training.

The knowledge modules used in our experi-
ments are reusable. For the above experiments,
the modules are relatively simple to write, as are
the prompts for parsing natural language for LLMs.
However, acquiring this kind of knowledge on a
massive scale is also an important line of research
(Liu and Singh, 2004; Bosselut et al., 2019; Hwang
et al., 2021) that needs to be combined. In addition,
it is possible to use LLM’s code generation capa-
bility (Chen et al., 2021) to generate logic program
rules, which we leave for future work.

One may think that the logic rules are too rigid.
However, there are many weighted or probabilistic
rules that can be defeated (Richardson and Domin-
gos, 2006; Fierens et al., 2013; Lee and Wang,
2018). They could be used for more realistic set-
tings, but for the benchmark problems above, they
were not needed.

Ethical Considerations

All datasets used in this paper are publicly avail-
able. For CLUTRR dataset, the gender informa-
tion is essential to tell if, e.g., A is B’s uncle or
niece. We used GPT-3 to predict the genders of
persons in each story. Since each story is systemati-
cally generated using sampled common first names
and sampled sentence templates, it does not reveal
any identity. As mentioned, the original CLUTRR
dataset had some errors, and we describe carefully
the codes and settings of the generated CLUTRR
1.3 dataset in Appendix B.1.

Limitations

The current work requires that knowledge modules
be written by hand. Commonly used axioms, such
as general knowledge like the commonsense law of
inertia expressed by event calculus, can be reused
easily, but there are vast amounts of other common-
sense knowledge that are not easy to obtain. LLMs
could be used to supply this information, but we
have not tried. Knowledge graphs, such as Con-

ceptNet (Liu and Singh, 2004), COMET (Bosselut
et al., 2019) and ATOMIC (Hwang et al., 2021),
can be utilized to populate ASP rules. Like code
models, we expect that LLMs could generate ASP
code, which we leave for future work.

Also, when using large language models, despite
various efforts, sometimes it is not understandable
why they do not behave as expected.

Acknowledgements

This work was partially supported by the National
Science Foundation under Grant I1S-2006747.

References

Monica Agrawal, Stefan Hegselmann, Hunter Lang,
Yoon Kim, and David Sontag. 2022. Large language
models are few-shot clinical information extractors.
In Proceedings of the 2022 Conference on Empiri-
cal Methods in Natural Language Processing, page
1998-2022. Association for Computational Linguis-
tics.

Michael Ahn, Anthony Brohan, Yevgen Chebotar,
Chelsea Finn, Karol Hausman, Alexander Herzog,
Daniel Ho, Julian Ibarz, Alex Irpan, Eric Jang, Ryan
Julian, et al. 2022. Do as I can, not as I say: Ground-
ing language in robotic affordances. In 6th Annual
Conference on Robot Learning.

Joseph Babb and Joohyung Lee. 2012. Module theorem
for the general theory of stable models. Theory and
Practice of Logic Programming, 12(4-5):719-735.

Chitta Baral, Juraj Dzifcak, and Hiro Takahashi. 2006.
Macros, macro calls and use of ensembles in mod-
ular answer set programming. In International
Conference on Logic Programming, pages 376-390.
Springer.

Leon Bergen, Timothy O’Donnell, and Dzmitry Bah-
danau. 2021. Systematic generalization with edge
transformers. Advances in Neural Information Pro-
cessing Systems, 34:1390-1402.

Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chai-
tanya Malaviya, Asli Celikyilmaz, and Yejin Choi.
2019. Comet: Commonsense transformers for knowl-
edge graph construction. In Association for Compu-
tational Linguistics (ACL).

Gerhard Brewka, Ilkka Niemeld, and Miroslaw
Truszczynski. 2011. Answer set programming at
a glance. Communications of the ACM, 54(12):92—
103.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

5194

https://aclanthology.org/2022.emnlp-main.130
https://aclanthology.org/2022.emnlp-main.130

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Xiang Chen, Ningyu Zhang, Xin Xie, Shumin Deng,
Yunzhi Yao, Chuangi Tan, Fei Huang, Luo Si, and
Huajun Chen. 2022. Knowprompt: Knowledge-
aware prompt-tuning with synergistic optimization
for relation extraction. In Proceedings of the ACM
Web Conference 2022, pages 2778-2788.

Xilun Chen, Asish Ghoshal, Yashar Mehdad, Luke
Zettlemoyer, and Sonal Gupta. 2020a. Low-resource
domain adaptation for compositional task-oriented
semantic parsing. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language

Processing (EMNLP), pages 5090-5100.

Zhenfang Chen, Jiayuan Mao, Jiajun Wu, Kwan-
Yee Kenneth Wong, Joshua B Tenenbaum, and
Chuang Gan. 2020b. Grounding physical concepts
of objects and events through dynamic visual rea-
soning. In International Conference on Learning
Representations.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals,
Jakob Uszkoreit, and Lukasz Kaiser. 2018. Universal
transformers. In International Conference on Learn-
ing Representations.

Mingyu Ding, Zhenfang Chen, Tao Du, Ping Luo, Josh
Tenenbaum, and Chuang Gan. 2021. Dynamic visual
reasoning by learning differentiable physics models
from video and language. Advances in Neural Infor-
mation Processing Systems, 34.

Li Dong and Mirella Lapata. 2016. Language to logical
form with neural attention. In 54th Annual Meet-
ing of the Association for Computational Linguistics,
pages 33-43. Association for Computational Linguis-
tics (ACL).

Andrew Drozdov, Nathanael Schirli, Ekin Akyiirek,
Nathan Scales, Xinying Song, Xinyun Chen, Olivier
Bousquet, and Denny Zhou. 2022. Compositional
semantic parsing with large language models. arXiv
preprint arXiv:2209.15003.

Daan Fierens, Guy Van den Broeck, Joris Renkens,
Dimitar Shterionov, Bernd Gutmann, Ingo Thon,
Gerda Janssens, and Luc De Raedt. 2013. Inference
and learning in probabilistic logic programs using
weighted boolean formulas. Theory and Practice of
Logic Programming, pages 1-44.

Michael Gelfond and Vladimir Lifschitz. 1988. The
stable model semantics for logic programming. In
Proceedings of International Logic Programming
Conference and Symposium, pages 1070-1080. MIT
Press.

Omer Goldman, Veronica Latcinnik, Ehud Nave, Amir
Globerson, and Jonathan Berant. 2018. Weakly su-
pervised semantic parsing with abstract examples. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1809-1819.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky
Liang, Pete Florence, Andy Zeng, Jonathan Tompson,
Igor Mordatch, Yevgen Chebotar, Pierre Sermanet,
Tomas Jackson, Noah Brown, Linda Luu, Sergey
Levine, Karol Hausman, and brian ichter. 2022. Inner
monologue: Embodied reasoning through planning
with language models. In 6th Annual Conference on
Robot Learning.

Drew A Hudson and Christopher D Manning. 2018.
Compositional attention networks for machine rea-
soning. In International Conference on Learning
Representations.

Jena D Hwang, Chandra Bhagavatula, Ronan Le Bras,
Jeff Da, Keisuke Sakaguchi, Antoine Bosselut, and
Yejin Choi. 2021. (comet-) atomic 2020: On sym-
bolic and neural commonsense knowledge graphs.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 6384-6392.

Robin Jia and Percy Liang. 2016. Data recombination
for neural semantic parsing. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
12-22.

Tomas Kocisky, Gabor Melis, Edward Grefenstette,
Chris Dyer, Wang Ling, Phil Blunsom, and
Karl Moritz Hermann. 2016. Semantic parsing with
semi-supervised sequential autoencoders. In Pro-
ceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1078—
1087.

Brenden Lake and Marco Baroni. 2018. Generalization
without systematicity: On the compositional skills
of sequence-to-sequence recurrent networks. In In-
ternational conference on machine learning, pages
2873-2882. PMLR.

Luis C Lamb, Artur Garcez, Marco Gori, Marcelo
Prates, Pedro Avelar, and Moshe Vardi. 2020. Graph
neural networks meet neural-symbolic computing:
A survey and perspective. In Proceedings of Inter-
national Joint Conference on Artificial Intelligence

(IJCAI), pages 48774884,

Hung Le, Truyen Tran, and Svetha Venkatesh. 2020.
Self-attentive associative memory. In International
Conference on Machine Learning, pages 5682—-5691.
PMLR.

Joohyung Lee and Ravi Palla. 2012. Reformulating
the situation calculus and the event calculus in the
general theory of stable models and in answer set pro-

gramming. Journal of Artificial Inteligence Research
(JAIR), 43:571-620.

5195

https://openreview.net/forum?id=3R3Pz5i0tye
https://openreview.net/forum?id=3R3Pz5i0tye
https://openreview.net/forum?id=3R3Pz5i0tye

Joohyung Lee and Yi Wang. 2018. Weight learning
in a probabilistic extension of answer set programs.
In Proceedings of International Conference on Prin-
ciples of Knowledge Representation and Reasoning

(KR), pages 22-31.

Vladimir Lifschitz. 2008. What is answer set program-
ming? In Proceedings of the AAAI Conference on
Artificial Intelligence, pages 1594—1597. MIT Press.

Vladimir Lifschitz. 2019. Answer set programming.
Springer Heidelberg.

Hugo Liu and Push Singh. 2004. Conceptnet—a practi-
cal commonsense reasoning tool-kit. BT technology
Jjournal, 22(4):211-226.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2021. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
ACM Computing Surveys (CSUR).

Robin Manhaeve, Sebastijan Dumanci¢, Angelika Kim-
mig, Thomas Demeester, and Luc De Raedt. 2021.
Neural probabilistic logic programming in deep-
problog. Artificial Intelligence, 298:103504.

Gary Marcus. 2018. Deep learning: A critical appraisal.
arXiv preprint arXiv:1801.00631.

John McCarthy. 1998. Elaboration tolerance. In Work-
ing Papers of the Fourth Symposium on Logical For-
malizations of Commonsense Reasoning.

John McCarthy and Patrick Hayes. 1969. Some philo-
sophical problems from the standpoint of artificial
intelligence. In B. Meltzer and D. Michie, editors,
Machine Intelligence, volume 4, pages 463-502. Ed-
inburgh University Press, Edinburgh.

Scott Miller, David Stallard, Robert Bobrow, and
Richard Schwartz. 1996. A fully statistical approach
to natural language interfaces. In 34th Annual Meet-
ing of the Association for Computational Linguistics,
pages 55-61.

Pasquale Minervini, Sebastian Riedel, Pontus Stenetorp,
Edward Grefenstette, and Tim Rocktidschel. 2020.
Learning reasoning strategies in end-to-end differ-
entiable proving. In Infernational Conference on
Machine Learning, pages 6938—-6949. PMLR.

Roshanak Mirzaee and Parisa Kordjamshidi. 2022.
Transfer learning with synthetic corpora for spatial
role labeling and reasoning. In Proceedings of the
2022 Conference on Empirical Methods in Natural
Language Processing, page 6148—-6165. Association
for Computational Linguistics.

Erik Mueller. 2006. Commonsense reasoning. Elsevier.

Maxwell Nye, Michael Tessler, Josh Tenenbaum, and
Brenden M Lake. 2021. Improving coherence and
consistency in neural sequence models with dual-
system, neuro-symbolic reasoning. Advances in
Neural Information Processing Systems, 34:25192—
25204.

Emilia Oikarinen and Tomi Janhunen. 2006. Modular
equivalence for normal logic programs. In /7th Eu-
ropean Conference on Artificial Intelligence(ECAI),
pages 412-416.

Rasmus Palm, Ulrich Paquet, and Ole Winther. 2018.
Recurrent relational networks. In Proceedings of
Advances in Neural Information Processing Systems,
pages 3368-3378.

Linlu Qiu, Hexiang Hu, Bowen Zhang, Peter Shaw, and
Fei Sha. 2021. Systematic generalization on gscan:
What is nearly solved and what is next? In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pages 2180-2188.

Raymond Reiter. 2001. Knowledge in Action: Log-
ical Foundations for Specifying and Implementing
Dynamical Systems. MIT Press.

Matthew Richardson and Pedro Domingos. 2006.
Markov logic networks. Machine Learning, 62(1-
2):107-136.

Sebastian Ruder. 2021. Challenges and Opportuni-
ties in NLP Benchmarking. http://ruder.io/
nlp-benchmarking.

Laura Ruis, Jacob Andreas, Marco Baroni, Diane
Bouchacourt, and Brenden M Lake. 2020. A bench-
mark for systematic generalization in grounded lan-
guage understanding. Advances in neural informa-
tion processing systems, 33:19861-19872.

Shailaja Sampat and Joohyung Lee. 2018. A model-
based approach to visual reasoning on cnlvr dataset.
In Sixteenth International Conference on Principles
of Knowledge Representation and Reasoning.

Adam Santoro, David Raposo, David G Barrett, Ma-
teusz Malinowski, Razvan Pascanu, Peter Battaglia,
and Timothy Lillicrap. 2017. A simple neural net-
work module for relational reasoning. In Advances in
neural information processing systems, pages 4967—
4976.

