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Abstract

Inspired by the curvature of space-time (Ein-
stein, 1921), we introduce Curved Contrastive
Learning (CCL), a novel representation learn-
ing technique for learning the relative turn
distance between utterance pairs in multi-turn
dialogues. The resulting bi-encoder models
can guide transformers as a response ranking
model towards a goal in a zero-shot fashion
by projecting the goal utterance and the corre-
sponding reply candidates into a latent space.
Here the cosine similarity indicates the dis-
tance/reachability of a candidate utterance to-
ward the corresponding goal. Furthermore, we
explore how these forward-entailing language
representations can be utilized for assessing
the likelihood of sequences by the entailment
strength i.e. through the cosine similarity of
its individual members (encoded separately)
as an emergent property in the curved space.
These non-local properties allow us to imagine
the likelihood of future patterns in dialogues,
specifically by ordering/identifying future goal
utterances that are multiple turns away, given
a dialogue context. As part of our analysis, we
investigate characteristics that make conversa-
tions (un)plannable and find strong evidence
of planning capability over multiple turns (in
61.56% over 3 turns) in conversations from the
DailyDialog (Li et al., 2017) dataset. Finally,
we show how we achieve higher efficiency in
sequence modeling tasks compared to previous
work thanks to our relativistic approach, where
only the last utterance needs to be encoded and
computed during inference.

1 Introduction

Large Scale Transformers are becoming more and
more popular in dialogue systems (Zhang et al.
(2019), Peng et al. (2022)). Though these mod-
els are very effective in generating human-like re-
sponses in a given context, based on their learning

∗German Research Center for Artificial Intelligence
†maastrichtuniversity.nl

objective to minimize perplexity, they tend to have
trouble generating engaging dialogues (Gao et al.,
2020). Meister et al. (2022) have shown that hu-
man conversations usually do not sample from the
most likelihood of words like transformers do. We
argue that one reason for this is that natural conver-
sations can be (always) considered goal-oriented
(even chitchat) and motivate this claim based on
literature from psychology. These have shown that
"Conversation is a goal-directed process" (Myl-
lyniemi, 1986) as humans shift conversation topics
based on the social connection/audience and use
it to shape social relations (Dunbar et al., 1997).
The psychological literature also elaborates on how
humans are able to plan and simulate dialogues
by utilizing inner speech as part of verbal working
memory (Grandchamp et al., 2019).

"Key to most of such models is that in-
ner speech is posited as part of a speech
production system involving predictive
simulations or “forward models” of lin-
guistic representations" (Alderson-Day
and Fernyhough, 2015)

Keeping this in mind, we investigated dialogues
under the aspect of "forward" entailing language
representations by projecting them into a sim-
ple semantic sentence transformer (Reimers and
Gurevych, 2019) latent space. We place a fixed
position in the DailyDialog (Li et al., 2017) dataset
as a goal utterance and measure the cosine similar-
ity of the goal to every other utterance within the
dialogue. Our own preliminary work revealed, as
shown in figure 1, that the similarity of previous
utterances to the goal utterance increases as they
get closer to the goal utterance.

However, fluctuations between the speaker at the
goal turn (saying the utterance later on) and their
dialogue partner can be observed. As we see on the
blue & red highlighted turns, the goal turn speaker
has a greater similarity to the goal utterance than
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Figure 1: Entailment property of sentence transformer-
based embeddings within conversations on DailyDialog

the dialogue partner. We filtered all samples caus-
ing these fluctuations and find that these transitive
entailing properties are essential for guiding the
conversation toward the given goal. Regardless
of whether the person had the intent to reach the
target goal.We demonstrate in this paper how we
can build upon this phenomenon to learn the rela-
tive distance between utterance pairs. In particular,
by mixing the training objective of Natural Lan-
guage Inference (NLI) for the semantic embedding
space with a distance proportional and directional
aware (through two special tokens [BEFORE] &
[AFTER]) cosine similarity-based loss of utterance
pairs.

The resulting Curved Contrastive Learning
(CCL) is presented on three tasks: (1) short-term
planning, (2) next utterance selection, and (3) long-
term planning.

(1) Short-term planning: CCL allows us to
imagine the likelihood of a candidate utterance
leading to a given goal utterance by projecting
them together into one latent space (imaginary
space). The cosine similarity indicates the dis-
tance/reachability of a candidate utterance towards
the corresponding goal as illustrated in a trans-
former guidance example in figure 2. Thanks to
the transitive property we can select the utterances
at each turn greedily.

(2) Next utterance selection: The embeddings
can be utilized for sequence modeling by only us-
ing the cosine similarity between the separately
encoded sequence members. It is evaluated by the
ranking performance of the human vs random ut-
terances task given a dialogue context.

(3) Long-term planning: Since these embed-
dings do not require entire sequences for sequence
modeling, we can assess the likelihood of following
patterns (of multiple goal utterances that are mul-

tiple turns apart) by using the entailment strength
between these and the context in the curved space.
We evaluate this approach based on the order-
ing/identifying of future goal utterances.

Furthermore, we investigate two research ques-
tions:

• Do chit-chat conversations have planning ca-
pability? (RQ1)

• What characteristics make dialogue planning
possible? (RQ2)

The paper is structured as follows: In §2 we
discuss the related work. Following in §3 where
we present the methodology, baselines as well as
basic components for the advanced architectures.
In §4 the short-term planning approaches, followed
by the next utterance selection in §5 and the long-
term planning approaches for ordering goals in
§6. We wrap up the paper with the experiments &
discussion in §7 followed by the conclusion in §8.

2 Related Work

Our work builds upon two major concepts, dia-
logue planning, and entailment. Related publica-
tions from the stated fields are discussed below.

Dialogue Planning
While previously introduced planning techniques
used several abstraction approaches (Teixeira and
Dragoni, 2022), none of them exploited the charac-
teristics of curved conversation embedding latent
spaces. We argue that generating a complete dia-
logue path is unnecessary as we can simply choose
the utterance in the transformer’s search space that
gets us closest to the goal at every turn. Ramakr-
ishnan et al. (2022) proposed a similar idea on
word level by applying constrained decoding to the
dialogue response generation to increase the likeli-
hood of a target word not only in the current utter-
ance but also utterances in the future. Furthermore,
DialogRPT (Gao et al., 2020) has been introduced
as a dialogue response ranking model for depth,
width, and upvotes prediction for utterance candi-
dates. We utilize DialogRPT as a baseline for our
next utterance selection experiments based on the
dialogue history.

Entailment
Entailment-based approaches have a long history
in NLP and have been utilized for a lot of tasks as
zero-shot classification tasks like relation extrac-
tion (Obamuyide and Vlachos, 2018) or zero-shot
text classification (Yin et al., 2019). The idea of
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Figure 2: DialoGPT Guidance Example with Imaginary Embeddings with before [B] and after [A] token.

entailment graphs and making use of transitivity
has been previously explored by Kotlerman et al.
(2015) & (Chen et al., 2022). Textual entailment
has also been applied to Dialogue Systems as an
evaluation technique (Dziri et al., 2019) or for im-
proving response quality through backward rea-
soning (Li et al., 2021). Contrastive learning with
positional information has been previously applied
to image segmentation (Zeng et al., 2021). While
You et al. (2020) utilized contrastive learning with
augmentations for graph neural networks (GNNs).
Natural Language Inference (NLI) based transform-
ers have been increasingly used for semantic textual
similarity (STS) since the introduction of Sentence
Transformers, thanks to bi-encoders (Reimers and
Gurevych, 2019) that can compare sentence pairs
with cosine similarity and therefore reduce com-
putation time by a 234000 * fold. This trend has
especially been supported by GPU Search (Johnson
et al., 2017). These sentence transformers have suc-
cessfully been applied to learn utterance represen-
tations for retrieving utterance replies in dialogue
systems (Liu et al., 2021) or ConvRT (Henderson
et al., 2020) that we use as a baseline. However,
without utilizing the curved property of conversa-
tions which we argue, as motivated in §1, is essen-
tial for forward representations.

