Code-Switched Text Synthesis in Unseen Language Pairs

I-Hung Hsu'* Avik Ray?

Shubham Grag?

Nanyun Peng?? Jing Huang?

! Information Science Institute, University of Southern California

2 Amazon Alexa Al
ihunghsuusc.edu
violetpenglcs.ucla.edu

Abstract

Existing efforts on text synthesis for code-
switching mostly require training on code-
switched texts in the target language pairs, lim-
iting the deployment of the models to cases
lacking code-switched data. In this work,
we study the problem of synthesizing code-
switched texts for language pairs absent from
the training data. We introduce GLOSS, a
model built on top of a pre-trained multilin-
gual machine translation model (PMMTM)
with an additional code-switching module.
This module, either an adapter or extra pre-
fixes, learns code-switching patterns from code-
switched data during training, while the pri-
mary component of GLOSS, i.e., the PMMTM,
is frozen. The design of only adjusting the
code-switching module prevents our model
from overfitting to the constrained training data
for code-switching. Hence, GLOSS exhibits
the ability to generalize and synthesize code-
switched texts across a broader spectrum of
language pairs. Additionally, we develop a
self-training algorithm on target language pairs
further to enhance the reliability of GLOSS.
Automatic evaluations on four language pairs
show that GLOSS achieves at least 55% rela-
tive BLEU and METEOR scores improvements
compared to strong baselines. Human evalua-
tions on two language pairs further validate the
success of GLOSS.

1 Introduction

Code-switching, the linguistic phenomenon of us-
ing more than one language within a single utter-
ance or conversation,' is a common expression of
multilingualism in informal text and speech (Auer
and Wei, 2008; Gumperz, 1982). To accommodate
the needs of multicultural and multilingual soci-
eties and individuals, there is a growing interest in
investigating models dedicated to code-switching
*Work was done when the author interned at Amazon.

'In this paper, we mainly focus on the sentence-level code-
switching involving only two languages.

3 University of California, Los Angeles
{avikray,

gargshu}@amazon.com
jinghuang.zhu@gmail.com

Training

A superconductor Its height is only 1982 Everything out there is
levitates on a magnetic meters really provisional
track $ 3

Everything |bas est en
ralit provisional

Un superconductor levita D[SHdlg hdl 1982
sobre a magnetic track meter ©

En-Es En-Hi

s 4

Inference
There is no such thing as a perfect budget |
oD .,
1

A O] gEA5E =/ budget

En-Fr

[Es gibt kein perfect budget

Figure 1: An illustration of our problem setting. Given
a sentence in arbitrary languages (English (En) in
this figure) and a designated language (Chinese (Zh)
and German (De), in the figure), the model needs to
synthesize a corresponding code-switched sentence that
mixes the original language and the designated lan-
guage. Additionally, we allow the designated language
selections to differ from examples seen during training.

within the realm of conversational Al (FitzGerald
et al., 2022; Khanuja et al., 2020; Winata et al.,
2022; Sitaram et al., 2019). However, a notable
obstacle in code-switching modeling is the scarcity
of large-scale code-switched text datasets for differ-
ent applications in diverse language pairs (Gupta
et al., 2020; Tarunesh et al., 2021). This neces-
sitates generative models capable of synthesizing
code-switched texts, facilitating subsequent studies
for code-switching.

Most prior work on text synthesis for code-
switching assumes the availability of training data
for all language pairs being tested. Early trials
concentrate on individual language pair (Samanta
et al., 2019; Chang et al., 2019; Tarunesh et al.,
2021). For example, Bhat et al. (2016) develop a
code-switched text synthesizer for Hindi-English
based on linguistic rules (Poplack, 1980; Belazi
et al., 1994; Myers-Scotton, 1997), while Lee et al.

5137

Findings of the Association for Computational Linguistics: ACL 2023, pages 5137-5151
July 9-14, 2023 ©2023 Association for Computational Linguistics

(2019); Winata et al. (2019); Garg et al. (2018) ex-
plore neural generative models for Chinese-English
code-switched text synthesis. More recently, Gupta
et al. (2020) presents pioneering efforts in devel-
oping a generic method for producing high-quality
and fluent code-switched sentences across diverse
language pairs. This is achieved through the collec-
tion of code-switched texts in multiple languages.