Md Kamruzzaman Sarker, Lu Zhou, Aaron Eberhart,
and Pascal Hitzler. 2021. Neuro-symbolic artificial
intelligence. AI Communications, pages 1-13.

Imanol Schlag and Jiirgen Schmidhuber. 2018. Learn-
ing to reason with third order tensor products. Ad-
vances in neural information processing systems, 31.

Nathan Schucher, Siva Reddy, and Harm de Vries. 2022.
The power of prompt tuning for low-resource seman-
tic parsing. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 148—156.

Min Joon Seo, Sewon Min, Ali Farhadi, and Hannaneh
Hajishirzi. 2017. Query-reduction networks for ques-
tion answering. In 5th International Conference
on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Pro-
ceedings.

5196

https://aclanthology.org/2022.emnlp-main.413
https://aclanthology.org/2022.emnlp-main.413
http://ruder.io/nlp-benchmarking
http://ruder.io/nlp-benchmarking
https://openreview.net/forum?id=B1MRcPclx
https://openreview.net/forum?id=B1MRcPclx

Murray Shanahan. 1995. A circumscriptive calculus of
events. Artif. Intell., 77(2):249-284.

Zhengxiang Shi, Qiang Zhang, and Aldo Lipani. 2022.
Stepgame: A new benchmark for robust multi-hop
spatial reasoning in texts. Association for the Ad-
vancement of Artificial Intelligence.

Richard Shin, Christopher Lin, Sam Thomson, Charles
Chen Jr, Subhro Roy, Emmanouil Antonios Platanios,
Adam Pauls, Dan Klein, Jason Eisner, and Benjamin
Van Durme. 2021. Constrained language models
yield few-shot semantic parsers. In Proceedings of
the 2021 Conference on Empirical Methods in Natu-
ral Language Processing, pages 7699-7715.

Koustuv Sinha, Shagun Sodhani, Jin Dong, Joelle
Pineau, and William L Hamilton. 2019. Clutrr: A di-
agnostic benchmark for inductive reasoning from text.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-1JCNLP), pages 4506—4515.

Jidong Tian, Yitian Li, Wenqing Chen, HE Hao, and
Yaohui Jin. 2021. A generative-symbolic model for
logical reasoning in nlu. In Is Neuro-Symbolic SOTA
still a myth for Natural Language Inference? The
first workshop.

Karthik Valmeekam, Alberto Olmo, Sarath Sreedharan,
and Subbarao Kambhampati. 2022. Large language
models still can’t plan (a benchmark for LLMs on
planning and reasoning about change). In NeurIPS
2022 Foundation Models for Decision Making Work-
shop.

Chenguang Wang, Xiao Liu, and Dawn Song. 2022.
Ielm: An open information extraction benchmark for
pre-trained language models. In Proceedings of the
2022 Conference on Empirical Methods in Natural
Language Processing, page 8417-8437. Association
for Computational Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed H. Chi, Quoc V Le,
and Denny Zhou. 2022. Chain of thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems.

Jason Weston, Antoine Bordes, Sumit Chopra, and
Tomads Mikolov. 2016. Towards ai-complete question
answering: A set of prerequisite toy tasks. In 4th In-
ternational Conference on Learning Representations,
ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,
Conference Track Proceedings.

Yuk Wah Wong and Raymond Mooney. 2007. Learn-
ing synchronous grammars for semantic parsing with
lambda calculus. In Proceedings of the 45th Annual
Meeting of the Association of Computational Linguis-

tics, pages 960-967.

Kexin Yi, Chuang Gan, Yunzhu Li, Pushmeet Kohli,
Jiajun Wu, Antonio Torralba, and Joshua B Tenen-
baum. 2019. CLEVRER: Collision events for video
representation and reasoning. In /CLR.

John M Zelle and Raymond J Mooney. 1996. Learning
to parse database queries using inductive logic pro-
gramming. In Proceedings of the national conference
on artificial intelligence, pages 1050-1055.

Andy Zeng, Adrian Wong, Stefan Welker, Krzysztof
Choromanski, Federico Tombari, Aveek Purohit,
Michael Ryoo, Vikas Sindhwani, Johnny Lee, Vin-
cent Vanhoucke, et al. 2022. Socratic models: Com-
posing zero-shot multimodal reasoning with lan-
guage. arXiv preprint arXiv:2204.00598.

Luke S Zettlemoyer and Michael Collins. 2005. Learn-
ing to map sentences to logical form: structured clas-
sification with probabilistic categorial grammars. In
Proceedings of the Twenty-First Conference on Un-
certainty in Artificial Intelligence, pages 658—666.

Denny Zhou, Nathanael Schirli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Olivier Bousquet, Quoc Le, and Ed Chi. 2022.
Least-to-most prompting enables complex reason-
ing in large language models. arXiv preprint
arXiv:2205.10625.

Wenxuan Zhou and Muhao Chen. 2022. An improved
baseline for sentence-level relation extraction. In Pro-
ceedings of the 2nd Conference of the Asia-Pacific
Chapter of the Association for Computational Lin-
guistics and the 12th International Joint Conference
on Natural Language Processing (Volume 2: Short
Papers), pages 161-168, Online only. Association for
Computational Linguistics.

5197

https://openreview.net/forum?id=wUU-7XTL5XO
https://openreview.net/forum?id=wUU-7XTL5XO
https://openreview.net/forum?id=wUU-7XTL5XO
https://aclanthology.org/2022.emnlp-main.576
https://aclanthology.org/2022.emnlp-main.576
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
http://arxiv.org/abs/1502.05698
http://arxiv.org/abs/1502.05698
https://aclanthology.org/2022.aacl-short.21
https://aclanthology.org/2022.aacl-short.21

Appendix

Section A presents another experiment with
robot planning. Section B discusses more details
about how we generated CLUTRR dataset and the
experimental result on CLUTRR 1.0. Section C
presents GPT-3 prompts for semantic parsing. Sec-
tion D enumerates the errors with GPT-3 in seman-
tic parsing. Section E presents ASP knowledge
modules we used for the experiments. Section F
enumerates the errors in the datasets.

For bADbI, the prompts for the baseline few-shot
prompting can be found in the directory bAbT_
baseline/example_prompts, while the
prompts for chain-of-thought can be found in
bAbI_baseline/COT_prompts_v3. For
StepGame, the prompts for the baseline few-shot
prompting and chain-of-thought can be found in
the directory stepGame/prompts. The follow-
ing table records the cost for GPT-3 queries used
in GPT-3 baselines and our method, where Eng.
denotes the engine of GPT-3, c1, d2, d3 denote
text-curie-001, text-davinci-002, and text-davinci-
003.

[Dataset [Method [Eng. [#Data [Cost]
FewShot | d3 | 20k | S190
bAbI CoT 43 | 20k | $280
GPT-3+ASP | d3 | 20k | $41
FewShot | @3 | 1k | S2I
CoT a3 | 1k | $26
StepGame | GpraiaASP | ol | 10k | $89
GPT-3+ASP | d2 | 10k | $886
CLUTRR 1.0 | GPT34ASP | d3 | 879 | $37
CLUTRR 1.3 | GPT3+ASP | d3 | 400 | SI7
CLUTRR-S | GPT3+ASP | 43 | 563 | S0
eSCAN | GPT3+ASP | oI | 8k | 302
. Few-Shot d3 40 $0.5
Pick&Place | pr3iasp | a3 | 40 | $04

All experiments were conducted on Ubuntu
18.04.2 LTS with two 10-core CPU Intel(R)
Xeon(R) CPU E5-2640 v4 @ 2.40GHz and four
GP104 [GeForce GTX 1080] graphics cards.

All datasets used in this paper are publicly avail-
able. The bAbI dataset is under BSD license. The
CLUTRR dataset is released under “Attribution-
NonCommercial 4.0 International” license. The
StepGame dataset doesn’t have a specified license.
The gSCAN dataset is released under MIT license.

A Robot Planning

Recently, there has been increasing interest in us-
ing LLMs to find a sequence of executable actions
for robots, aiming to achieve high-level goals ex-
pressed in natural language, such as SayCan (Ahn
et al., 2022) and Innermonologue (Huang et al.,

2022). However, it is worth noting that the actions
generated by LLMs tend to be loosely connected
and do not take into account the intermediate state
changes that occur during the execution of these
actions.

@tow:

Initial State:

The red block is on the green bowl.

The green block is on the blue bowl. LLM
The blue block is on the red bowl.

Goal State:

The red block is on the red bowl. on("blue block", "blue bowl").
The green block is on the green bowl. 1

\The blue block is on the blue bowl. Knowledge __ Symbolic

Query: Modules Reasoner
Move blocks from initial to goal state.

)
ﬁnswer: Prediction:
Pick the blue block and place it on the green block. | |move("blue block","green block",0).
Pick the red block and place it on the red bowl. move("red block","red bow!",0).
Pick the blue block and place it on the red block. move("blue block","red block",0).
Pick the green block and place it on the green bowl.| |move("green block","green bowl",0).
Eick the blue block and place it on the blue bowl. ove("blue block","blue bowl",0).

on("red block", "green bowl", 0).
on("green block", "blue bowl!", 0).
on("blue block", "red bow!", 0).

on("red block", "red bowl").
on("green block", "green bowl").

Figure 3: The GPT-3+ASP pipeline for Pick&Place

We based our work on SayCan’s open-source vir-
tual tabletop environment®, where a robot is tasked
with achieving a goal, such as "stack the blocks," on
a table with colored blocks and bowls. We noticed
that the successful plans demonstrated by SayCan
are restricted to simple one-step look-ahead plans
that do not take into account intermediate state
changes.

We randomly sampled 40 data instances of the
form (S;, Sy, L) in the Pick&Place domain with
4 to 7 blocks and 3 to 7 bowls, possibly stacked
together and with 3 to 10 steps of pick_and_place
actions required by the robot to change the initial
state .S; to the goal state S,. Here, the label L is
the set of instructions to achieve the goals (e.g., “1.
Move the violet block onto the blue block. 2...”).
Among 40 data instances, 20 data instances contain
only blocks that can be placed on the table while
20 data instances contain both blocks and bowls
and assume all blocks must be on the bowls.

The baseline for this dataset follows the method
in SayCan’s open-source virtual tabletop environ-
ment, where GPT-3 is used as the large language
model to directly find the sequence of actions
from S; to S;. However, the baseline fails to
find successful plans for all 40 randomly sampled
data instances. This result confirms the claim by
(Valmeekam et al., 2022) that large language mod-
els are not suitable as planners.

We also applied our method to this task. We let
GPT-3 turn the states S; and S, into atomic facts of
the form on(A, B,0) and on(A, B), respectively.

*https://github.com/google-research/
google—research/tree/master/saycan

5198

https://github.com/google-research/google-research/tree/master/saycan
https://github.com/google-research/google-research/tree/master/saycan

Then, an ASP program for the Pick&Place domain
is used to find an optimal plan. We found that
while GPT-3 has only 0% accuracy in predicting the
whole plan, it has 100% accuracy in fact extraction
under the provided format. When we apply sym-
bolic reasoning to these extracted atomic facts with
an ASP program, we could achieve 100% accuracy
on the predicted plans. Details of the prompts are
available in Appendix C.5.

Method | Blocks Blocks+Bowls
GPT-3(d3) 0 0
GPT-3(d3)+ASP | 100 100

Table 6: Test accuracy on the Pick&Place dataset. (d3)
denotes the text-davinci-003 model.

predicted actions (pick and place)

&

"4

initial state

$

-

goal state

3/

Figure 4: A simple plan predicted by GPT-3+ASP in
the Pick&Place domain.

B More about CLUTRR

B.1 CLUTRR 1.3 Data Generation

We used CLUTRR 1.3 codes to generate 400 test
data instances. / Our generated CLUTRR 1.3
dataset consists of 100 data for each of the four cat-
egories: (assuming that the query is asking about
the relation between persons A and D)

* clean: each story describes 3 relations in a
chain of four persons A — B — C — D;

"We used the development branch of CLUTRR repository
https://github.com/facebookresearch/clutrr/tree/develop.

* supporting: each story describes 3 relations in
a chain of four persons A — B — C — D as
well as an additional relation X — Y such that
X,Y € {A,B,C,D} and X — Y is not the
queried pair;

* irrelevant: each story describes 3 relations in
a chain of four persons A — B — C — D as
well as an additional relation X — Y such that
X e{A,B,C,D}andY ¢ {A,B,C,D};

* disconnected: each story describes 3 relations
in a chain of four persons A — B — C' — D as
well as an additional relation X — Y such that
X, Y ¢{A,B,C,D}.

B.2 Evaluation on CLUTRR 1.0

Training Testing BA GSM d2 d3
Clean 58 69 63 68

Supportin, 76 66 62 62

Clean Imdovant | 70 77 66 71
Disconnected | 49 36 59 59

Supporting Supporting 67 49 83 83
Irrelevant Irrelevant 51 63 72 175
Disconnected Disconnected | 57 53 63 67

Table 7: Test accuracy on the CLUTRR dataset. BA
denotes BiLSTM-Attention. d2 and d3 denote GPT-
3+ASP with text-davinci-002 and text-davinci-003
model.