3 Methods

In this section, we formally define the research
questions (problem definition), our baselines for
the evaluation, and the core of Imaginary Embed-
dings based on which advanced architectures are
built in the following sections.

*According to Reimers and Gurevych (2019) a set of
10000 Sentences would require 50 million inference computa-
tions with Bert which would, according to them, require 65
hours, while SBERT prior encoded would only take 5 seconds

3.1 Problem Definition Planning

As part of this paper, we investigate two planning
problems, short- and long-term planning. Short-
term planning aims at guiding the conversation
from the current position towards a given goal ut-
terance g (which we define as a semantic utterance)
over multiple turns. Long-term planning, on the
other hand, targets the ordering/scheduling of a set
of goals G (utterances that are multiple turns apart)
within a conversation.

3.2 Long-Short Term Planning Evaluation

As part of this paper, we introduce a new evaluation
technique, Long-Short Term Planning Evaluation
(LSTPE). LSTPE is split into Short- as well as
Long-Term planning.

3.2.1 Short-Term Planing Evaluation
As part of the short-term planning evaluation, we
evaluate the guidance capability of imaginary em-
beddings towards a given goal utterance. For this
purpose, we split all dialogues within a given cor-
pus d ∈ C into subsets of d[: hl] which represents
the history of utterances (or context) with a fixed
length hl, d[hl] the "correct" following utterance
and d[hl+gd] as goal utterance with a goal distance
gd. We then let a dialogue transformer generate 100
candidate utterances given the context d[: hl] for
every dialogue d ∈ C which we project together
with the goal utterance into the imaginary embed-
ding. Following, we compare the ranking score of
the original utterance to the artificially generated
utterances. As metrics, we report the Hits@K ratio
(X%) and the average rank.

3.2.2 Long-Term Planning Evaluation
Similar to the Short-Term planning, we take a cor-
pus of dialogue data d ∈ C and split it at fixed posi-
tions x into the dialogue history and three goal utter-
ances |G| = 3. Given a dialogue history of length
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hl, ∀d ∈ C : d[: hl], d[x], d[x + gd], d[x + 2gd]
where gd ≥ 2 is the distance between the goals.
We define the first goal in distance as x − hl in
the perspective of the dialogue history. The three
resulting goal utterances result in 6 possible order
permutations. Since 4 of them are partially ordered,
we split the evaluation into ranking the partially
ordered and reverse order to the true order sepa-
rately. In both cases, we present the Hits@K ratio
(X%) as well as the average total rank. While this
technique is simple and does not require any super-
vision, some samples due to the random selection
are without any context indistinguishable. E.g. an
utterance like "oh, okay" could be at any position.
Since all models are evaluated on the same data set,
this is not an issue, however, an accuracy of 100%
is realistically not possible.

3.3 Next Utterance Selection Evaluation
Furthermore, we test the embedding’s capability
of telling potential replies from random utterances
given a dialogue context by comparing it to Di-
alogRPT (Gao et al., 2020), ConvRT (Henderson
et al., 2020) and BM25 (Robertson and Zaragoza,
2009) on a ranking task. The data set is built up in
a similar way as for short-term planning.

3.4 Imaginary Embeddings with Curved
Contrastive Learning

We introduce a novel self-supervised learning tech-
nique to map sequences to a conversational space.
To generate these properties, we train a bi-encoder
sentence transformer on two training objectives.
The first objective builds upon the AllNLI dataset
(a combination of SNLI (Bowman et al., 2015) and
MultiNLI (Williams et al., 2017)) with a simple
Softmax Loss. To learn the conversational space,
two special tokens [BEFORE] and [AFTER] are
introduced. The model is (pre-)trained with a Co-
sine Similarity loss on DailyDialog (Li et al., 2017),
by sliding through conversational data with a fixed
length l = 5. Notably, we combine consecutive
utterances of the same speaker. Based on this fixed
length, the training data is constructed for a given
window as follows:

∀i ∈ {1, .., l} :





([B] u[0], [A] u[i], s = l−i
l

([B] u[i], [A] u[0], s = 0

([B] u[0], [A] u′[r], s = 0

([B] u′[r], [A] u[0], s = 0
(1)

where [A] = [AFTER], [B] = [BEFORE], u
the utterances in the observed window, u′ a set
of random utterances, and s the cosine similarity
score. As 5 shows, the target cosine similarity
for a positive sample pair is proportional to their
positional distance in the dialogue (see illustration
in figure 3). This lets us learn semantic properties
between [B] & [B] and [A] & [A] as well as
the curvature as a relative time dimension between
utterance pairs in the space between [B] & [A]
representations.

Three hard negatives are introduced, the first
ensures the directional property by swapping the
[BEFORE] and [AFTER] token. The following
two are selected from a special dataset of random
utterances. Figure 3 unveils the widespread util-

Figure 3: Curved property of Imaginary Embeddings.
Grey/black nodes represent history utterances, orange
nodes are utterance candidates, and dark orange is the
best candidate as it is closest to the goal utterance (red).
From the perspective of the best candidate encoded as
[A], the scores towards history illustrate the training
objective as they are encoded with [B] tokens.

ity of imaginary embeddings. As shown, we can
simply pick the best candidate utterance for reach-
ing a given goal by imagining the closeness of the
candidate utterance to the goal in the curved space
without requiring the real representations between
the utterance pairs.

Similar to an object in our universe that always
moves on a straight line but is curved by space-time
(Einstein, 1921), we can follow a line to our goal
utterance by greedily selecting the best utterance
on turn-to-turn bases. We illustrated this transitive
property by the light red in-between nodes in figure
3.

Thanks to the relative time dimension between
utterance pairs and their resulting non-locality, we
are able to encode all sequence members (utter-
ances) independently into one latent space and ac-
cumulate the likelihood of a sequence by compar-
ing only with cosine similarity. In particular, by
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imagining the closeness between every context ut-
terance (encoded with [B]) and the future utterance
(encoded with [A])), i.e. Imagination is all you
need!

Not only can we assess the likelihood of se-
quences that we explore in the next utterance selec-
tion §5 but we can also utilize these self-organizing
properties for mapping sequential representations
to the conversational surface that are multiple turns
apart. We explore this as the ordering of goals in
long-term planning §6.

3.4.1 Adding Speaker Tokens
Furthermore, we can modify imaginary embed-
dings with additional speaker tokens. Given a
multi-turn dialogue with two participants, the to-
kens [O] and [E] are added to the [BEFORE]
utterance at the encoding step (for even and odd dis-
tances to the target utterance [AFTER]). Accord-
ingly, the learning objective (see equation 5) for the
curved property is slightly modified by adding hard
negatives for false speaker matches (see appendix
D).

4 Short Term Planning Approach
(Transformer Guidance)

As described in section 3.2.1 we utilize imaginary
embeddings as a re-ranking model. Respectively,
we let a task-specific dialogue transformer gen-
erate 100 candidate utterances given the context
d[: hl] of a fixed length hl for every sample dia-
logue d ∈ C. To get a diverse distribution of utter-
ances we choose nucleus sampling with p = 0.8
and a temperature of t = 0.8. The generated utter-
ances from the transformer are then projected in
the imaginary embedding space and the goal sim-
ilarity of d[hl + gd] is measured. Following, we
check the rank of the true utterance from the test
set leading to the goal utterance. The average rank
and the distribution of ranks within the dialogue are
evaluated with respect to different history lengths
hl and different goal distances gd.