However, the requirement of training on code-
switched texts for target language pairs hinders the
scalability of existing models to cover a broader
range of language pairs. Many real-world code-
switching scenarios, such as Swahili-English in
Tanzania (Kanijo, 2018), Shona-English in Zim-
babwe (Mashiri, 2002) suffer from limited or non-
existent curated datasets. Recognizing this re-
source limitation, in this work, our study focuses
on synthesizing code-switched text in multiple lan-
guage pairs, including those language pairs that
are unseen during training (zero-shot transfer set-
ting (Huang et al., 2021, 2022)). In this setting,
models must learn code-switched patterns from
limited code-switched training data in some lan-
guage pairs and generalize to other language pairs,
as shown in Fig. 1. The setting enables a more
flexible process of code-switched text synthesis by
using existing resources to assist resource-limited
language pairs. Yet, it also introduces new chal-
lenges: (1) models must possess the ability to gen-
erate tokens in multiple languages; (2) models need
to acquire a transferable ability for code-switching
such that they can generate code-switched text in
unseen language pairs.

To overcome the challenges, we propose
GLOSS, a Generalized cOde-Switched text
Synthesizer that introduces an additional code-
switching module to a pre-trained multilingual
machine translation model (PMMTM). The code-
switching module, implemented either through an
adapter (Houlsby et al., 2019) or extra prefixes (Li
and Liang, 2021), offers a parameter-efficient ap-
proach to transfer learning from machine transla-
tion to code-switched text synthesis. Inheriting
the ability of PMMTM, GLOSS can generate text
across multiple languages. The incorporation of
an additional code-switching module, instead of di-
rectly fine-tuning the PMMTM, serves as an effec-
tive method to prevent models from overfitting to
the specific training code-switched language pairs.

Furthermore, we develop a self-training algo-
rithm on the target language pairs to improve

GLoSS further. Specifically, our preliminary study
shows that although GLOSS can successfully gen-
erate reasonable code-switched sentences, when
performing zero-shot transfer to unseen language
pairs, it may still generate non-code-switched sen-
tences (around 11% to 13% of cases). The pro-
posed self-training framework aims to introduce
weakly-supervised signals to help GLOSS more sta-
bly generate target domain cases when the target
language pair is known.? To achieve this, we iter-
atively fine-tune GLOSS on a filtered dataset that
is generated by GLOSS itself in the target domain
case. The filter incorporates a language identifica-
tion model to remove low-quality instances.® Being
fine-tuned on filtered data, GLOSS learns to gener-
ate texts that satisfy the filtering rules and become
more stable.

Our contribution is three-fold. First, we present
GLOSS, a code-switched text synthesizer that can
generate code-switched sentences across multiple
language pairs, even those not in the training data.
To the best of our knowledge, we are the first to
study this setting. Second, we introduce a self-
training framework to further improve GLOSS un-
der the setting where the target language pair is
known. Third, extensive experiments, including au-
tomatic evaluations on four languages and human
evaluations on two languages, showcase GLOSS’s
strong performance. GLOSS achieves at least 55%
relative BLEU and METEOR score improvements
compared to strong baselines.

2 Problem Formulation

Our goal is to synthesize code-switched (CS) texts
for language pairs where their CS examples are
never provided during training.

Given a monolingual input sentence x° in lan-
guage [¢ and an assigned language [(I'"" # [°),
we aim to generate a sentence x"¢ that mixes "
and [°, while preserving the semantic meaning of
x¢* We consider the setting where the assigned
language I™ in the testing time is different from
those in the training time. More formally, as illus-
trated in Figure 1, the training set consists of N
language pairs (1", ") (n € {1,2, ..., N}), while

For example, we know the target scenario is to synthe-
size Bengali-English code-switched text, despite no Bengali-
English code-switched training data being available.

3The language identification model is trained without using
any code-switched data. More details are given in §3.3.

*Following the matrix language frame theory (Myers-

Scotton, 1997; Joshi, 1982), [™ is called the matrix language
and [° is the embedded language.