Table 7 compares the accuracy of our method
and the state-of-the-art methods, i.e., BILSTM-
Attention (Sinha et al., 2019) and GSM (with a
BiLSTM encoder) (Tian et al., 2021), on the (origi-
nal) CLUTRR test dataset. Except for our method,
all other models are trained on a specific split of
the CLUTRR training dataset.

Training Testing Dp d2 d3
Clean 100 100 100

Supporting 99 96 99
Clean Televant | 98 99 100
Disconnected | 99 98 100
Supporting Supporting 100 100 100
Irrelevant Irrelevant 100 97 100
Disconnected Disconnected 94 97 100

Table 8: Test accuracy on the CLUTRR-S dataset. DP
denotes DeepProbLog, d2 and d3 denote GPT-3+ASP
with the text-davinci-002 and text-davinci-003 model.

Table 8 compares the accuracy of our method
and the state-of-the-art method, DeepProbLog
(Manhaeve et al., 2021) on the CLUTRR-S test
dataset. With GPT-3(d2)+ASP on the CLUTRR-
S dataset, 550 out of 563 predictions are correct,

5199

and 13 are wrong. All errors occur due to the en-
tities in a relation being swapped. For example,
we use “son (A, B)” to represent “A has a son
B’ while GPT-3 text-davinci-002 responded with
“son (Robert, Ryan) ” for the sentence ‘“Robert
is Ryan’s son.” On the other hand, text-davinci-003
performed better, with only a single error and 562
out of 563 predictions being correct.

C Prompts for Semantic Parsing

Below, we present the details of the general knowl-
edge of the prompts that we summarized and ap-
plied in this paper, followed by some examples.

1. If the information in a story (or query) can
be extracted independently, parsing each sen-
tence separately (using the same prompt multi-
ple times) typically works better than parsing
the whole story. Since people usually cache all
GPT-3 responses to save cost by avoiding du-
plicated GPT-3 requests for the same prompt,
parsing each sentence separately also yields
better usage of cached responses. Below are
some examples.

* In most bAbI tasks (except for tasks 11
and 13), the sentences in a story (includ-
ing the query sentence) are independent
of each other. We parse each sentence
separately using GPT-3 as in the Ap-
pendix C.1.

* In the stepGame dataset, each sentence
in a story describes the spatial relation
between 2 objects. There are 4 sentences
in a story when k£ = 1 and about 20 sen-
tences when & = 10. If we ask GPT-3
to extract all the atomic facts from the
whole story, it always misses some atoms
or predicts wrong atoms. Since every
sentence is independent of each other as
shown in Figure 1, we use the follow-
ing (truncated) prompt multiple times
for each data instance where each time
[INPUT] is replaced with one sentence
in the story or the query. This yields a
much higher accuracy as in Section 4.3.
The complete prompt is available in Ap-
pendix C.2.

Please parse each sentence into a fact
. If the sentence is describing
clock-wise information, then 12

denotes top, 1 and 2 denote
top_right, 3 denotes right, ... If

5200

the sentence is describing
cardinal directions, then north
denotes top, ...

Sentence: What is the relation of the
agent X to the agent K?
Semantic Parse: query("X", "K").

Sentence: H is positioned in the front
right corner of M.
Semantic Parse: top_right("H", "M").

Sentence: [INPUT]
Semantic Parse:

However, if some sentences in a story are
dependent, splitting them may lead to unex-
pected results in the GPT-3 response. Below
are some examples.

* In bADI task #11 and #13, a story may
contain the two consecutive sentences
“Mary went back to the bathroom. After
that she went to the bedroom.” There is
a dependency on the sentences to under-
stand that “she” in the second sentence
refers to “Mary” in the first. For this
reason, task #11 stories are parsed as a
whole. This is similar for task #13.

In the CLUTRR dataset, a story may
contain sentences with coreferences like
“Shirley enjoys playing cards with her
brother. His name is Henry.” where
the latter sentence depends on the for-
mer one, and a family relation can be
correctly extracted only with both sen-
tences. Thus for CLUTRR datasets
(i.e., CLUTRR 1.0, CLUTRR 1.3, and
CLUTRR-S), we extract the family rela-
tions and gender relations from the whole

story.

2. There is certain commonsense knowledge that

GPT-3 is not aware of, and describing the
missing knowledge in the prompt works bet-
ter than adding examples only. This happens
when GPT-3 cannot generalize such knowl-
edge well with a few examples.

* For example, in StepGame dataset, clock
numbers are used to denote cardinal di-
rections, e.g., “H is below J at 4 o’clock”
means “H is on the bottom-right of J”.
Such knowledge in the dataset is not
well captured by GPT-3 and enumerat-
ing examples in the prompt doesn’t work

well. On the other hand, describing
such knowledge at the beginning of the
prompt as shown in Appendix C.2 in-
creases the accuracy by a large margin.

C.1 bAbI

For bADI dataset, there are two prompts for each
task, corresponding to the context and query. Each
prompt has a consistent set of basic instructions
followed by example pairs of text and parsed
text. Below are the prompts used to parse the
context and query facts from a story and query,
where [Input] at the end is replaced with the
story in each test data instance. We only present
the prompts for Tasks 1,2, and 3. The rest of the
prompts can be found in the repository in https:
//github.com/azreasoners/LLM-ASP/
blob/main/bAbI/GPT_prompts.py.

Tasks 1/2/3 (Context)

Sentence: Where is John?
Semantic parse: whereAgent (John) .

Sentence: [INPUT]
Semantic parse:

Task 2 (Query)

Please parse the following questions into query
facts. The available keywords are: loc.

Sentence: Where is the toothbrush?

Semantic parse: loc(toothbrush) .

Sentence: Where is the milk?
Semantic parse: loc(milk) .

Sentence: Where is the apple?
Semantic parse: loc(apple) .

Sentence: Where is the football?
Semantic parse: loc(football).

Sentence: [INPUT]
Semantic parse:

Please parse the following statements into facts
. The available keywords are: pickup, drop,
and go.

Sentence: Max journeyed to the bathroom.

Semantic parse: go(Max, bathroom) .

Sentence: Mary grabbed the football there.
Semantic parse: pickup(Mary, football).

Sentence: Bob picked up the apple.
Semantic parse: pickup (Bob, apple) .

Sentence: Susan dropped the milk.
Semantic parse: drop(Susan, milk).

Sentence: Bob got the football there.
Semantic parse: pickup(Bob, football).

Sentence: Max left the cup.
Semantic parse: drop(Max, cup) .

Sentence: Kevin put down the pie there.
Semantic parse: drop(Kevin, pie).

Sentence: John took the football there.
Semantic parse: pickup(John, football).

Sentence: [INPUT]
Semantic parse:

Task 3 (Query)

Please parse the following questions into query
facts. The available keywords are: loc.

Sentence: Where was the football before the
bathroom?

Semantic parse: before(football,bathroom) .

Sentence: Where was the apple before the garden?
Semantic parse: before (apple,garden) .

Sentence: Where was the milk before the kitchen?
Semantic parse: before(milk,kitchen) .

Sentence: Where was the apple before the bedroom
?

Semantic parse: before (apple,bedroom) .

Sentence: Where was the football before the
hallway?
Semantic parse: before(football, hallway) .

Sentence: [INPUT]
Semantic parse:

Task 1 (Query)

Please parse the following questions into query
facts. The available keywords are:
whereAgent.

Sentence: Where is Mary?

Semantic parse: whereAgent (Mary) .

Sentence: Where is Daniel?
Semantic parse: whereAgent (Daniel) .

Sentence: Where is Sandra?
Semantic parse: whereAgent (Sandra) .

C.2 StepGame

For the StepGame dataset, there is only one prompt
below to extract the location relations among ob-
jects. All example sentences are from the training
data in (the noise split of) the original StepGame
dataset.® The [Input] atthe end of the prompt is
replaced with each sentence in a test data instance.

Please parse each sentence into a fact. If the
sentence is describing clock-wise
information, then 12 denotes top, 1 and 2
denote top_right, 3 denotes right, 4 and 5

$https://github.com/ZhengxiangShi/
StepGame/tree/main/Code/babi_format/
noise

5201

https://github.com/azreasoners/LLM-ASP/blob/main/bAbI/GPT_prompts.py
https://github.com/azreasoners/LLM-ASP/blob/main/bAbI/GPT_prompts.py
https://github.com/azreasoners/LLM-ASP/blob/main/bAbI/GPT_prompts.py
https://github.com/ZhengxiangShi/StepGame/tree/main/Code/babi_format/noise
https://github.com/ZhengxiangShi/StepGame/tree/main/Code/babi_format/noise
https://github.com/ZhengxiangShi/StepGame/tree/main/Code/babi_format/noise

denote down_right, 6 denotes down, 7 and 8
denote down_left, 9 denote left, 10 and 11
denote top_left. If the sentence is
describing cardinal directions, then north
denotes top, east denotes right, south
denotes down, and west denotes left. If the
sentence is a question, the fact starts with
query. Otherwise, the fact starts with one
of top, down, left, right, top_left,
top_right, down_left, and down right.

Sentence: What is the relation of the agent X to
the agent K?
Semantic Parse: query("X", "K").

Sentence: H is positioned in the front right
corner of M.
Semantic Parse: top_right ("H", "M").

Sentence: F is on the left side of and below Q.
Semantic Parse: down_left("F", "Q").

Sentence: Y and I are parallel, and Y is on top
of I.

Semantic Parse: top("Y", "I").

Sentence: V is over there with T above.

Semantic Parse: top("T", "V").

Sentence: V is slightly off center to the top
left and G is slightly off center to the
bottom right.

Semantic Parse: top_left("v", "G").

Sentence: The objects S and A are over there.
The object S is lower and slightly to the
left of the object A.

Semantic Parse: down_left("sS", "A").

Sentence: D is diagonally below Z to the right
at a 45 degree angle.
Semantic Parse: down_right("D", "Z").
Sentence: V is at A’s 9 o’clock.
Semantic Parse: left("v", "A").

Sentence: J is at O's 6 o’clock.
Semantic Parse: down("J", "O").

Sentence: H is below J at 4 o’clock.
Semantic Parse: down right ("H", "J").

Sentence: O is there and C is at the 5 position
of a clock face.
Semantic Parse: down right("C", "O").

Sentence: If H is the center of a clock face, B
is located between 10 and 11.
Semantic Parse: top_left("B", "H").

Sentence: [Input]
Semantic Parse:

ries in both prompts are from the training data
“data_06b8f2a1/2.2,2.3_train.csv” in the original
CLUTRR dataset.’ Below is the prompt to extract
family relations from a story where [Input] at
the end is replaced with the story in each test data
instance.

C.3 CLUTRR

For CLUTRR dataset, there are two prompts
to extract the family relations and genders
from a story respectively. All example sto-

Given a story, extract atomic facts of the form
relation("Person", "Person"). Example
relations are: father, mother, parent, son,
daughter, child, grandfather, grandmother,
grandson, granddaughter, wife, husband,
spouse, sibling, nephew, niece, uncle, aunt,
child in law, and parent_in_law.

Story: [Verdie] waved good bye to her dad [Henry
] for the day and went next door with her
sister [Amanda]. [Henry]’s daughter, [Amanda
], went to the city this weekend. She spent
her time there visiting her grandfather, [
Kyle], and had a wonderful time with him.

Semantic Parse: father("Verdie", "Henry").
sister("Verdie", "Amanda"). daughter("Henry
", "Amanda"). grandfather("Amanda", "Kyle").

Story: [Michelle] was excited for today, its her
daughter’s, [Theresa], spring break. She
will finally get to see her. [Michael] was
busy and sent his wife, [Marlene], instead.
[Kristen] loved to care for her newborn
child [Ronald]. [Eric]’s son is [Arthur].

Semantic Parse: daughter("Michelle", "Theresa").
wife("Michael", "Marlene"). child("Kristen
", "Ronald"). son("Eric", "Arthur").

Story: [Vernon] was present in the delivery room
when his daughter [Raquel] was born, but
when his daughter [Constance] was born he
was too sick. [Vernon] and his daughter [
Margaret] went to the movies. [Constance], [
Margaret]’s sister, had to stay home as she
was sick.

Semantic Parse: daughter("Vernon", "Raquel").
daughter ("Vernon", "Constance"). daughter("
Vernon", "Margaret"). sister("Margaret", "
Constance") .

Story: [Eric] who is [Carl]’s father grounded [
Carl] after finding out what [Carl] had done
at school. [Ronald] was busy planning a 90
th birthday party for his aunt, [Theresa]. [
Eric] and his son [Carl] went to the park
and saw [Eric]’s father [Kyle] there with
his dog.

Semantic Parse: father("Carl", "Eric"). aunt("
Ronald", "Theresa"). son("Eric", "Carl").
father ("Eric", "Kyle").