5 Next Utterance Selection with Curving

Motivated by the curved property, the most suitable
next utterance uf ∈ UF for a dialogue sequence
his should be closest to the individual utterances of
the sequence on average. We can assess a relative
likelihood between all future utterances by measur-
ing the entailment strength PE (i.e. imagining the
closeness) of every uf to the history of utterances

based on the cosine similarity as follows:

PE(uf |his) =
∑

ui∈his

[B] ui [A] uf

∥[B] ui∥ ∥[A] uf∥
(2)

In the ranking evaluation, we sort the results of
∀uf ∈ UF : PE(uf |his) to determine the rank
of the true utterance. Notably, we can observe
the entailment strength (or activation) of individ-
ual utterances to a future one, which enables many
other applications. During inference, while the
dialogue partner is still speaking, we can pre-
compute the entire context (apart from the new
incoming utterance). Furthermore, we can utilize
the curved context for greedily selecting the next
goal max

g∈G
PE(g|his) in our long-term planning ex-

periments. We refer to this as greedy curving.

6 Long-Term Planning Approaches

In this section, we describe how Imaginary Embed-
dings can be used to order goals (a set of utterances)
within dialogues for long-term planning. The mod-
els are evaluated with LSTPE, a given set of goals
G with |G| = 3, and an equal distance between
each node.

6.1 Imaginary Embedding Chains

Figure 4: Long Term planning Dataset construction
variables (history length, goal distances, (first) goal in
distance) demonstrated. Furthermore, the concept of
Imaginary Embedding Chains (IEC) is illustrated with
its puzzle-like properties with the corresponding goal
utterance colors.

Imaginary Embeddings are perfectly suited for
this task as they can be concatenated into cosine
similarity chains by using the ([B] before and
[A] after token) as illustrated in figure 4. We
mathematically define it as:

s(o) =
(∑

i∈o

[B] gi [A] gi+1

∥[B] gi∥ ∥[A] gi+1∥
)

(3)
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where we choose the order of goals o ∈ O
by the highest similarity score s with max

o∈O
(s(o))

(strongest entailment strength) of a given sequence
o =< g1, ..., gn > of goals gi ∈ G. While this
chain can be arbitrarily long and, thanks to GPU
tensor computations calculated rather quickly, the
complexity with O(n!) for a brute force computa-
tion remains high.

6.2 Imaginary Embedding Chains with
History Curving

Finally, we combine the concepts of Imaginary
Embedding Chains and Curving by generating for
every order [g1, g2, g3] a score (equation 4):

s′(g1, g2, g3) = s(o) + PE(g1|his)

− 1

2
PE(g2|his)− PE(g3|his) (4)

where s(o) is the chain score of the given order
based on equation 3 and PE(gi|his) is the history
curving score for the corresponding goal. We mo-
tivate the addition of g1 and the subtraction of g3
(as well as g2) based on the presumption that g1
should be closest while g3 should be the furthest
away to the history with respect to the curved prop-
erty. Note that other than the simple Imaginary
Embedding Chains (IEC), IEC + curving requires
some dialogue context and is therefore not suitable
for dialogue planning without context.

7 Experiments

Our experiments are conducted on two dialogue
corpora, DailyDialog (Li et al., 2017) and the
Microsoft Dialogue Challenge (MDC) corpus (Li
et al., 2018). We experiment with two trans-
former architectures BERT (Devlin et al., 2018)
and RoBERTa (Liu et al., 2019) to generate Imag-
inary Embeddings. In the short-term planning
(transformer guidance) setting, we let our Imag-
inary Embeddings guide DialoGPT (Zhang et al.,
2019) for DailyDialog and GODEL (Peng et al.,
2022) for the MDC corpus. For the next utterance
selection, we use pre-trained checkpoints of Dialo-
gRPT (Gao et al., 2020) and ConvRT (Henderson
et al., 2020) as baselines. Furthermore, we add
BM25 (Robertson and Zaragoza, 2009) as well
as an ablation study with the two special tokens
(before and after) but without the curved learning
objective that we explore in the appendix G.

7.1 Experimental Setup

While the DailyDialog data set has a test corpus of
1000 dialogues, we first have to generate a test data
set for MDC. We do so by extracting the last 333
samples for each of the three task-oriented domains
(movie-ticket booking, restaurant reservation, and
taxi booking). This leaves us with 11,118 dialogues
as training data for DailyDialog and 9088 training
samples for MDC.

7.2 Self-Supervised Training

Apart from combining consecutive utterances of the
same speaker and removing dialogues with utter-
ances longer than 200 tokens, we apply no further
pre-processing on the training data. As described
in §3.4, we pre-train all our architectures in stage
(1) with a mixed training objective of NLI and the
Curved Contrastive Learning (CCL) on the Daily-
Dialog corpus for 5 epochs. For all MDC models,
we follow up with a second stage where we train on
the target corpora with the curved property learning
objective only for domain adaptation.While Long
Term planning performs best after 5 epochs of
further fine-tuning, short-term planning requires
only between 0.5 to 1 epoch(s). We provide all
models including model cards on Huggingface as
well as our code as part of a python package pip
install imaginaryNLP (open-sourced un-
der Apache-2.0 license) in the following GitHub
repository †.

7.3 Evaluation Data sets

The evaluation data sets DailyDialog and MDC are
constructed analogously. We construct the datasets
for STP based on history length and goal in distance
& LTP based on history length, goal in distance,
goal distances respectively as illustrated in figure
4. Since MDC with an average number of 6.51
turns is even shorter than DialyDialog with 7.84,
we are limited in the long-term planning to a shorter
context as well as a goal in distance length.

7.4 Evaluation & Discussion

In the following sections, we investigate how
well these embeddings perform on our introduced
LSTPE (§3.2) and on the next utterance selection
task. In the main paper, we focus on our empirical
findings and present the results of the experiments
for space reasons in aggregated form. We provide

†https://github.com/Justus-Jonas/
imaginaryNLP

5157

https://github.com/Justus-Jonas/imaginaryNLP
https://github.com/Justus-Jonas/imaginaryNLP


Human Utterance Ranking vs 100 utterances sampled
from DialoGPT Large / GODEL Large (p=0.8, t=0.8)

Imaginary Embedding
without Speaker Token

Imaginary Embedding
with Speaker Token

Goal in Distance Hits@5
(in %)

Hits@10
(in %)

Hits@25
(in %)

Hits@50
(in %)

Average
Rank

Hits@5
(in %)

Hits@10
(in %)

Hits@25
(in %)

Hits@50
(in %)

Average
Rank

DailyDialog Test Corpus
Guidance even g distance 29.36 35.76 51.03 67.9 34.59 27.78 36.22 53.78 71.36 32.56
Guidance odd g distance 31.31 39.21 54.09 72.78 30.61 63.49 72.18 83.21 91.06 12.9
MDC Test Corpus
Guidance even g distance 20.79 29.32 48.04 70.85 34.86 39.18 50.9 69.29 83.1 22.09
Guidance odd g distance 25.41 32.17 46.8 67.31 35.88 63.06 70.65 80.94 89.16 14.01

Table 1: Aggregated short-term planning evaluation for odd (unveiling utterances of the dialogue partner) and even
distances (which would be uttered by the transformer itself).

a detailed analysis in the appendix, where we ex-
plore examples as well as demonstrate the curved
property of dialogues in these embeddings. This is
illustrated as vector chains in figure 7 or the aver-
age similarity of different distances and directions
within dialogues (appendix B).