Story: [Shirley] and [Edward] are siblings and
best friends. They do everything together. [
Henry] walked his daughters [Amanda] and [
Michelle] to school. [Kyle] enjoys watching
movies with his son’s daughter. Her name is
[Amanda] .

Semantic Parse: sibling("Shirley", "Edward").
daughter ("Henry", "Amanda"). daughter("Henry

The original CLUTRR data is available in https: //
github.com/facebookresearch/clutrr.

5202

https://github.com/facebookresearch/clutrr
https://github.com/facebookresearch/clutrr

", "Michelle"). granddaughter("Kyle", "
Amanda") .

Story: [Raquel] and her brother [Casey] took her
grandmother [Karen] to the store to buy a
new dress. [Karen] and her husband [Kyle]
just celebrated 10 years of marriage. [Karen
] loves her grandson, [Casey], and he loves
her too.

Semantic Parse: brother("Raquel", "Casey").
grandmother ("Raquel”, "Karen"). husband("
Karen", "Kyle"). grandson("Karen", "Casey").

Story: [Allen]’s father, [Eric], bought him some
ice cream. [Karen] was baking cookies for
her grandson, [Allen]. [Allen]’s brother [
Arthur] came home from school, so she baked
some extra for him, too. [Eric]’s son, [
Arthur], was 111 and needed to be picked up
at school. [Eric] hurried to his side.
Semantic Parse: father("Allen", "Eric").
grandson("Karen", "Allen"). brother("Allen",
"Arthur"). son("Eric", "Arthur").

Story: [Karen] was spending the weekend with her
grandson, [Eddie]. [Eddie]’s sister [
Michelle] was supposed to come too, but she
was busy and could n’t make it. [Theresa]
took her daughter, [Michelle], out to High
Tea yesterday afternoon. [Eddie]’s mother [
Theresa] baked brownies for dessert after
they had dinner.

Semantic Parse: grandson("Karen", "Eddie").
sister("Eddie", "Michelle"). daughter("
Theresa", "Michelle"). mother("Eddie", "
Theresa") .

Story: [Input]
Semantic Parse:

We also use a variant of the above prompt to
extract the gender of each person in a story. The
prompt context is a bit simpler as there are only
two genders. The examples are the same while the
Semantic Parse resultis simply replaced with
the atomic facts about gender information. Below
is the prompt to extract the gender of each person
in a story where [Input] is replaced with the
story in each test data instance.

Given a story, extract atomic facts of the form
male("Person") or female("Person") for every
person that appears in the sentences.

Story: [Verdie] waved good bye to her dad [Henry
] for the day and went next door with her
sister [Amanda]. [Henry]’s daughter, [Amanda
], went to the city this weekend. She spent
her time there visiting her grandfather, [
Kyle], and had a wonderful time with him.

Semantic Parse: female("Verdie"). male("Henry").

female ("Amanda") . male("Kyle").

Story: [Michelle] was excited for today, its her
daughter’s, [Theresa], spring break. She
will finally get to see her. [Michael] was

busy and sent his wife, [Marlene], instead.

[Kristen] loved to care for her newborn
child [Ronald]. [Eric]’s son is [Arthur].

Semantic Parse: female("Michelle"). female("
Theresa") . male("Michael"). female("Marlene
"). female("Kristen"). male("Ronald"). male
("Eric"). male("Arthur").

Story: [Vernon] was present in the delivery room
when his daughter [Raquel] was born, but
when his daughter [Constance] was born he
was too sick. [Vernon] and his daughter [
Margaret] went to the movies. [Constance], [
Margaret]’s sister, had to stay home as she
was sick.

Semantic Parse: male("Vernon"). female("Raquel")
. female("Constance"). female("Margaret") .

Story: [Eric] who is [Carl]’s father grounded [
Carl] after finding out what [Carl] had done
at school. [Ronald] was busy planning a 90
th birthday party for his aunt, [Theresa]. [
Eric] and his son [Carl] went to the park
and saw [Eric]’s father [Kyle] there with
his dog.

Semantic Parse: male("Eric").
("Ronald"). female("Theresa") .

male("Carl"). male
male("Kyle") .

Story: [Shirley] and [Edward] are siblings and
best friends. They do everything together. [
Henry] walked his daughters [Amanda] and [
Michelle] to school. [Kyle] enjoys watching
movies with his son’s daughter. Her name is
[Amanda] .

Semantic Parse: female("Shirley"). male("Edward
"). male("Henry"). female("Amanda"). female
("Michelle"). male("Kyle").

Story: [Raquel] and her brother [Casey] took her
grandmother [Karen] to the store to buy a
new dress. [Karen] and her husband [Kyle]
just celebrated 10 years of marriage. [Karen
] loves her grandson, [Casey], and he loves
her too.

Semantic Parse: female("Raquel"). male("Casey").
female("Karen"). male("Kyle").

Story: [Allen]’s father, [Eric], bought him some
ice cream. [Karen] was baking cookies for

her grandson, [Allen]. [Allen]’s brother [
Arthur] came home from school, so she baked
some extra for him, too. [Eric]’s son, [
Arthur], was ill and needed to be picked up
at school. [Eric] hurried to his side.

Semantic Parse: male("Allen"). male("Eric").
female ("Karen"). male("Arthur").

Story: [Karen] was spending the weekend with her
grandson, [Eddie]. [Eddie]’s sister [

Michelle] was supposed to come too, but she
was busy and could n’t make it. [Theresa]
took her daughter, [Michelle], out to High
Tea yesterday afternoon. [Eddie]’s mother [
Theresa] baked brownies for dessert after
they had dinner.

Semantic Parse: female("Karen"). male("Eddie").
female("Michelle"). female("Theresa").

Story: [Input]
Semantic Parse:

5203

For CLUTRR-S dataset, i.e., the simpler version
of the CLUTRR dataset from DeepProbLog (Man-
haeve et al., 2021) repository, there are also two
prompts below to extract the family relations and
genders from a story respectively.'” All example
stories in both prompts are from the training data
“data_a7d9402e/2.2,2.3_train.csv”.

Given a story, extract atomic facts of the form
relation("Person", "Person") about family
relationships that appear in the sentences.

Story: [Mervin] is [Robert]’s father. [Robert]
is the father of [Jim]. [Jon] is [Robert]’s
brother. [Mervin] is the father of [Jon].

Semantic Parse: father("Robert", "Mervin").
father ("Jim", "Robert"). brother("Robert", "
Jon"). father("Jon", "Mervin").

Story: [Brooke] is [Cheryl]’s sister. [Jon] is
the father of [Brooke]. [Melissa] is [Jon]’
s mother. [Jon] is [Cheryl]’s father.

Semantic Parse: sister("Cheryl", "Brooke").
father ("Brooke", "Jon"). mother("Jon", "
Melissa"). father("Cheryl", "Jon").

Story: [Jon] is [Carol]’s brother. [Carol] is [
Joyce]’s mother. [Helen] is [Carol]’s
sister. [Helen] is a sister of [Jon].

Semantic Parse: brother("Carol", "Jon"). mother
("Joyce", "Carol"). sister("Carol", "Helen")
. sister("Jon", "Helen").

Story: [Melissa] is [Glenn]’s grandmother. [
Melissa] is the mother of [Calvin]. [Glenn]
is a son of [Lila]. [Calvin] is [Glenn]’s
father.

Semantic Parse: grandmother("Glenn", "Melissa").
mother ("Calvin", "Melissa"). son("Lila", "
Glenn"). father("Glenn", "Calvin").

Story: [Margaret] has a brother named [William].

[William] is [Carol]’s son. [Margaret] is

[Carol]’s daughter. [Lila] is the aunt of
[William] .

Semantic Parse: brother("Margaret", "William").
son("Carol", "William"). daughter("Carol", "
Margaret"). aunt ("William", "Lila").

Story: [Stephanie] is a sister of [Lois]. [Lois
] is [Theresal’s sister. [Helen] is [Lois]’
s mother. [Helen] is [Stephanie]’s mother.

Semantic Parse: sister("Lois", "Stephanie").
sister("Theresa", "Lois"). mother("Lois", "
Helen"). mother("Stephanie", "Helen").

Story: [Jon] is [Elias]’s brother. [Michael] is
a son of [Helen]. [Jon] is the uncle of [
Michael]. [Elias] is the father of [Michael
1.
Semantic Parse: brother("Elias", "Jon"). son("
Helen", "Michael"). uncle("Michael”, "Jon").
father("Michael”, "Elias").

The CLUTRR-S dataset is from https://github.

com/ML-KULeuven/deepproblog/tree/master/
src/deepproblog/examples/CLUTRR/data.

Story: [Carol] has a son called [William]. [
Melissa] is the mother of [Jon]. [Jon] is
the uncle of [William]. [Carol] has a
brother named [Jon] .

Semantic Parse: son("Carol", "William"). mother
("Jon", "Melissa"). uncle("William", "Jon").

brother ("Carol", "Jon").

Story: [Robert] is the father of [Jim]. [Robert
] has a daughter called [Ashley]. [Elias]
is [Robert]’s brother. [Elias] is the uncle
of [Ashley].

Semantic Parse: father("Jim", "Robert").
daughter ("Robert"”, "Ashley"). brother("
Robert", "Elias"). uncle("Ashley", "Elias").

Story: [Elias] is the father of [Carlos]. [
Elias] is the father of [Andrew]. [Andrew]
is [Carlos]’s brother. [Jon] is a brother
of [Elias].

Semantic Parse: father("Carlos", "Elias").
father ("Andrew", "Elias"). brother("Carlos",

"Andrew") . brother("Elias", "Jon").

[Jon] is the father of [Ben].
[Kevin]’s brother.

[James] is
[Ben] is a brother of [

Story:

James] . [Jon] is [James]’s father.
Semantic Parse: father("Ben", "Jon"). brother ("
Kevin", "James"). brother("James", "Ben").

father ("James", "Jon").

Story: [Carol] has a sister named [Lila]. [
William] is [Carol]l’s son. [Helen] is [Lila
1"s sister. [Lila] is [William]’s aunt.

Semantic Parse: sister("Carol", "Lila"). son("
Carol", "William"). sister("Lila", "Helen").
aunt ("William", "Lila").

[Calvin] is [Bruce]’s father. [Elias] is
[Calvin]’s brother. [Calvin] is [Kira]’s
father. [Kira] is [Bruce]’s sister.
Semantic Parse: father("Bruce", "Calvin").
brother ("Calvin", "Elias"). father("Kira", "
Calvin"). sister("Bruce", "Kira").

Story:

Story: [Carol] is a sister of [Helen]. [Carol]
is [Carlos]’s aunt. [Lila] is [Carol]l’s
sister. [Carlos] is [Helen]’s son.

Semantic Parse: sister("Helen", "Carol"). aunt ("
Carlos", "Carol"). sister("Carol", "Lila").
son("Helen", "Carlos").

Story: [Input]
Semantic Parse:

Note that, although the sentences in the CLUTRR-
S dataset is much simpler than those in CLUTRR
dataset, we don’t achieve 100% accuracy in GPT-
3 responses with the above long prompt. This
is partially because the above prompt violates
prompting strategy 3 in Section 3 as the order
of names in a binary relation in sentences is
mostly following “relationOf (A, B)” instead
of “relation (B, A)”.

Given a story, extract atomic facts of the form
male("Person") or female("Person") for every

5204

https://github.com/ML-KULeuven/deepproblog/tree/master/src/deepproblog/examples/CLUTRR/data
https://github.com/ML-KULeuven/deepproblog/tree/master/src/deepproblog/examples/CLUTRR/data
https://github.com/ML-KULeuven/deepproblog/tree/master/src/deepproblog/examples/CLUTRR/data

person that appears in the sentences.

Story: [Jon] 1is [Carol]’s brother. [Mervin] has
a daughter called [Carol]. [Chantell] is a
daughter of [Jon]. [Mervin] has a son

called [Jon].

Semantic Parse: male("Jon"). female("Carol").

male("Mervin"). female("Chantell").

Story: [Melissa] is [Glenn]’s grandmother. [
Melissa] is the mother of [Calvin]. [Glenn]
is a son of [Lila]. [Calvin] is [Glenn]’s
father.
Semantic Parse: female("Melissa"). male("Glenn")
. male("Calvin"). female("Lila").

Story: [Input]
Semantic Parse:

C.5 Pick&Place

For the Pick&Place dataset, there are two prompts
below to extract the atomic facts from the initial
state and the goal state, respectively.

C.4 gSCAN

For gSCAN dataset, there is only one prompt below
to extract the command in each data instance. All
example sequences are from the training data.!!
The [Input] atthe end of the prompt is replaced
with the command in each test data instance.

Turn each sentence into an atomic fact of the
form on(A, B, 0).

Sentence: The red block is on the yellow bowl.
Semantic Parse: on("red block", "yellow bowl",
0) .

Sentence: The violet block is on the blue block.
Semantic Parse: on("violet block", "blue block",
0).

Sentence: [INPUT]
Semantic Parse:

Please parse each sequence of words into facts.