7.4.1 Short-Term Planning
As shown in the short-term planning aggregated
results table 1, we split the results based on odd dis-
tance length (unveiling utterances of the dialogue
partner) and even distance (which would be uttered
by the transformer). Both have at least 20% of the
true candidate utterances in the top 5 (Hits@5) (of
100) ranks, 50% in the top 25 (Hits@25), and a max
average rank of 32.56. We observe that speaker
token-based imaginary embeddings on odd dis-
tances can even achieve 63% in the top 5 (Hits@5)
with the highest average rank of 14.01. This can be
expected as odd utterances will be uttered by our
dialogue partner which we can greatly influence
by our preceding utterance. Interestingly, we find
that it is significantly easier to plan 3 turns ahead
rather than 2 turns. This is portrayed in the detailed
analysis based on the history length, goal distances,
and the first goal distance (goal in distance) in table
3 (appendix). Our analysis unveils that the DailyDi-
alog models have an advantage through their more
diverse utterance distribution in selecting the true
candidate utterance. Furthermore, they perform
more consistently across different history lengths
and goal distances. MDC, on the other hand, per-
forms overall better but has a higher variance in
its performance (with samples of different history
lengths and goal distance). Concluding that the
score distribution in the ranking process is either
more strongly peaked (most in data sets with lots
of request intents) or it more is flattened (especially

on data with majorly inform intents). We explore
this in detail in the appendix E. This flattened score
distribution can be expected as in many cases of
providing information, the actual information has
little impact on future turns considering a struc-
tured task-oriented setting (e.g. replying on how
many people will attend a reservation).

7.4.2 Next Utterance Selection based on
Curved History

The sequence modeling capability is evaluated
based on the normalized average rank (of the true
following utterance compared to all other utter-
ances at the same position of the corresponding cor-
pus). We find that the DailyDialog corpus clearly
outperforms MDC across all variations. As we
demonstrate in figure 5, DailyDialog performs best
with an average rank in the top 10% over all history
lengths (the entire history projected in the curved
space with speaker tokens). For sequences longer
than 2 turns, it even outperforms all our baselines
DialogRPT (human vs. random) by at least 2.8%
and ConvRT by 0.5%.

Overall, we find that DialogRPT has trouble with
increasing sequence lengths as input and find that
keeping the last two utterances performs best. No-
tably, we can reduce the computation costs of the
dialogue context compared to DialogRPT and also
ConvRT due to our relativistic approach which
we explore in more detail in the appendix C.1.
While our experiments on MDC for the next ut-
terance selection show weak results, in summary,
MDC shows the same fluctuations between primar-
ily inform & requests intents. While the ranking
approaches based on only the last utterance are
most of the time superior, we observe on odd turns
(where we have a lot of request intents) the en-
tire history usually performs better relative to even
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Figure 5: Normalized average rank of next utterance selection based on dialogue history on DailyDialog. Demon-
strated are different Curving variants (only the last utterance or the entire history), classic as well as Speaker
Token-based embeddings. As baselines, we utilize the pre-trained DialogRPT (human vs random utterance task),
the pre-trained ConveRT as well as BM25.

distances. Conversely, we notice that approaches
based on only the last utterance are especially good
on turns where we see more informing intents (re-
plying to the request). We further explore this in
the appendix C.2.

7.4.3 Long Term Planning Evaluation

The short turn length of the two corpora becomes
especially troublesome in the long-term planning
evaluation. Here, we are limited to short con-
text/history lengths as well as short goal distances
and (first) goal in distances.Across all models and
datasets, we observe a solid average rank of 1.87
(between 1 and 2 for all approaches) on identifying
the correct order of 3 goal utterances within their 6
possible orders as table 2 unveils. Note that Greedy
Curving has only to predict only the immediate
next goal (1/3) while the other LTP models the en-
tire order (1/6). While our MDC embeddings had
especially trouble with utterance selection in width
(selecting an utterance from the same dialog depth
§7.4.2), we find that MDC shows a stronger perfor-
mance on greedy goal selection (Greedy Curving
(GC)) on classic embeddings thanks to the solidi-
fied sequential structure of task-oriented dialogues.
This advantage lets MDC outperform DailyDialog
also on all other approaches. When Speaker to-
kens come into play, however, MDC drops while
DailyDialog improves in performance compared to
classic imaginary embeddings. Imaginary Embed-
ding Chains (IEC) and with curved context (IEC &
CU) show similar performance in aggregated form.
However, when the context is close (i.e. the first
goal is not far away) IECs with a curved context
prevail. This changes with increasing distance of
goals or first goal in distance as highlighted in ta-

ble 4 of the appendix. Here, IECs with no context
keep an advantage. Similarly, we observe a drop
in performance over longer distances for Greedy
Curving. In terms of the MDC planning capability,
the performance drop-off between the two most
common intents, request and inform, is similar, al-
though not as severe as in short-term planning or
the next utterance selection.

8 Conclusion

In this paper, we introduced Curved Contrastive
Learning, a novel technique for generating forward-
entailing language embeddings. We demonstrated
that these can be utilized on various sequence mod-
eling tasks by only using the cosine similarity be-
tween the separately encoded sequence members
in the curved space. In particular, for the next
utterance selection by imagining the closeness of
every context utterance to candidate utterances in
the curved space (where DailyDialog’s true ut-
terances are constantly in the top 10%), outper-
forming our pre-trained baselines DialogRPT and
ConvRT on sequences longer than 2 turns while
reducing encoding costs. Furthermore, we have
shown their pattern recognition ability on the order-
ing/identification of future representations (with an
average rank of 1.87/6) even at longer distances
and far apart. We also demonstrated that these em-
beddings can be applied to guiding dialogue trans-
formers to approach a goal over multiple turns. In
particular, by imagining the closeness of candidate
utterances towards the goal through the transitive
properties of the curved space. Following up on
our claim, that even chit-chat can be considered
goal-oriented (RQ1), we find strong evidence of
planning capability in chit-chat conversations over
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Imaginary Embedding w.o. Speaker Token Imaginary Embedding with Speaker Token

partially ordered Reverse
order partially ordered Reverse

order

Model Hits@1
(in %)

Hits@2
(in %)

Hits@3
(in %)

Hits@4
(in %)

Hits@1
(in %)

Average
Rank

Hits@1
(in %)

Hits@2
(in %)

Hits@3
(in %)

Hits@4
(in %)

Hits@1
(in %)

Average
Rank

DailyDialog Test Corpus
IEC 49.99 70.62 85.26 93.42 79.17 2.01 51.60 72.22 86.82 94.94 81.18 1.94
IEC & CU 50.69 71.24 85.09 93.63 78.54 1.99 51.07 72.98 86.9 94.97 79.87 1.94
GC 57.87 82.47 - - - 1.6 57.32 83.89 - - - 1.59
MDC Test Corpus
IEC 58.72 77.43 90.28 96.38 85.28 1.77 56.83 77.50 90.19 95.44 84.52 1.80
IEC & CU 61.59 77.72 90.15 96.79 86.25 1.74 58.63 78.62 91.20 95.72 85.44 1.76
GC 66.30 89.61 - - - 1.44 56.05 80.59 - - - 1.64

Table 2: Aggregated Long-Term Planning Evaluation on 3 goals with ((2, 2, 2), (2, 2, 0) and (2, 2, 1)) with (history
length, goal distances, first goal in distance). Models include Imaginary Embedding Chain (IEC), Imaginary
Embedding Chain + Curving (IEC & CU), and Greedy Curving (GC).

multiple turns. E.g. 48.83% / 61.56% (within the
top 5 / top 10 utterances in the re-ranking) on 3
turns ahead. Our RQ2 can be answered by the
fact that we observe significant differences in the
plannability of different intents. Our empirical anal-
ysis shows that request intents are significantly eas-
ier to plan than informing intents. While our focus
in this paper was mainly on the introduction of
Imaginary Embeddings and their utilization to di-
alogue planning, we leave much more space for
further evaluation, analysis, and applications on
the curved properties of our����universe ‡ embeddings
in future works.

9 Limitations

One of our limitations is that the data is split
for short-term planning and long-term planning at
fixed positions which on one side shows the overall
planning capability on different datasets unbiasedly
but on the other hand mixes the planning ability of
the datasets with the overall performance of the em-
beddings. We have demonstrated in section E.2 that
this can lead in many cases to unplannable exam-
ples. While this means that our embeddings should
overall perform better than our results suggest, in
the future, we should create either a human-filtered
dataset where planning is always possible or ei-
ther create a human benchmark as a further base-
line. Furthermore, we rely in short-term planning
(transformer guidance) on the generated utterance
distributions by transformers where we have to bal-
ance between semantic diversity and the likelihood
of utterances. We control these with temperature
and nucleus sampling (top p) and found the best

‡In tribute to our fellow researchers in the field of physics
for their inspiring work on the curvature of spacetime

trade-off with a temperature of 0.8 and a top p of
0.8. Nonetheless, this can still lead to utterances
that might lead to the goal but that would be not
considered by humans as very likely based on the
given context as we explore in E.2. Furthermore, in
the next utterance selection, we utilize the publicly
available checkpoints which have been evaluated
in the paper (Gao et al., 2020) on DailyDialog but
both were seemingly not trained on an MDC-like
task-oriented corpus. Since we find that the next
utterance selection based on the curved property
of the context in a task-oriented setting like MDC
is almost always worse than just taking the last ut-
terance, we have not expanded experiments in this
domain.

10 Ethics

Like other language models, our model is prone
to bias from training data sets (Schramowski et al.,
2022)(Mehrabi et al., 2019). This is something
to keep in mind when fine-tuning the model for
domain adaptation. Since the models are for guid-
ance only, we do not see any direct threats related
to language generation. Still, if an individual in-
tentionally wants to harm others and trains a lan-
guage model to generate harmful utterances, our
model could be employed to support this process.
In contrast, however, we argue that these embed-
dings have great potential through their transitive
properties to foresee and deflect harmful utterances
from afar. Considering the risk that language mod-
els pose to humans (Weidinger et al., 2021), these
embeddings could be utilized as a filter on top of
generative language models, e.g. removing utter-
ances that would increase the probability of leading
to an utterance of a large set of harmful utterances.

5160



Our proposed model has a relatively small model
size and shows higher efficiency during training
& inference compared to DialogRPT and ConvRT,
therefore we see great potential for reducing the
carbon footprint in utterance retrieval tasks, in ac-
cordance with recent efforts in NLP (Strubell et al.,
2019) (Patterson et al., 2021).
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B Imaginary Embedding extended
analysis

We analyze the Imaginary Embeddings based on
their average similarity to different distances of
utterances pairs within dialogues as well as their
direction as shown in figure 6. While the model’s
average similarity is far from the training objective,
the scores show a favorable decay considering the
distance for positive examples as well as a rela-
tively low similarity for false direction utterance
pairs. Furthermore, we have illustrated the curved

Figure 6: Average Imaginary Embedding Similarity
to correct and false direction utterances based on turn
distance on DailyDialog Test Corpus

property of these embeddings as directed graphs of
dialogues in figure 7 where we notice a tendency
of utterances at the beginning of the dialogue in the
close right and the last utterance (encoded with the
after token) deeper on the left.

C Next Utterance Selection Extended
Analysis

For the next utterance selection we provide an ex-
tended description for our speed comparison as
well as the MDC results.

C.1 Computation Comparison

Since the bi-encoder architectures are significantly
more efficient than DialogRPT, we compare Con-
vRT and Imaginary Embeddings in more detail.
Considering the encoding of utterances for some
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Figure 7: t-SNE visualization of first 4 utterances of
the first 100 dialogues of the DailyDialog Test Corpus
in curved Embedding Space. From Dark green to light
green (u1 → u2 → u3) nodes as well as edges en-
coded with the [BEFORE] token to u4 encoded with
[AFTER] token as light red.

sequence of length n, ConvRT requires each con-
text representation to encode every previous ut-
terance again with O(n) while Imaginary Embed-
dings only encodes the last utterance O(1). There-
fore, the entire next utterance selection task for
the DailyDialog Corpus (up to a context length
of 10 utterances) requires ConvRT to generate
6219 context representations where in total 26733
utterances are encoded. Imaginary Embeddings
reduce the computation of encoding utterances
through its relativistic approach by a factor of
26733
6219 = 4.3. In terms of context to candidate

utterance matching, Imaginary Embeddings can
pre-compute the entire context until utterance n−1
with (batch, h_len − 1, emb) while the dialogue
partner is speaking. Since we got normalized em-
beddings from the sentence transformer we can
compute the cosine similarity-based score for con-
text and candidate pairs in one simple batch matrix
multiplication U ⊙H.T by transposing the history
with dimensions (1, 2). Following we sum across
the second dimension (history dim) like equation
4 illustrates and store the score matrix s1,...,n−1 in
memory. At inference, we have to compute scores
only between the last utterances and the candidate
utterances matching the number of dot products
with ConvRT. Once the new score matrix sn for ev-
ery pair is generated we simply sum the two score
matrices s = s1,...,n−1 + sn.

C.2 MDC Results

We demonstrate the results of the MDC next ut-
terance selection in figure 8 where we observe as
described in the main paper the symmetry between
inform and request intents either profiting from
only the last utterance or the entire history.

Figure 8: Normalized average rank of next utterance
selection based on dialogue history on MDC. Demon-
strated are different Curving variants (only the last ut-
terance or the entire history), classic as well as Speaker
Token-based embeddings. As baselines, we utilize the
pre-trained DialogRPT (human vs random utterance
task), the pre-trained ConveRT as well as BM25.

D Speaker Token Learning Objective

∀i ∈ {1, .., l} :





([E][B] u[0], [A] u[i], s = l−i
l if i mod 2 = 0

([O][B] u[0], [A] u[i], s = l−i
l if i mod 2 ̸= 0

([E][B] u[i], [A] u[0], s = 0 if i mod 2 = 0

([O][B] u[i], [A] u[0], s = 0 if i mod 2 ̸= 0

([O][B] u[i], [A] u′[r], s = 0 (p = 1
4)

([E][B] u[i], [A] u′[r], s = 0 (p = 1
4)

([O][B] u′[r], [A] u[i], s = 0 (p = 1
4)

([E][B] u′[r], [A] u[i], s = 0 (p = 1
4)

(5)
where [A] = [AFTER], [B] = [BEFORE], [E]

= [E], [O] = [O], u the utterances in the observed
window, u′ a set of random utterances, and s the
cosine similarity score. For the random utterance
matching we assign an equal probability p to every
possible combination.

E Extended Short-Term Planning
Evaluation

As part of the extended Short Term Planning Evalu-
ation, we investigate the extended results based on
the history length, goal distances, and the first goal
distance (goal in distance) in table 3 and demon-
strate examples.

E.1 Detailed Short-Term Planning Evaluation

Table 3 unveils that additional speaker tokens show
improvement in the MDC Test corpus across all
tested categories. While classic embeddings show
on MDC a similar performance across all even
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distances, we can observe two spikes at position
(3, 1) and (5, 1) with (hl, gd) on odd distances with
51.17% / 45.80% in the top 5 respectively. At these
positions, we monitor a 33% increase in the stan-
dard deviation on average of the distribution of
guidance scores i.e. that the model is much more
decisive in its ranking. We analyzed the intent at
these positions and find a two times increase in re-
quests and a 38% decrease in inform intents to the
data set’s average. While the speaker token-based
embeddings show that we can overcome this gap
for odd distances, we still find that the two lowest
performers on (4, 1) & (4, 3) with "only" 53.03%
& 51.45% in the top 5 have all a minimum of 80%
of informing intents. Since the two corpora use
separate latent spaces, we do not compare them on
a simple standard deviation. Instead, we take the
sum of average standard deviations as a baseline
and divide it by the sum of the standard deviations
(for each data set) of the standard deviations (for
each transformer utterance distribution) to measure
the variation in performance over different testing
parameters history length, goal distances, (first)
goal in distance. With a 35% higher score, Daily-
Dialog shows less variance through different test
parameters. Nonetheless, we find that DailyDialog
has a 12% higher semantic variance across all ut-
terances in the transformer-generated distributions
than MDC by measuring their average semantic
similarity with a simple semantic sentence trans-
former.