Sequence: pull a yellow small circle
Semantic Parse: query (pull). queryDesc(yellow) .
queryDesc(small) . queryDesc(circle).

Sequence: push a big square
Semantic Parse: query (push) . queryDesc(big) .
queryDesc (square) .

Sequence: push a green small square cautiously

Semantic Parse: query (push) . queryDesc(green) .
queryDesc(small) . queryDesc(square). while(
cautiously) .

Sequence: pull a circle hesitantly
Semantic Parse: query(pull). queryDesc(circle).
while (hesitantly) .

Sequence: walk to a yellow big cylinder while
spinning

Semantic Parse: query(walk). queryDesc(yellow) .
queryDesc (big) . queryDesc(cylinder). while(
spinning) .

Sequence: push a big square while zigzagging
Semantic Parse: query (push) . queryDesc(big) .
queryDesc (square) . while(zigzagging) .

Sequence: push a cylinder hesitantly
Semantic Parse: query (push). queryDesc(cylinder)
. while(hesitantly) .

Sequence: [Input]
Semantic Parse:

Turn each sentence into an atomic fact of the
form on (A, B).

Sentence: The red block is on the yellow bowl.
Semantic Parse: on("red block", "yellow bowl").

Sentence: The violet block is on the blue block.

Semantic Parse: on("violet block", "blue block")

Sentence: [INPUT]
Semantic Parse:

For each sentence in the initial or goal state, we
replace [INPUT] in the corresponding prompt
above with this sentence and request GPT-3 to ex-
tract a single atomic fact. The union of these atomic
facts extracted from all sentences is then used in
the symbolic reasoner module to find an optimal
plan.

For the GPT-3 baseline, we use the following
prompt to let GPT-3 directly find a plan where
[INPUT] at the end of the prompt is replaced
with the initial and goal state of the queried data
instance.

Uhttps://github.com/LauraRuis/
groundedSCAN/tree/master/data/
compositional_splits.zip

Find a shortest plan to move blocks from an
initial state to a goal state. Note that you
cannot move a block if anything is on it.
You cannot move a block onto a target block
or bowl if there is anything is on the
target block or bowl. At most two blocks can
be placed in the same bowl with one on top
of the other.

Initial State:

Nothing is on the green bowl.

The violet block is on the blue bowl.
The blue block is on the violet bowl.
The green block is on the blue block.

Goal State:

The violet block is on the green bowl.
The green block is on the violet block.
The blue block is on the blue bowl.

5205

https://github.com/LauraRuis/groundedSCAN/tree/master/data/compositional_splits.zip
https://github.com/LauraRuis/groundedSCAN/tree/master/data/compositional_splits.zip
https://github.com/LauraRuis/groundedSCAN/tree/master/data/compositional_splits.zip

Nothing is on the violet bowl.

Plan:

1. Move the violet block onto the green bowl.
2. Move the green block onto the violet block.
3. Move the blue block onto the blue bowl.

Initial State:

Nothing is on the blue bowl.

The yellow block is on the green bowl.
The green block is on the violet bowl.
The violet block is on the green block.
The blue block is on the yellow bowl.
The red block is on the blue block.

Goal State:

The yellow block is on the blue bowl.
The green block is on the yellow block.
The red block is on the green bowl.
Nothing is on the violet bowl.

The blue block is on the yellow bowl.
The violet block is on the blue block.

Plan:

1. Move the yellow block onto the blue bowl.
2. Move the red block onto the green bowl.

3. Move the violet block onto the blue block.
4. Move the green block onto the yellow block.

[INPUT]

Plan:

D GPT-3 Errors in Semantic Parsing

In this section, we group and record the errors in the
GPT-3 responses in tables where each row records
a 3-tuple (dataset, sentence(s), GPT-3 response).
In this section, we list the following.

e all 21 errors for the CLUTRR 1.3 dataset with
text-davinci-003;

* the single mistake in the first 100 data in-
stances for every £ € {1,...,10} in the
StepGame dataset with text-davinci-002.

D.1 Argument misorder

A common mistake in the GPT-3 response is that
the relation and arguments for an atom are correctly
extracted, but the order of the arguments is incor-
rect. Such mistakes can be greatly alleviated by
proper few-shot prompting where the orders of ar-
guments in the example target atoms follow their
orders in the stories.

There are only 3 errors in CLUTRR 1.3 due
to argument misorder. The first 2 mistakes are
indeed due to their missing periods at the end of
the sentences — if we simply add the periods back,
their GPT-3 responses would become correct.

D.2 Wrong relation

Sometimes the arguments are correct, but the rela-
tions extracted by GPT-3 are incorrect or cannot be
recognized by the ASP program.

CLUTRR | [Leila] and [Enoch] have | married("Leila",
1.3 been married for 35 years. | "Enoch")
[Lottie] and her grand- %iari(tj.sgns.,(cr
CLUTRR | sons [Clinton] and torg)le ’ rarig:
1.3 [Enoch] picked berries sons("L%) tic"
from the garden. " " ’
noch")
CLUTRR | [Felix] loved going to | " wpepin
13 the store with his mom "Christena")
[Christena].
[Archibald] asked his fa- sons(
CLUTRR | ther, [Abrahaml, to watch | o\ oy
13 over his two sons, [Jus- "Tustus”
tus] and [Merle], for the ”Merle")’
weekend.
If E is the center of a
StepGame | clock face, H is located | right("H", "E")
between 2 and 3.

These kinds of mistake may be resolved by re-
stricting the space of possible relations. For ex-
ample, the mistakes in the first four rows can
be resolved by simply adding the sentence “Use
spouse("Person", "Person") if two persons are cou-
ples.” in the prompt.

D.3 Ambiguious or incorrect co-reference

[Katherine] was eating | son("Katherine",
CLUTRR | lunch with his son | "Daniel")
1.3 [Daniel] and his wife | wife("Daniel",
[Adelle]. "Adelle")
CLUTRR [Sylvester] and his son EORI:)(lliSe)'/'l)vester ’
13 [Rollie] went to his mother("Rollie”
’ mother [Ottilia]’s home W~ e
Ottilia")
[Elsie] and [Lewis] did " son
CLUTRR the Father daughter dance f%g?ﬂi,%ewm ’
13 at the recital and his wife wife("Lewis"
Ez(e)‘ljhe] was so happy she "Dollie")

CLUTRR | [Erasmus] boughttodress | father("Joeseph",
1.3 for his father [Joeseph] "Erasmus")
CLUTRR | [Baldwin] bought to dress | father("Sidney",
1.3 for his father [Sidney] "Baldwin")
CLUTRR | [Elizabeth] is the uncle of | uncle("Elizabeth",
1.3 [Leopold]. "Leopold")

D.4 Anonymous argument

5206

[Abe] is proud of his " -
ICI?:UTRR daughter’s son. His name %ZIL(J)O hnie",
’ is [Johnie].
[Watt] and [Celestine] " "
]CIS“UTRR asked their mother, if they .I,I(lé)gll; Zﬁny?tt ’
’ could go play in the pool.
cLUTRR | [Daviel told his wife | Wit ,Iga“‘:’ie;u N
13 [Kitty] to pick up their .,]g . &
' daughter. ter{ avie-,
’ "Kitty")
[Ethyl] just got married " "
CLUTRR to her now husband, and Pﬁiir;ig,,l)athyl ’
13 in the process she got dauchter iﬁ Jaw(
’ herself a daughter-in-law "Ethg 1" "Henr "
named [Henry]. yhs y
[Barnett] and [Manie] " "
1CI3_,UTRR asked their mother, if they 'r'nl\;)[;l:leiag')Barnett ’
’ could go play in the pool.
CLUTRR [Santiago] told his wife ,\,’volfcigvsi:r,l)uggg ia-
[Octavia] to pick up their ") daug
1.3 ter("Santiago",
daughter. " o
Octavia")

D.5 Missed to generate some atoms

home.

[Elizabeth] bought to

dress for his father " "
1C]§UTRR [Leopold] [Orson] took fg?fgfl,,])“mp()ld’
’ his wife [Abbie] out for ’

dinner.

[Asa] felt lonely when
CLUTRR | his wife [Magdalena] was | wife("Asa", "Mag-
1.3 gone to see her mother | dalena")

[Josiephine].

[Warner]’s father,

[Johnny], and grand- " "
IC]§UTRR father, [Bryant], went EZ%ZE.,I‘;?I;ZEE,))
’ hiking during the first

weekend of spring.
CLUTRR [Hollie] and [Rolsanna],
13 the h.appy couple, just got | —

married last week.

[Violet] took her brother
CLUTRR | [Travis] to the park, but | brother("Violet",
1.3 left her sister [Serena] at | "Travis")

E ASP Knowledge Modules

E.1 Discrete Event Calculus (DEC) Axioms

Module

% (DECI)

stopped_in(T1,F,T2)

% (DEC2)
started_in(T1,F,T2)

timepoint (T),
timepoint (T1),
timepoint (T2),
fluent (F),

event (E),

happens (E, T) ,

T1<T,

T<T2,

terminates (E,F,T) .

timepoint (T),
timepoint (T1),
timepoint (T2),
fluent (F),
event (E),

% (DEC3)
holds_at (F2,T1+T2)

% (DEC4)
holds_at (F2,T14+T2)

initiated(F,T) :—

terminated(F,T) :—

released(F,T) :—

happens (E, T),
TI<T,

T<T2,
initiates(E,F,T).

:— timepoint (T1),
timepoint (T2),
fluent (F1),
fluent (F2),
event (E),
happens (E, T1),
initiates(E,F1,T1),
0<T2,
trajectory(F1,T1,F2,T2),
not stopped_in(T1,F1,T1+T2

) -

:— timepoint (T1),

timepoint (T2),

fluent (F1),

fluent (F2),

event (E),

happens (E, T1),

terminates (E,F1,T1),

0<T2,

anti_trajectory(F1,T1,F2,
T2),

not started in(T1,F1,T1+T2
).

timepoint (T),
fluent (F),

event (E),

happens (E, T),
initiates(E,F,T).

timepoint (T),
fluent (F),

event (E),

happens (E, T),
terminates (E,F,T) .

timepoint (T),

fluent (F),

event (E),
happens (E, T),
releases (E,F,T) .

% (DECS)

holds_at (F,T+1) :—

% (DECO6)
-holds_at (F, T+1)

% (DEC7)
released_at (F, T+1)

5207

timepoint (T),

fluent (F),

holds_at (F,T),
-released at (F,T+1),
not terminated(F,T).

:— timepoint (T),

fluent (F),

-holds_at (F,T),
-released_at (F, T+1),
not initiated(F,T).

:— timepoint (T),
fluent (F),
released at (F,T),
not initiated(F,T),
not terminated(F,T).

Task

DEC Axioms

Action | Location | Family Relation

: Single supporting fact

v

: Two supporting facts

v

: Three supporting facts

v

: Two arg relations

: Three arg relations

: Yes/no questions

: Counting

OO | OV | & W DI |

: Lists/sets

O

: Simple negation

10: Indefinite knowledge

11: Basic coreference

12: Conjunction

13: Compound coreference

14: Time reasoning

SNENENENENENENENEN

SNENENENENENENENENENERENENEN

15: Basic deduction

16: Basic induction

17: Positional reasoning

18: Size reasoning

19: Path finding

20: Agents motivations

StepGame

gSCAN

v

SNESERENENEN

CLUTRR

Pick&Place

v

v

Table 9: Knowledge modules used for each of the tasks. Note that DEC Axioms, action, and location modules are
used in at least two datasets. Some domains aren’t listed as they are small and domain specific.

% (DEC8)

-released_at (F, T+1) :- timepoint(T),
fluent (F),
-released at(F,T),

not released(F,T).

% (DEC9)
holds_at (F, T+1) :- timepoint(T),
fluent (F),
event (E),
happens (E, T) ,
initiates(E,F,T).
% (DEC10)
~holds_at (F, T+1) :- timepoint(T),
fluent (F),
event (E),

happens (E, T) ,
terminates(E,F,T) .

% (DEC11)

released_at (F,T+1) :— timepoint(T),
fluent (F),
event (E),

happens (E, T),
releases (E,F,T) .

% (DEC12)

-released_at (F, T+1l) :— timepoint(T),
fluent (F),
event (E),

happens (E, T),
initiates(E,F,T) .
timepoint (T),
fluent (F),

event (E),

happens (E, T),

-released at (F,T+1) :—

‘ terminates(E, F,T) .

E.2 Action Module

%********************

* common interface

* check: if location (unknown)
*********************%

is needed

% what happened in the given story

happens (action (A, pickup, I), T)
T).

happens (action (A, drop, I), T)

happens (action (A, goto, L), T)

ShkkhhKkhhkhhkhhkhkhxhk

* basic atoms
*********************%

direction(east; west; north; south).

location (L)
not direction(L) .

%********************

* atoms in DEC_AXIOMS

*********************%

5208

:— pickup(d, I,

:— drop(d, I, T).

happens (action(Al, give, A2, I), T) :— give(Al,
I, A2, T).
happens (action(d, goto, L), T) :— go(A, L, T).

:— isIn(Aa, L, T).

2.

:— happens (action(_, goto, L), _),

agent (A) :— happens(action(d, _,), _).
agent (A) :— happens(action(d, _, _,), _).
agent (A) :— happens(action(_, give, A, _), _).
item(I) :— happens(action(_, pickup, I), _).
item(I) :- happens(action(_, drop, I), _).
item(I) :— happens(action(_, give, _, I),

)

% event/1

event (action (A, pickup, I)) :— agent(d), item(I)

event (action (A, drop, I)) :— agent(d), item(I).

event (action(Al, give, A2, I)) :— agent(Al),
agent (A2), item(I), Al != A2.

event (action (A, goto, L)) :— agent (), location(
L).

event (action (A, goto, D))
(D) .

event (action(robot, pick_and place, Src, Dst))

:— feature(Src, block), location(Dst), Src

!= Dst.

:— agent (), direction

% timepoint/1

timepoint (T) :— happens(_, T). % the timepoint
in story
timepoint (T) :— T=0..N, maxtime(N). % the

timepoint for planning without story

% fluent/1

fluent (at (A, L)) :— agent(A), location(L).

fluent (at (I, L)) :— item(I), location(L).

fluent (carry(d, I)) :— agent(A), item(I).

fluent (on(B, L)) :— feature(B, block), location(
L), B!=L.

o

-released_at/2
1. —released_at (F, T) means commonsense law
of inertia (CLI) can be applied to fluent F

oe

at T

% 2. CLI is also applied to this literal
itself

—released_at (F, 0) :— fluent(F).

% holds_at/2

% initial states of fluents —— only location of

items needs to be guessed
{holds_at(at (I, L), 0): location(L)} =1

(I).
holds_at(on(B, L), 0)

:— item

:(—on(B, L, 0).

o

happens/2

for each timepoint, at most 1 event happens;
and it happens as fewer as possible

{happens(E, T): event(E)}1l :— timepoint(T). %
this rule would slow down many tasks

:~ happens(E, T). [1@0, E, T]

o\

o\

% every action should have some effect
:— happens (E, T), not initiates(E,_,T).

o°

% precondition on actions —- pickup

:— happens (action(d, pickup, I), T), holds_at(at
(A, L1), T), holds at(at(I, L2), T), L1 !=
L2.

o)

% initiates/3 and terminates/3

% effect of actions —— pickup

initiates(action(d, pickup, I), carry(d, I), T)
:— agent (&), item(I), timepoint(T).

% effect of actions —— drop
terminates(action(d, drop, I), carry(d, I), T)
:— agent (A), item(I), timepoint(T).

% effect of actions —— give
initiates(action(Al, give, A2, I), carry(A2, I),
T) :- agent(Al), agent(A2), item(I),

timepoint (T), Al != A2.
terminates(action(Al, give, A2, I), carry(Al, I)
, T) :— agent (Al), agent(A2), item(I),
timepoint (T), Al != A2.
% effect of actions —— goto
initiates(action(d, goto, L), at(ad, L), T) :—
agent (A), location(L), timepoint(T).
initiates(action(d, goto, L), at(I, L), T) :—
holds_at (carry (A, I), T), location(L).
initiates(action(A, goto, D), at(a, L2), T) :—
agent (A), location(Ll), location(L2),
timepoint (T),
holds_at(at(a, L1), T), is(L2, D, L1).
terminates(action(d, goto, L1), at(d, L2), T) :-—
agent (A), location(Ll), location(L2),
timepoint (T), L1 != L2.
terminates(action(d, goto, L1), at(I, 1L2), T) :-
holds_at (carry(®, I), T), location(Ll),
location(L2), L1 !'= L2.
terminates(action(d, goto, Direction), at(a, L),
T) :—
happens (action (A, goto, Direction), T),
holds_at(at (A, L), T), Direction != L.
% effect of actions — pick_and place
initiates(action(robot, pick_and place, Src, Dst
), on(Src, Dst), T) :—
feature(Src, block), location(Dst), Src !=
Dst, timepoint(T),
not holds_at(on(_, Src), T),
not holds_at(on(_, Dst), T): Dst!="table".
terminates (action(robot, pick_and place, Src,
Dst), on(Src, L), T) :—
holds_at (on(Src, L), T), location(Dst), Dst
= 1.

E.3 Location Module

% general format translation, which can also be
easily done in python script

% (this is not needed if we directly extract the
general form in the beginning as in bAbI

task4)
is(A, top, B) :— top(A, B).
is(A, top, B) :— up(A, B).
is (A, down, B) :— down(A, B).
is(a, left, B) :— left(ad, B).
is(A, right, B) :— right(A, B).
is (A, top_left, B) :— top_left(a, B).
is(A, top_right, B) :— top_right(a, B).
is (A, down_left, B) :— down left (A, B).
is (A, down_right, B) :— down_right (A, B).
is (A, east, B) :— east(h, B).
is (A, west, B) :— west(d, B).
is (A, south, B) :— south(d, B).
is(A, north, B) :— north(ad, B).

Q

% synonyms
synonyms (
north, northOf; south, southOf; west, westOf
; east, eastOf;
top, northOf; down, southOf; left, westOf;
right, eastOf
) .
synonyms (A, B)
synonyms (4, C)
, A!'=C.

:— synonyms (B, A).
:— synonyms (A, B), synonyms(B, C)

5209

% define the offsets of 8 spacial relations
offset (
overlap 0,0; top,0,1; down,0,-1; left,-1,0;
right, 1,0;
top_left,-1,1; top_right,1,1; down_left
,—1,-1; down_right,1,-1
) -

% derive the kind of spacial relation from
synonyms and offset

is(A, R1l, B) :— is(A, R2, B), synonyms(R1l, R2).

is(A, R1, B) :— is(B, R2, A), offset(R2,X,Y),
offset (R1, -X,-Y) .

o

derive the location of every object

the search space of X or Y coordinate is
within -100 and 100

(to avoid infinite loop in clingo when data
has error)

nums (-100..100) .

oe

oe

location(d, Xa, Ya) :-—
location(B, Xb, Yb), nums(Xa), nums(Ya),
is(A, Kind, B), offset(Kind, Dx, Dy),
Xa—Xb=Dx, Ya-Yb=Dy.

location(B, Xb, Yb) :—
location(d, Xa, Ya), nums(Xb), nums(Yb),
is_on(A, Kind, B), offset(Kind, Dx, Dy),
Xa—Xb=Dx, Ya-Yb=Dy.

E.4 Family Module

% gender

male(B) :— grandson(ad, B).
male(B) :— son(A, B).

male(B) :— nephew(d, B).
male(B) :— brother(d, B).
male(B) :— father(d, B).
male(B) :— uncle(d, B).

male(B) :— grandfather(d, B).
female (B) :— granddaughter(d, B).
female(B) :— daughter(a, B).
female(B) :— niece(d, B).
female(B) :— sister (A, B).
female(B) :— mother (A, B).
female (B) :— aunt (A, B).
female (B) :— grandmother (A, B).

% gender-irrelevant relationships

sibling (A, B siblings (A, B).

()

sibling (A, B) :— brother (A, B).

sibling(aA, B) :— sister(a, B).

sibling (A, B) :— parent (A, C), parent(B, C), A
= B.

sibling (A, B) :— sibling(B, A).

sibling(a, B) :— sibling(d, C), sibling(C, B), A
= B.

sibling(a, B); sibling_in law(A, B) :— child(a,
C), uncle(C, B).

sibling (A, B); sibling_in law(A, B) :— child(a,

C), aunt(C, B).
sibling in law(A, B) :— sibling in law(B, A).
:— spouse (A, B), sibling(a, B).
:— spouse (A, B), sibling in law(a, B).

:— sibling (A, B), sibling in law(a, B).

spouse (A, B) :— wife(a, B).

spouse (A, B) :— husband(a, B).

spouse (A, B) :— spouse(B, A).

parent (A, B) :— father(a, B).

parent (A, B) :— mother(A, B).

parent (A, B) :— parent(a, C), spouse(C, B).
parent (A, B) :- sibling(a, C), parent(C, B).
parent (A, B) :— child(B, A).

child(A, B) :— children(A, B).

child(A, B) :— son(Ad, B).

child(A, B) :— daughter(d, B).

child(d, B) :- spouse(d, C), child(C, B).
child(a, B) :— child(a, C), sibling(C, B).
child(d, B) :— parent(B, A).

grandparent (3, B
grandparent (A, B

() grandfather (3, B).

()
grandparent (A, B)

()

()

grandmother (A, B).
parent (A, C), parent(C, B).
:— grandchild(B, A).
:— sibling (A, C), grandparent (

grandparent (3, B
grandparent (3, B
C, B).
grandparent (A, B) :— grandparent (A, C), spouse(C

, B).

grandchild (A, B)
grandchild(a, B)
grandchild (A, B)

:— grandson(A, B).
:— granddaughter (A, B).
:— grandparent (B, A).

greatgrandparent (A, B) :— grandparent(ad, C),
parent (C, B).
greatgrandchild(A, B) :— greatgrandparent (B, A).
parent_in law(A, B)
).
parent (A, B)
).
parent (A, B); parent_in_ law(A, B) :— parent(C, A

), grandparent (C, B).
:— parent (A, B), parent (B, A).
:— parent (A, B), parent_in law(A, B).
child in_law(A, B) :— parent_in_law(B, A).

:— spouse(d, C), parent(C, B

:— spouse (A, C), parent_in_law(C, B

% gender-relevant relationships

greatgrandson (A, B)
male (B) .

greatgranddaughter (3, B)
), female(B).

:— greatgrandchild(ad, B),

:— greatgrandchild(A, B

grandson (A, B) :— grandchild(d, B), male(B).
granddaughter (A, B) :- grandchild(ad, B), female(

B) .
son(A, B) :— child(a, B), male(B).
daughter (A, B) :— child(A, B), female(B).
nephew (A, B) :— sibling(d, C), son(C, B).

niece(a, B) :— sibling(A, C), daughter(C, B).
husband(a, B) :— spouse(d, B), male(B).
wife(A, B) :- spouse(d, B), female(B).
brother(a, B) :— sibling(d, B), male(B).
sister (A, B) :- sibling(a, B), female(B).

father(a, B) :— parent (A, B), male(B).
mother (A, B) :— parent (A, B), female(B).
uncle (A, B) :— parent (A, C), brother(C, B).

5210

aunt (A, B) :— parent(a, C), sister(C, B).

grandfather (A, B)

grandmother (A, B)
).

:— grandparent (A, B), male(B).
:— grandparent (A, B), female(B

greatgrandfather (A, B)
, male(B).

greatgrandmother (A, B)
, female(B).

:— greatgrandparent (A, B)

:— greatgrandparent (A, B)

son_in_law(A, B)
daughter_in law(a, B)

:— child in law(A, B), male(B).
:— child in law(a, B),

female (B) .

father_in law(A, B) :— parent_in law(A, B), male
(B) .

mother_in_ law(A, B) :— parent_in law(A, B),
female (B) .

answer (L1) :— before(_, L2), location change (L1,
L2, T), T>=Tx: location_change(_, L2, Tx).

E.5.4 bADI Task 4

answer (A)
answer (B)

:— query(what, R1, B), is(a, R1, B).
:— query (A, R1, what), is(A, R1l, B).

E.5.5 bADbI Task 5

E.S5 Domain Specific Modules

In this section, we list all domain-specific rules for
each task. Some rules serve as an interface to turn
the atoms in GPT-3 responses into a general format
used in ASP modules. These rules are not neces-
sary and can be removed if we let GPT-3 directly
return the general atoms, e.g., “query (at (A,
where))” instead of “whereAgent (A)”. To
save the cost for GPT-3 requests, we did not re-
produce the experiments using new GPT-3 prompts
with atoms in general formats.

E.5.1 bADbI Tasks 1 and 11

%$%%% Interface —— these rules can be removed if
we let GPT3 return the heads directly
query(at (A, where)) :— whereAgent (A).

% Find where last location of agent is
answer (L) :— query(at (A, where)), holds_at(at (A,
L), T), T>=Tx: holds_at(at(d, _), Tx).

candidate(Al, T) :- query(action(who, give, A, I
)), happens(action(Al, give, A2, I), T),
A2=A: Al=anyone.

candidate (A2, T) :- query(action(d, give, who, I
)), happens(action(Al, give, A2, I), 1),
Al=A: Al'=anyone.

candidate(I, T) :— query(action(Al, give, A2,
what)), happens(action(Al, give, A2, I), T).

location (unknown) .

%%%% Interface — these rules can be removed if
we let GPT-3 return the heads directly

give(Al, A2, I, T) :— gave(Al, I, A2, T).

query(action(Al, give, A2, what)) :-—
whatWasGiven(Al, A2).

query(action(anyone, give, who, I)) :— received(
I).

query(action(Al, give, who, I)) :— whoWasGiven(
Al, I).

query (action(who, give, anyone, I)) :- whoGave (I

).
query (action(who, give, A2, I))
) .