E.2 Examples of Short-Term Planning

While we provide construction of our evaluation
datasets, we still want to highlight some of the
strengths and weaknesses of our introduced embed-
dings. In the example on the left of figure 9, we
can see that without knowing what the person is
going to say, the model can sometimes move to-
ward the goal too greedily. In the example on the
right, we see that the model can also understand
more complex relations, where the only way to get
to a conversation state where someone would ut-
ter "look behind you. They are coming this way"
would be in a manner of playing catch me as the
model ranks it on the first position. A lot of the
weaker ranking results are due to the fixed split
of data as demonstrated in figure 10. We observe
in the first example (left) that the model tries to
unveil the utterance "You’re right" by trying to get
the other person into an argument (rank 1) where

it hopes the person would then agree to their own
opinion 3 turns later or by trying to unveil the utter-
ance right away (rank 2). In the example in the mid-
dle, we see the drawback of purely relying on the
transformer’s context-aware utterance generation
as the selected utterance of "pint of wine" might be
closer to fruits than beer but at the same time is not
a valid answer. This can be also observed in the
last example (right).
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Human Utterance Ranking vs 100 utterances sampled
from DialoGPT Large / GODEL Large (p=0.8, t=0.8)

Imaginary Embedding
without Speaker Token

Imaginary Embedding
with Speaker Token

Embedding Type History
Length

Goal
Distance n

Hits@5
(in %)

Hits@10
(in %)

Hits@25
(in %)

Hits@50
(in %)

Average
Rank

Hits@5
(in %)

Hits@10
(in %)

Hits@25
(in %)

Hits@50
(in %)

Average
Rank

DailyDialog Test Corpus

Guidance with even
goal distance gd

(saying goal by yourself)

2 2 741 23.08 31.44 50.74 70.31 33.65 24.70 33.87 55.06 75.57 30.28
2 4 534 23.03 31.65 48.13 66.85 35.61 22.10 32.02 51.31 71.72 32.57
5 2 479 25.05 31.52 44.47 63.47 38.03 20.88 29.23 49.69 69.52 34.87
5 4 323 15.79 22.60 39.01 56.66 43.02 17.65 24.15 42.11 66.25 38.27
10 2 102 48.04 51.96 60.78 77.45 27.18 36.27 45.10 61.76 70.59 30.37

Guidance with odd
goal distance gd

(unveiling goal utterance
in dialogue partner)

2 1 918 42.37 50.54 66.88 84.64 21.74 70.59 78.54 87.15 94.55 9.15
2 3 651 23.66 33.33 51.00 71.89 32.05 52.53 60.52 74.04 84.79 19.19
5 1 534 35.02 43.26 58.61 76.40 27.90 67.79 77.53 86.70 93.26 10.46
5 3 385 18.44 23.64 40.00 61.04 40.92 48.83 61.56 76.62 85.97 18.83
10 1 183 36.61 44.81 54.10 69.95 30.49 77.60 82.51 91.26 96.72 6.86

MDC Test Corpus

Guidance with even
goal distance gd

(saying goal by yourself)

2 2 600 20.67 28.83 43.00 64.33 37.68 45.83 55.00 69.33 84.33 20.41
2 4 417 21.58 31.18 47.00 67.63 36.02 47.48 55.16 70.26 83.45 20.85
3 2 545 22.02 32.66 50.64 69.72 33.33 34.68 44.40 66.24 78.35 25.08
3 4 344 26.16 38.08 53.49 77.62 28.97 41.28 53.20 67.44 85.76 20.93
4 2 417 20.62 29.50 46.28 64.99 36.58 37.89 47.96 67.63 85.13 21.06
4 4 234 16.67 23.08 47.01 70.51 37.24 40.60 53.42 73.93 89.74 18.04
5 2 344 18.02 24.42 40.70 60.47 40.94 29.36 41.86 61.05 77.03 26.79
5 4 161 20.50 34.78 56.52 78.26 28.09 44.72 58.39 75.78 88.82 17.32

Guidance with odd
goal distance gd

(unveiling goal utterance
in dialogue partner)

2 1 893 20.83 27.32 40.54 61.59 38.89 63.83 69.99 81.41 90.26 13.46
2 3 545 31.19 38.53 55.41 73.76 29.92 69.91 77.06 83.30 90.28 11.78
3 1 600 51.17 58.00 70.33 82.00 20.75 69.17 74.17 83.33 91.50 12.03
3 3 417 15.83 25.18 43.88 68.35 37.87 67.39 73.62 83.93 93.29 11.25
4 1 545 18.17 26.06 43.30 67.16 36.16 53.03 63.49 76.70 84.04 18.23
4 3 344 17.44 25.58 42.44 61.34 39.51 51.45 62.50 76.16 83.14 18.42
5 1 417 45.80 52.28 63.07 74.34 26.56 73.38 77.22 85.85 91.85 10.85
5 3 234 16.24 19.23 32.91 58.55 46.47 71.37 77.78 88.46 92.74 9.92

Table 3: Detailed Short-Term Planning Evaluation with n (number of evaluation samples)
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Figure 9: Good Ranking Examples on DailyDialog Test Corpus with a history length of 2 and a goal distance of 3.
The goal in red, the context in grey, the true utterance in green, and the transformer-generated utterance in blue

Figure 10: Bad Ranking Examples on DailyDialog Test Corpus with a history length of 2 and the goal distance of 3.
The goal in red, the context in grey, the true utterance in green, and the transformer-generated utterance in blue

F Long-Term Planning Results

We present our detailed Long Term planning results
in table 4 as well as examples in the following
subsection.

F.1 Long-Term Planning Examples

Alike for short-term planning, we demonstrate ex-
amples to present the weaknesses and as well as
strengths of the embeddings. In figure 11 we show
two very easy examples, where we can follow the
conversation well without knowing the replies of
the other dialogue partner. This changes especially
in figure 12 where in the left example it is also for
us very difficult to order the corresponding utter-
ances. While one could argue that emergency calls
tend to start with the location of the incident, the ut-
terance "I haven’t checked yet" makes the ordering
of the utterances without any further context very
difficult. This can also be observed in the right

example of figure 12, however, one could argue
that based on the context to which both IEC+CU
and GC have access, the predicted order (of these
two) makes more sense than the original reply or-
der. Nonetheless, both examples show that some
of these orders are debatable.