:— whoGave (I, A2

answer (A) :— candidate(d, T), Tx<=T: candidate(_

, ITx).

E.5.6 bADI Tasks 6 and 9

E.5.2 bADI Task 2
%%%% Interface —— these rules can be removed if

we let GPT3 return the heads directly
query(at (I, where)) :— loc(I).

% Find where last location of object is
answer (L) :— query(at (A, where)), holds_at(at (3,
L), T), T>=Tx: holds_at(at(a, _), Tx).

answer (yes) :— query(at(a, L)), holds_at(at(ad, L
), T), Tx<=T: holds_at(at(d, _), Tx).
answer (no) :— not answer(yes).

%%%% Interface —— these rules can be removed if
we let GPT-3 return the heads directly
query(at (A, L)) :— isIn(A, L).

E.5.7 DbADI Task 7

E.5.3 bADbI Tasks 3 and 14

% the query before(O, L) is given, asking about
the location of O before moving to L

5 find all location changes of the queried
object

location_change(Ll, L2, T) :- before(O, _),
holds_at(at (O, L1), T), holds_at(at (0, L2),
T+1), L1 !=12.

o

% find the last location change to queried
location

% find all items I that A is carrying at the
last moment; then count I

carry (A, I) :— query(carry(A, count)), holds_at(
carry(A,I),71),
T>Tx: happens (E, Tx) .

location (unknown) .

%%%% Interface — these rules can be removed if
we let GPT-3 return the heads directly
query(carry (A, count)) :— howMany(a).

answer (N) :— query(carry (A, count)), N=#count{I:
carry (A, I)}.

5211

E.5.8 bADI Task 8
%%%% Interface —— these rules can be removed if

we let GPT-3 return the heads directly
query(carry (A, what)) :— carrying(a).
location (unknown) .

% find all items I that A is carrying at the
last moment

answer (I) :— query(carry(A, what)), holds_at(
carry (A, I),T),
T>Tx: happens (E, Tx) .

E.5.9 bADI Task 10

released(F,T) :- fluent(F), timepoint(T).

answer (yes) :— query(at(a, L)), holds_at(at(ad, L
), T), Tx<=T: holds_at(at(®, _), Tx).

answer (maybe) :— query(at(d, L)), timepoint(T),
1{isEither(pA, L, _, T); isEither(@®, _, L, T)
1%
Tx<=T: holds_at(at (d, _), Tx);
Tx<=T: isEither(@, _, _, Tx).

answer (no) :— not answer(yes), not answer (maybe)
%$%%% Interface —— these rules may be removed if

we let GPT-3 return the heads directly
query(at (A, L)) :— isInQ(a, L).
holds_at(at(a, L), T) :— isIn(®, L, T).

go(a, L, T) :— move(p, L, T).
timepoint (T) :— isIn(, _, T).
timepoint(T) :— isEither(., _, _, T).

% the queried relation R is correct if its
offset agrees with the location of A

answer (yes) :— query(A, R, B), offset(R, Dx, Dy)
, location(d, X, Y),
X>0: Dx=1; X<0: Dx=-1;
Y>0: Dy=1; Y<0: Dy=-1.

answer (no) :— not answer(yes) .

%%%% Interface —— these rules can be removed if
we let GPT-3 return the heads directly

is(a, left, B) :— leftOf(p, B).
is (A, right, B) :— rightOf (A, B).
is(A, top, B) :— above(d, B).

is (A, down, B) :— below(Ad, B).

query (A, left, B)

(:— leftOf_nondirect (A, B).
query (A, right, B)

(

(

:— rightOf_nondirect (A, B).

query (A, top, B) :— above_nondirect (A, B).
query (A, down, B) :— below_nondirect (A, B).
E.5.14 DbADI Task 18

smaller (A, B) :- bigger(B, A).

smaller(p, C) :— smaller(d, B), smaller(B, C).

answer (yes) :— query(smaller (A, B)), smaller(a,
B).

answer (no) :— not answer(yes).

%%%% Interface —— these rules can be removed if
we let GPT-3 return the heads directly

query(smaller (A, B)) :— doesFit (A, B).

query(smaller(d, B)) :— isBigger(B, A).

E.5.10 bADbI Tasks 12 and 13

E.5.15 bAbDI Task 19

%%%% Interface —— these rules can be removed if
we let GPT-3 return the heads directly

query(at (A, where)) :— whereAgent (A).

go(Al, L, T) := go(Al, A2, L, T).

go(A2, L, T) := go(Al, A2, L, T).

E.5.11 bADbI Task 15

query(afraid(N, what)) :— agent_afraid(N).

E.5.12 bADI Task 16

animal (frog; lion; swan; rhino) .

color (green;white;yellow;gray) .

isColor (Agent2,Color) :— isAnimal (Agent,Animal),
isColor (Agent,Color),isAnimal (Agent2,Animal)

answer (Color) :— isColor (Name), isColor (Name,
Color) .

agent (agent) .
maxtime(10) .
% location
location (L)
location (L)

= is(L,_,_).
= is(,_,L).

% for each timestep, we take at most 1 action

{happens (action(agent, goto, D), T): direction(D
)11 = timepoint (T) .

% initial location

holds_at(at (agent, L), 0) :— initial loc(L).

% goal

:— goal (L), not holds_at(at(agent, L), _).

% we aim to achieve the goal as early as
possible

i~ goal (L), holds_at(at(agent, L), T).
goal]

[-Te1,

E.5.16 bADbI Task 20

E.5.13 bADI Task 17

o)

% assume the 2nd queried object is at location
(0,0)

location(B, 0, 0) :— query(., _, B).

loc (kitchen) . loc (bedroom). loc(kitchen). loc(
garden) .

obj(pajamas) . obj(football). obj(milk). obj(
apple) .

answer (Location) :— query(where, Agent, go), is(
Agent, Quality), motivation(Quality,Location
), loc(Location) .

5212

answer (Quality) :- query(why, Agent, go,
Location), is(Agent, Quality), motivation(
Quality, Location), loc(Location).

answer (Quality) :- query(why,Agent, get, Obj),is
(Agent, Quality), motivation(Quality, Ob3j),
obj (CbJ) .

answer (Location) :— query(where, Agent, go), is(
Agent, Quality), motivation(Quality,
Location), loc(Location).

E.5.17 StepGame

o)

% assume the 2nd queried object is at location
(0,0)

location(Q2, 0, 0) :— query(_, Q2).

% extract answer relation R such that the offset
(0%,0y) of R is in the same direction of (X
/Y)

answer (R) :— query(Ql, _), location(Ql, X, Y),

offset (R, Ox, Oy),

Ox=—1: X<0; O0x=0: X=0; Ox=1: X>0;

Oy=-1: ¥<0; Oy=0: Y=0; Oy=1: Y>0.

E.5.18 gSCAN

%********************

% find the goal

*********************%

% features of objects

feature (O, shape, V) :— shape(O, V).
feature (O, color, V) :— color(O, V).
feature (O, size, V) :— size(O, V).

% feature of destination

feature(destination, V) :- query(walk),
queryDesc (V) .

feature(destination, V) :- query(push),
queryDesc (V) .

feature(destination, V) :- query(pull),
queryDesc (V) .

% find the destination object and location
pos_same (destination, O) :— feature(O,_,_),
feature(0,_,V) : feature(destination, V),
feature(_,_,V).

same (destination, O) :— pos_same(destination, O)
, feature(O, size, V),

Vx<=V: feature(destination, big), pos_same (

destination, Ox), feature(Ox, size, Vx);

Vx>=V: feature(destination, small), pos_same

(destination, Ox), feature(Ox, size, Vx)

goal (at (agent, L)) :— same(destination, O), pos(O
,L) .

%********************
* basic atoms
*********************%

agent (agent) .

item(I) :— pos(I, L), I'=agent.
location((X,Y)) :— X=0..N-1, Y=0..N-1, gridSize(
N) .

is((X1,Y1l), east, (X2,Y2)) :- location((X1,Y1)),
location((X2,Y2)), X1=X2, Y1=Y2+1.
is((X1,Y1l), west, (X2,Y2)) :— location((X1,Y1)),
location((X2,Y2)), X1=X2, Y1=Y2-1.
is((X1,Y1l), north, (X2,Y2)) :— location((X1,Y1))
, location((X2,Y2)), X1=X2-1, Y1=Y2.
is((X1,Y1), south, (X2,Y2)) :— location((X1,Y1))

, location((X2,Y2)), X1=X2+1, Y1=Y2.

pos_actions(walk; turn_left; turn_right; stay;
push; pull).

left_dir(east, north; north, west; west, south;
south, east).

%********************

* atoms in DEC_AXIOMS

*********************%

% fluent/1

fluent (dir (A, L)) :— agent(d), direction(L).

fluent (ready (A)) :— agent (d).

% event/1

event (action(Agent, A)) :— agent (Agent),
pos_actions(A) .

% initial fluent values

holds_at(at(O0,L),0) :— pos(O, L).

holds_at (dir(A,D),0) :— dir(A, D).

% for each timestep, we take at most 1 action
{happens (action(agent, A), T): pos_actions(A)}1l
:— timepoint (T) .

o)

% initial location

holds_at (at (agent, L), 0) :— initial loc(L).
% action —— 1k (to check simplification)

o

% initiates/3

initiates(action(d, walk), at(d, 1L2), T) :-—
agent (4), location(L), timepoint(T),
holds_at(dir(a, D), T),

holds_at(at(a, L1), T),

is(L2, D, L1).

% terminates/3

terminates(action(d, walk), at(d, L1l), T) :—
agent (A), location(L), timepoint(T),
holds_at(dir(a, D), T),
holds_at(at (A, L1), T),
is(L2, D, L1).

% precondition
we don’t walk in a deadend (i.e., the walk
will result in no location change)
:— happens (action(agent, walk), T), not
initiates(action(agent, walk), _, T).

o°

)

% initiates/3

initiates(action (A, turn_left), dir(a, D2), T)
:— agent (A), timepoint(T),

holds_at (dir(a, D1), T),

left dir(D1, D2).

5213

% terminates/3

terminates(action (A, turn_left), dir(aA, D1), T)
:— agent (A), timepoint(T),
holds_at(dir(a, D1), T).

o

% initiates/3

initiates(action(d, turn right), dir(a, D2), T)
:— agent (&), timepoint(T),

holds_at (dir(a, D1), T),

left_dir(D2, D1).

% terminates/3

terminates(action(d, turn right), dir(a, D), T)
:— agent (&), timepoint(T),
holds_at (dir(a, D), T).

o

% initiates/3 for objects with size <= 2

initiates(action(d, push), at(p, 1L2), T) :—

agent (A), holds_at(at (A, L1l), T), holds_at(
dir(a, D), T),

same (destination, Target), holds_at (at(
Target, L1), T),

is(L2, D, Ll), feature(Target, size, V), V
<= 2.

initiates(action(d, push), at(Target, L2), T) :—
agent (A), holds_at(at(a, L1), T), holds_at(
dir(a, D), T),
same (destination, Target), holds_at (at(
Target, L1), T),
is(L2, D, L1), feature(Target, size, V), V
<= 2.

initiates(action(d, pull), at(p, 1L2), T) :-—
agent (A), holds_at(at (A, L1), T), holds_at(
dir(a, D), T),
same (destination, Target), holds_at (at(
Target, L1), T),
is(Ll, D, L2), feature(Target, size, V), V
<= 2.

initiates(action(d, pull), at(Target, L2), T) :—
agent (A), holds_at(at (A, L1), T), holds_at(
dir(a, D), T),
same (destination, Target), holds_at (at(
Target, L1), T),
is(Ll, D, L2), feature(Target, size, V), V
<= 2.

% terminates/3 for objects with size <= 2
terminates(action(d, push), at(a, Ll), T) :—
agent (A), holds_at(at(p, L1l), T), holds_at(
dir(a, D), T),
same (destination, Target), holds_at (at(
Target, L1), T),
is(L2, D, Ll1), feature(Target, size, V), V
<= 2.

terminates(action (A, push), at(Target, L1), T)

agent (A), holds_at(at(a, L1), T), holds_at(
dir(d, D), T),

same (destination, Target), holds_at (at(
Target, L1), T),

is(L2, D, Ll1), feature(Target, size, V), V
<= 2.

terminates(action(a, pull), at(a, L1), T) :—
agent (A), holds_at(at(a, L1), T), holds_at(
dir(d, D), T),
same (destination, Target), holds_at (at(
Target, L1), 1),
is(Ll, D, L2), feature(Target, size, V), V
<= 2.

terminates(action(d, pull), at(Target, L1), T)
agent (A), holds_at(at(a, L1), T), holds_at(
dir(a, D), T),
same (destination, Target), holds_at (at(
Target, L1), T),
is(Ll, D, L2), feature(Target, size, V), V
<= 2.

)

% initiates/3 for objects with size >= 3

initiates(action (A, push), ready(d), T) :-—
agent (A), holds_at(at(a, L1), T), holds_at(
dir(a, D), T), not holds_at(ready(d), T)
r
same (destination, Target), holds_at (at(
Target, L1), T), feature(Target, size, V
)y, V>= 3.

initiates(action(A, push), at(a, L2), T) :-—
agent (A), holds_at(at(a, L1), T), holds_at(
dir(A, D), T), holds_at(ready(d), T),
same (destination, Target), holds_at (at(
Target, L1), T), feature(Target, size, V
), V>= 3,
is(L2, D, L1).

initiates(action (A, push), at(Target, 1L2), T) :—
agent (A), holds_at(at(a, L1), T), holds_at(
dir(A, D), T), holds_at(ready(d), T),
same (destination, Target), holds_at (at(
Target, L1), T), feature(Target, size, V
)y, V>=3,
is(L2, D, L1).

initiates(action(d, pull), ready(d), T) :-—
agent (A), holds_at(at(a, L1), T), holds_at(
dir(A, D), T), not holds_at(ready(d), T)
same (destination, Target), holds_at (at(
Target, L1), T), feature(Target, size, V
)y, V>= 3.

initiates(action(a, pull), at(d, L2), T) :-
agent (A), holds_at(at(p, L1), T), holds_at(
dir(A, D), T), holds_at(ready(d), T),
same (destination, Target), holds_at (at(
Target, L1), T), feature(Target, size, V
), V>=3,
is(Ll, D, L2).

initiates(action(d, pull), at(Target, L2), T) :—
agent (A), holds_at(at(a, 1L1), T), holds_at(
dir(A, D), T), holds_at(ready(d), T),

5214

same (destination, Target), holds_at (at(
Target, L1l), T), feature(Target, size, V
), V>=3,

is(Ll, D, 12).

% terminates/3 for objects with size >= 3

{ terminates(action(d, push), ready(d), T);
terminates(action(a, push), at(a, Ll), T);
terminates(action(a, push), at(Target, L1), T)

}=3 =

agent (A), holds_at(at(p, L1l), T), holds_at(
dir(a, D), T), holds_at(ready(d), T),

same (destination, Target), holds_at (at(
Target, L1l), T), feature(Target, size, V
), V>=3,

is(L2, D, L1).

{ terminates(action(d, pull), ready(d), T);
terminates(action(d, pull), at(a, 1L1), T);
terminates(action(a, pull), at(Target, L1), T)

}=3 :—

agent (A), holds_at(at(a, L1), T), holds_at(
dir(A, D), T), holds_at(ready(®), T),

same (destination, Target), holds_at (at(
Target, L1), T), feature(Target, size, V
), V>=3,

is(Ll, D, L2).

% precondition

% 1. we don’t push/pull in a deadend (i.e., the
action will result in no location change)

:— happens (action(agent, push), T), not
initiates(action(agent, push), _, T).

:— happens (action(agent, pull), T), not
initiates(action(agent, pull), _, T).

% 2. the agent can push/pull only if it’s

queried

:— happens (action(agent, push), _), not query(
push) .

:— happens (action(agent, pull), _), not query(
pull).

% 2. it’s not allowed to have 3 objects (agent +
2 items) in the same cell

% (I use holds_at(_, T) instead of timepoint (T)
since the latter doesn’t cover the last T+1
timestamp)

%:— holds_at(_, T), location(L), N = #count{O:

holds_at(at (O, L), T)}, N>2.

% 3. after push/pull, the agent cannot do a
different action in {walk, push, pull}
:— happens (action(agent, Al), T1), happens(
action(agent, A2), T2), Al!=A2, TI<T2,
1{Al=push; Al=pull},
1{A2=push; A2=pull; A2=walk}.

% 4. the agent cannot change its direction to
push/pull after reaching destination
reach _destination(T) :- goal (at(agent,l)),
holds_at (at (agent, L), T),
not reach destination(Tx): timepoint (Tx), Tx
<T.
:— reach destination(T1l), holds_at (dir(agent, D1
), T1),
holds_at (dir(agent, D2), T2), happens(action
(agent, push), T2), T1<T2, D1!=D2.

:— reach destination(T1l), holds_at (dir(agent, D1
), T1),
holds_at (dir(agent, D2), T2), happens(action
(agent, pull), T2), T1<T2, D1!=D2.

% 1. (optional to speed up) we need to reach the
destination and as early as possible

:— goal (at (agent, L)), not reach destination().

i~ goal (at (agent, L)), reach destination(T). [

T@10, goal]

% 2. we need to reach the goal and as early as
possible
% a. the direction when reaching goal must
align with the direction when reaching
destination
b. if it’s not deadend, there must be
something blocking the next push/pull
reach_goal(T) :—
agent (A), holds_at(at(a, L1), T), holds_at(
dir(a, D), T),
same (destination, Target), holds_at (at(
Target, L1), T),
reach_destination(Tr), holds at(dir(a, D),

oe

Tr),

holds_at(at(_, L2), T): query(push), is(L2,
D, 1L1);

holds_at(at(_, L2), T): query(pull), is(L1,
D, 12);

not reach goal (Tx): timepoint (Tx), Tx<T.
:— not reach goal ().
i~ reach _goal(T). [T@9, goall]

% the agent cannot move further before reaching
destination
:— reach destination(T), goal (at (agent,
)
holds_at (at (agent, (X1,Y1)), Tx), holds_at(
at (agent, (X2,Y2)), Txt+l), Tx<T,
|X1-Xg| + |Y1l-Yg| < |X2-Xg| + |Y2-Yg].

(Xg,Y9))

% by default, walking all the way horizontally
first and then vertically

move (horizontally, T) :— happens(action(agent,
walk), T), holds_at(dir(agent, D), T), 1{D=
east; D=west}.

move (vertically, T) :- happens(action(agent,
walk), T), holds at(dir(agent, D), T), 1{D=
south; D=north}.

:— not while(zigzagging), move (horizontally, T1)
, move(vertically, T2), T1>T2.

% hesitantly: the agent must stay after every
action in {walk, push, pull}
:— while(hesitantly), happens(action(agent, A),
),
1{A=walk; A=push; A=pull},
not happens (action(agent, stay), T+1).
% cautiously
cautious (T)
),

:— happens (action(agent, turn left),

5215

happens (action(agent, turn right), T+1),
happens (action(agent, turn right), T+2),
happens (action(agent, turn left), T+3).

% the agent must be cautious before every action
in {walk, push, pull}

:— while(cautiously), happens(action(agent, A),
T),
1{A=walk; A=push; A=pull},
not cautious(T-4).

% spinning

spin(T) :— happens(action(agent, turn left), T),
happens (action(agent, turn left), T+1),
happens (action(agent, turn left), T+2),
happens (action(agent, turn left), T+3).

% we always spin at the beginning if there is
any action

:— while(spinning), happens(_,_), not spin(0).

% we always spin after every action in {walk,
push, pull} except for the last one

:— while(spinning), happens(action(agent, Al),
T1), happens(action(agent, A2), T2), TI<TZ2,
1{Al=walk; Al=push; Al=pull},
1{A2=walk; A2=push; A2=pull},
not spin(T1+1).

% zigzagging
if horizontal move is needed, the first move
must be horizontal

:— while(zigzagging), move (horizontally, _),
move (D, Tmin), D!=horizontally,
Tmin<=Tx: move (_,Tx) .

% 1f a different kind of move D2 is after D1, D2
must be followed directly

:— while(zigzagging), move (D1, T1l), move(D2, T2)
, D1!=D2, TI<T2,
not move (D2, T1+2).

oe

location("table") .
location(L) :- feature(L, block).
location(L) :— feature(L, bowl).

%********************

* atoms in DEC_AXIOMS

*********************%

% happens/2
{happens (E, T) : event (E) }grippers :— timepoint (T)

)

% *xx% constraints *xx*

% the goal must be achieved in the end
:— maxtime (M), on(A, B), not holds at(on(A,B), M
+1).

% At any time T, for each block/bowl, there
cannot be 2 items directly on it

:— timepoint (T), feature(L, _), 2{holds_at(on(I,

L), T): feature(I,_)}.

% 1if there are bowls on the table, a block can
only be on a block or a bowl;

:— feature(_,bowl), feature(I,block), holds_at(
on(I,L),_), {feature(L, block); feature(L,
bowl)} = 0.

% there cannot be more than max height-1 blocks
stacked on a block

up(A,B,T) :— holds_at(on(a, B), T).

up ®,C,T) := up ®,B,T), up (B,C,T) .

:— timepoint (T), feature(L, block), #count{I: up
(I,L,T)} >= max_height.

E.5.19 Pick&Place

% Set up the environment

% Define the number of grippers for the robot
#fconst grippers=1.

% Define the maximum number of steps to consider
{maxtime (M) : M=0..10} = 1.
i~ maxtime (M) . [M]

% Extract the features for all items in the
intial and goal states

% we assume these items form the complete set of
items in this example

feature(I, F) :— on(I,_), F=Qgen_feature(I).

feature(I, F) :- on(I,_,0), F=@gen feature(I).

feature(I, F) :— on(_1I), I!="table", F=
@gen_feature(I) .

feature(I, F) :— on(,I,0), I!="table", F=
@gen_feature(I) .

% Define all locations

F Dataset Errors

This section enumerates the errors in the datasets
we found.

F.1 bAbI

In task 5, the dataset has two errors with regard to
the labels.

Error #1. In the following example, the answer is
ambiguous since Bill gives Mary both the football
and the apple.

CONTEXT:

Mary Jjourneyed to the kitchen.
Mary went to the bedroom.

Mary moved to the bathroom.
Mary grabbed the football there.
Mary moved to the garden.

Mary dropped the football.

Fred went back to the kitchen.
Jeff went back to the office.
Jeff went to the bathroom.

Bill took the apple there.

Mary picked up the milk there.
Mary picked up the football there.
Bill went back to the kitchen.
Bill went back to the hallway.
Fred journeyed to the office.
Bill discarded the apple.

Mary journeyed to the kitchen.

5216

Fred journeyed to the garden.
Mary went to the hallway.

Mary gave the football to Bill.
Bill passed the football to Mary.
Bill took the apple there.

Bill gave the apple to Mary.
Jeff travelled to the kitchen.

QUERY:
What did Bill give to Mary?

PREDICTION:
apple

Answer:
football

Error #2. In the following example, the answer is
ambiguous since Fred gives Bill both the milk and
the apple.

CONTEXT:

Mary journeyed to the bathroom.
Mary moved to the hallway.
Mary went to the kitchen.
Bill went back to the bedroom.
Bill grabbed the apple there.
Fred went back to the garden.
Mary went to the garden.

Fred took the milk there.
Jeff moved to the hallway.
Bill dropped the apple there.
Fred handed the milk to Mary.
Mary handed the milk to Fred.
Fred went back to the bedroom.
Fred passed the milk to Bill.
Fred took the apple there.
Fred gave the apple to Bill.
Jeff went to the kitchen.
Bill dropped the milk.

QUERY:
What did Fred give to Bill?

PREDICTION:
apple

Answer:
milk

F.2 CLUTRR

We detected 16 data errors in the CLUTRR 1.3
dataset using our method. These errors can be
grouped into the following 4 categories.

* 5 data instances are due to incorrect rela-
tion graphs. For example, one relation graph
contains the main part “A-son-B-daughter-C-
aunt-D” and a noise (supporting) relation “B-
spouse-D”. However, if B and D are couples,
then C should have mother D instead of aunt
D.

* 9 data instances have a correct relation graph
(e.g., A-son-B-grandmother-C-brother-D with

5217

a noise supporting relation B-mother-A) but
the noise relation is translated into a sen-
tence with a wrong person name (e.g., "D has
mother A" instead of "B has mother A").

1 data instance has a correct relation graph
and story, but has a wrong label (i.e., the label
should be mother_in_law instead of mother).

1 data instance has a correct relation graph and
story, but the query cannot be answered due
to the ambiguity of a sentence. It uses "A has
grandsons B and C" to represent brother(B,
C), while B and C may have different parents.

ACL 2023 Responsible NLP Checklist

A For every submission:

¥ Al. Did you describe the limitations of your work?
Section 7.

[l A2. Did you discuss any potential risks of your work?
Not applicable. Left blank.

¥ A3. Do the abstract and introduction summarize the paper’s main claims?
Section 1.

A4. Have you used Al writing assistants when working on this paper?
Left blank.

B ¥ Did you use or create scientific artifacts?
Sections 2, 3, 4.

¥/ B1. Did you cite the creators of artifacts you used?
Sections 2, 3, 4.

v B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
At the beginning of the appendix.

v B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?

Section 4 and Appendix A, B.

0J B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Not applicable. Left blank.

¥/ B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Section 4.

¥f B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Section 4.

C ¥ Did you run computational experiments?
Section 4.
¥ C1. Did you report the number of parameters in the models used, the total computational budget

(e.g., GPU hours), and computing infrastructure used?
At the beginning of the appendix.

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on Al writing
assistance.

5218

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

v C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Section 4.

v C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?

Section 4.

v C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?

Section 4.

D Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

O DI1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

(] D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?

No response.

[0 D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?

No response.

0 D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

0] DS. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

5219