G Ablation Study

As an ablation study, we compare two variations
of a simple contrastive to our introduced curved
contrastive objective. The first variation has the
exact same setup as our approach with the same
mixed learning objective of NLI, a dialogue win-
dow of l = 5, the same hard negatives (includ-
ing ones for the directional property) but without
the "curved" similarity scores between [BEFORE]
and [AFTER] tokens. In other words with simple
labels of 0 (not before and after each other within
5 turns) or 1 (before and after the utterance with
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LTP Planning Evaluation for 3 Goals

Imaginary Embedding
without Speaker Token

Imaginary Embedding
with Speaker Token

partially ordered Reverse
order partially ordered Reverse

order

Model History
Length

Goal
Distances

First Goal
In Distance n

Hits@1
(in %)

Hits@2
(in %)

Hits@3
(in %)

Hits@4
(in %)

Hits@1
(in %)

Average
Rank

Hits@1
(in %)

Hits@2
(in %)

Hits@3
(in %)

Hits@4
(in %)

Hits@1
(in %)

Average
Rank

DailyDialog Test Corpus

IEC

2 2 0 385 57.66 72.47 87.79 93.25 81.56 1.88 58.70 76.10 91.43 97.14 84.16 1.76
2 2 1 323 46.13 68.73 84.83 94.74 79.26 2.06 51.39 70.90 86.07 94.43 81.42 1.97
2 2 2 230 46.52 67.83 83.04 90.87 74.78 2.11 46.96 67.39 83.91 92.17 78.70 2.09
2 2 3 183 44.26 66.12 77.60 91.26 73.22 2.20 50.82 68.85 83.61 93.99 77.60 2.03
4 2 0 230 46.52 67.83 83.04 90.87 74.78 2.11 46.96 67.39 83.91 92.17 78.70 2.09
4 2 1 183 44.26 66.12 77.60 91.26 73.22 2.20 50.82 68.85 83.61 93.99 77.60 2.02
4 2 2 102 43.14 68.63 82.35 92.16 73.53 2.13 39.22 60.78 79.41 93.14 64.71 2.27
2 4 0 51 37.25 56.86 78.43 86.27 76.47 2.41 47.06 66.67 96.08 98.04 84.31 1.92

IEC & CU

2 2 0 385 57.92 76.36 90.13 95.84 84.42 1.78 59.74 77.92 92.21 98.18 85.45 1.72
2 2 1 323 46.75 67.80 85.14 95.05 77.71 2.05 47.37 70.59 85.45 94.12 78.95 2.02
2 2 2 230 47.39 69.57 80.00 90.00 73.48 2.14 46.09 70.43 83.04 92.61 75.22 2.08
2 2 3 183 44.26 63.39 77.60 92.35 66.12 2.26 45.90 62.84 79.78 93.44 71.04 2.18
4 2 0 230 50.87 69.57 82.61 94.35 73.48 2.05 50.87 75.65 86.52 95.22 74.78 1.94
4 2 1 183 47.54 68.31 83.06 94.54 71.04 2.11 53.55 72.68 81.42 92.90 69.95 2.06
4 2 2 102 42.16 66.67 83.33 94.12 71.57 2.19 40.20 59.80 78.43 93.14 66.67 2.35
2 4 0 51 41.18 74.51 84.31 92.16 78.43 2.11 56.86 86.27 90.20 96.08 84.31 1.70

GC

2 2 0 385 70.13 88.05 - - - 1.42 70.13 88.83 - - - 1.41
2 2 1 323 56.97 83.28 - - - 1.60 51.39 81.11 - - - 1.67
2 2 2 230 46.52 76.09 - - - 1.77 50.43 81.74 - - - 1.68
2 2 3 183 48.09 74.32 - - - 1.78 44.81 73.77 - - - 1.81
4 2 0 230 62.61 86.52 - - - 1.51 63.48 85.65 - - - 1.51
4 2 1 183 50.82 82.51 - - - 1.67 56.28 84.15 - - - 1.60
4 2 2 102 45.10 74.51 - - - 1.80 39.22 75.49 - - - 1.85
2 4 1 51 78.43 90.20 - - - 1.31 82.35 90.20 - - - 1.27

MDC Test Corpus

IEC
2 2 0 234 52.99 79.91 90.60 97.01 85.47 1.79 50.85 74.79 89.74 96.15 83.33 1.88
2 2 1 161 66.46 78.88 91.93 95.65 86.34 1.67 67.08 82.61 91.93 95.03 88.20 1.63
2 2 2 106 48.11 72.64 88.68 95.28 81.13 1.95 47.17 71.70 85.85 94.34 79.25 2.01
3 2 0 161 66.46 78.88 91.93 95.65 86.34 1.52 67.08 82.61 91.93 95.03 88.20 1.46
3 2 1 106 48.11 72.64 88.68 95.28 81.13 1.80 47.17 71.70 85.85 94.34 79.25 1.83
3 2 2 75 56.00 81.33 92.00 96.00 82.67 1.61 56.00 81.33 92.00 94.67 88.00 1.58

IEC & CU
2 2 0 234 65.81 86.32 93.59 97.86 93.16 1.56 60.68 82.48 94.87 98.72 92.31 1.63
2 2 1 161 67.08 77.02 90.06 96.27 84.47 1.70 65.22 80.75 90.06 95.03 85.71 1.69
2 2 2 106 51.89 69.81 86.79 96.23 81.13 1.95 50.00 72.64 88.68 93.40 78.30 1.95
3 2 0 161 68.32 80.12 93.17 96.27 85.71 1.49 52.80 75.78 82.61 95.65 80.75 1.79
3 2 1 106 50.94 68.87 85.85 95.28 80.19 1.84 42.45 61.32 77.36 91.51 81.13 2.02
3 2 2 75 46.67 66.67 81.33 94.67 78.67 1.94 28.00 50.67 73.33 85.33 58.67 2.22

GC
2 2 0 234 81.20 95.73 - - - 1.23 76.92 95.30 - - - 1.28
2 2 1 161 67.70 88.20 - - - 1.44 45.96 79.50 - - - 1.75
2 2 2 106 50.00 84.91 - - - 1.65 45.28 66.98 - - - 1.88
3 2 0 161 72.67 90.06 - - - 1.37 39.13 69.57 - - - 1.91
3 2 1 106 46.23 83.96 - - - 1.70 48.11 67.92 - - - 1.84
3 2 2 75 45.33 72.00 - - - 1.83 24.00 41.33 - - - 2.35

Table 4: Detailed Long-Term Planning Evaluation with n = number of evaluation samples

5167



Figure 11: Good Ranking Examples on DailyDialog Test Corpus with history length of 2, the goal distance of 2,
and goal in distance of 3

a distance between 1-5 turns). Since this does not
take any distance into account we have a second ab-
lation variant that takes only direct utterance pairs
(so a window size of 2) with the corresponding two
labels and otherwise the same setup. Like our em-
beddings, we train the two variations on BERT and
RoBERTa architectures respectively. In contrast to
our embeddings, we find that both ablation studies
find their optimum for our three takes after already
1-2 epochs. In the following sections, we present
the performance of the ablation studies to our ap-
proach, note that we refer to the ablation with a
window size of l = 5 as ab5 and the one with
l = 2 as ab2.

G.1 Ablation Study LTP

As shown in table 5 the ablation study with a di-
alogue window of l = 5 shows stronger perfor-
mance in ordering utterances than its counterpart
of l = 2. Thanks to the solidified structure of the
task-oriented corpus the ablation comes relatively
close to the performance of our imaginary embed-
dings. For Greedy Curving (GC) in particular, it
can detect the next goal out of 3 even slightly bet-
ter than our embeddings without speaker tokens.
However, when the solidified structure of dialogue
disappears (on the chit-chat dataset DailyDialog)
our models show much stronger performance than
their ablation study.

G.2 Ablation Study STP

While the ablation study with the dialogue window
of l = 5 shows solid performance in ordering ut-
terances, it has severe trouble understanding the
pathways between utterances as can be seen in 6.
Especially, on the MDC dataset for close members
in their own group (observation window). Here
we observe that the performances increase over
longer distances which goes hand in hand with the
better greedy curving performance. Overall, the
ablation study with a dialogue window of l = 2
shows through its learning objective a better un-
derstanding of its close neighbors as l = 5. While
once again the ablation studies do not get close to
our embeddings on the DailyDialog corpus, on the
MDC corpus it can outperform our embeddings
on direct neighbors (distance 1) while being sig-
nificantly worse on longer distances. Since it only
learned the properties between two speakers it has
notable trouble mapping utterances from the same
speaker as can be seen by even distances on the
MDC corpus.

G.3 Ablation Study Next Utterance Selection

We compare both ablation studies to our embed-
dings in figure 13 on DailyDialog on the same vari-
ation as Imaginary Embeddings, either the entire
context or only the last utterance. Both ablation
studies perform best on the variation closest to their
training target, in other words, ab5 on the entire
context and ab2 only on the last utterance. With the
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Ablation Study Imaginary Embedding with / w.o Speaker Token

partially ordered Reverse
order partially ordered Reverse

order

Model Hits@1
(in %)

Hits@2
(in %)

Hits@3
(in %)

Hits@4
(in %)

Hits@1
(in %)

Average
Rank

Hits@1
(in %)

Hits@2
(in %)

Hits@3
(in %)

Hits@4
(in %)

Hits@1
(in %)

Average
Rank

DailyDialog Test Corpus
IEC ab5 / ST 33.69 56.30 78.26 90.00 68.04 2.74 51.60 72.22 86.82 94.94 81.18 2.13
IEC ab2 / w.o 25.69 48.69 67.43 84.53 58.31 3.15 49.99 70.62 85.26 93.42 79.17 2.21

applies to Greedy Curving where IEC & CU ab5 / ST 33.48 56.52 79.13 89.13 69.13 2.73 51.07 72.98 86.9 94.97 79.87 2.13
IEC & CU ab2 / w.o 26.71 49.25 69.38 85.28 60.03 3.09 50.69 71.24 85.09 93.63 78.54 2.19

GC ab5 / ST 50.00 75.22 - - - 1.75 57.32 83.89 - - - 1.59
GC ab2 / w.o 43.69 72.68 - - - 1.84 57.87 82.47 - - - 1.6
MDC Test Cor pus
IEC ab5 / ST 54.62 74.15 89.42 96.5 84.71 2.01 56.83 77.50 90.19 95.44 84.52 1.96
IEC ab2 / w.o 41.52 65.19 84.50 94.17 75.61 2.39 58.72 77.50 90.19 95.44 84.52 1.92

IEC & CU ab5 / ST 54.77 75.02 89.91 96.97 85.45 1.98 58.63 78.62 91.20 95.72 85.44 1.90
IEC & CU ab2 / w.o 40.83 64.24 84.38 94.05 75.86 2.41 61.59 77.72 90.15 96.79 86.25 1.87

GC ab5 / ST 66.63 89.86 - - - 1.43 56.05 80.59 - - - 1.64
GC ab2 / w.o 48.77 72.68 - - - 1.72 ´66.30 89.61 - - - 1.44

Table 5: Aggregated Long-Term Planning Ablation vs Imaginary Embeddings Study on 3 goals with ((2, 2, 2), (2, 2,
0) and (2, 2, 1)) with (history length, goal distances, first goal in distance). Models include Imaginary Embedding
Chain (IEC), Imaginary Embedding Chain + Curving (IEC & CU), and Greedy Curving (GC). (ab2 ablation with
l = 2), (ab5 ablation with l = 5), (w.o without Speaker Token), (ST with Speaker Token)

Human Utterance Ranking vs 100 utterances sampled
from DialoGPT Large / GODEL Large (p=0.8, t=0.8)

Ablation Study Imaginary Embedding
with (ST) / w.o Speaker Token

Goal in Distance Hits@5
(in %)

Hits@10
(in %)

Hits@25
(in %)

Hits@50
(in %)

Average
Rank

Hits@5
(in %)

Hits@10
(in %)

Hits@25
(in %)

Hits@50
(in %)

Average
Rank

DailyDialog Test Corpus
Guidance distance 1 (ab5 / ST) 21.87 29.96 45.27 63.63 39.34 72.03 79.53 88.37 94.84 8.82
Guidance distance 1 (ab2 / w.o) 45.57 52.83 68.03 82.27 22.27 38.06 46.26 59.86 77.00 26.70

Guidance distance 2 (ab5 / ST) 19.70 26.47 42.57 61.94 40.71 27.28 36.07 55.50 71.89 31.83
Guidance distance 2 (ab2 / w.o) 20.22 25.76 41.97 59.40 43.89 32.06 38.31 51.20 70.46 32.94

Guidance distance 3 (ab5 / ST) 14.69 22.88 38.87 62.31 41.53 50.68 61.17 75.46 85.38 19.01
Guidance distance 3 (ab2 / w.o) 20.21 27.55 43.135 63.35 39.96 21.18 28.62 45.42 66.47 36.47

Guidance distance 4 (ab5 / ST) 15.25 22.54 35.94 57.16 45.60 28.28 36.37 52.05 70.83 33.28
Guidance distance 4 (ab2 / w.o) 19.67 25.15 38.64 57.18 44.40 26.67 33.22 50.06 65.35 36.23

MDC Test Corpus
Guidance distance 1 (ab5 / ST) 6.99 11.00 23.62 43.88 54.94 61.48 68.97 79.32 88.59 14.94
Guidance distance 1 (ab2 / w.o) 66.12 74.48 88.48 95.70 9.09 29.59 36.12 49.31 68.75 33.83

Guidance distance 2 (ab5 / ST) 9.15 15.012 31.72 53.33 47.52 33.55 45.27 64.85 80.40 24.86
Guidance distance 2 (ab2 / w.o) 4.1 6.29 14.24 32.13 63.97 20.84 28.22 45.27 67.90 36.13

Guidance distance 3 (ab5 / ST) 8.40 12.92 28.735 51.41 49.50 65.03 72.74 82.96 89.96 12.84
Guidance distance 3 (ab2 / w.o) 25.01 32.58 51.56 68.88 33.97 20.18 27.13 43.66 65.50 38.44

Guidance distance 4 (ab5 / ST) 13.50 19.73 28.75 56.39 43.98 44.82 56.53 73.73 85.80 19.31
Guidance distance 4 (ab2 / w.o) 2.95 3.76 9.34 21.3 73.7 20.73 30.42 50.80 73.80 33.59

Table 6: Aggregated short-term planning evaluation vs ablation study for different distances to goal. (ab2 ablation
with l = 2), (ab5 ablation with l = 5), (w.o without Speaker Token), (ST with Speaker Token)
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Figure 12: Bad Ranking Examples on DailyDialog Test Corpus with history length of 2, the goal distance of 2, and
goal in distance of 3

Greedy Curving evaluation (table 5), one could sug-
gest a stronger performance to ab5 rather than ab2.
However, we find the exact opposite in the next
utterance selection task as we consider candidate
utterances in width rather than in-depth. Compared
to the other baselines, the strongest ablation study
is still 1.5% worse than the pre-trained DialogRPT,
3.69% worse than ConveRT, and 4.3% worse than
our best imaginary embeddings. On MDC (figure
14), we observe, as we described in §3.3, that con-
sidering only the last utterance shows the strongest
results. Expectedly, the training objective to only
match direct pairs of ablation l = 2 comes in handy,
outperforming all other approaches. Figure 13: Normalized average rank of next utterance

selection based on dialogue history on DailyDialog.
Demonstrated are different Curving variants (only the
last utterance or the entire history), classic as well as
Speaker Token-based embeddings. As baselines, we
utilize the two ablation study variants with the two vari-
ations’ entire context or only the last utterance.
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Figure 14: Normalized average rank of next utterance
selection based on dialogue history on MDC. Demon-
strated are different Curving variants (only the last ut-
terance or the entire history), classic as well as Speaker
Token-based embeddings. As baselines, we utilize the
two ablation study variants with the two variations’ en-
tire context or only the last utterance.
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