5138

Stage 1 : Pre-trained Multilingual Machine Translation Model

es_XX

en_XX
Encoder

hi_IN

fr_XX
Decoder

En-Es

;*?N?ﬁ

Its height is only 1982 meters\| hi_IN

Training Corpus for Code-Switching

En-Hi

Samplel

En-Fr

SHel T
e S +

1
hi IN > ST&!

Its height is only 1982 meters\|

Figure 2: An overview of our GLOSS model. GLOSS is built on top of a pre-trained multilingual machine translation
model, which is trained using machine translation data in many different language pairs. After the pre-trained
multilingual machine translation model is prepared, we augment an adapter or extra prefixes to the model. The
adapter or prefixes are trained using code-switched data while the pre-trained multilingual machine translation

model’s parameter will be frozen during the fine-tuning.

the testing set includes target language pairs where
[meo¢ {im ... I™N} Vt. This scenario reflects
real-world situations where code-switched data is
more readily available for certain language pairs,
such as Spanish-English and Hindi-English, while
it is less accessible for others, such as Bengali-
English and Swahili-English.

3 Method

We introduce GLOSS, a Generalized cOde-
Switched text Synthesizer that tackles the two spe-
cific challenges raised by our problem setting: (1)
the model needs to generate texts across many lan-
guages, some are not even in the CS training data;
(2) the model needs to learn transferable CS ability
such that they generate reasonable CS sentences in
unseen language pairs. Fig. 2 provides an overview.

To address the first challenge, we begin by ob-
taining a Pre-trained Multilingual Machine Transla-
tion Model (PMMTM) using multilingual machine
translation data, which covers all languages that
would be used for final CS text synthesis (83.1).°
The remaining challenge is how to make PMMTM
a code-switched text synthesizer with only limited
language coverage of training data.

SHere, we assume that machine translation data is more
available, which is often the case in practice.

We propose to augment an additional code-
switching module onto PMMTM, thereby creat-
ing GLOSS (§3.2). This additional code-switching
module is trained on our limited CS data while
keeping PMMTM parameters fixed. Instead of fine-
tuning the entire PMMTM, this modularized de-
sign improves systematic generalization (Bahdanau
etal., 2019; Ruis and Lake, 2022), where PMMTM
focuses on generating translated sentences and the
code-switching module concentrates on “mixing’
languages. This approach allows GLOSS to be
more adaptable and less prone to overfitting during
the fine-tuning process on CS data.

Finally, we present a self-training framework
that enables GLOSS to more stably generate CS
texts in target language pairs (§3.3).

1)

3.1 PMMTM

Multilingual machine translation models (Ha et al.,
2016; Johnson et al., 2017; Baziotis et al., 2022;
Tang et al., 2020) enable simple deployment and
parameter-efficient support of machine translation
for a large number of language pairs by using a
shared representation space. To train a PMMTM,
we follow the strategy of mBART-50 (Tang et al.,
2020) to notify the model of the source lan-
guage and the target language to be translated into.
Specifically, a language-specific special token is

5139

Training Corpus for

/ Inference on target
language
|
|

\ KA AR E budget “

as a perfect budget

There is no such thing

Language ID
Model
Filtering

—

Il

result @RI EFKER (

Code-Switching
l Inputs
Adap

Er ter
Er Oor

Prefix

{eadiii

KAz S L ERE .
g @
F

‘ This problem is very

=

I
K;Fﬁ_[ﬁﬁ 5EZEMbudget

BT 7 AL solid

T °

years

Fine-tune

‘ . Adap S I

AOlBEATEEKbudeet ‘ ter i i

resutE RV AEEKE] || or There is no such thing
=pr A as a perfect budget
s Prefix

Figure 3: An illustration of the self-training procedure we designed for GLOSS. We use Chinese-English to be the

target language pair as an example in this figure.

prepended to both the source and target sentences.
Hence, during decoding, the first token fed to the
decoder is the target language’s special token that
guides the translation. This is illustrated in Fig. 2.

3.2 The GLOSS Model

After obtaining a PMMTM, which can comprehend
and generate phrases across multiple languages,
our next step is to transform a PMMTM into a
CS text synthesizer. A commonly used way is
to directly fine-tune the PMMTM on CS training
data (Tarunesh et al., 2021; Gupta et al., 2020).
However, models directly fine-tuned on new data
could easily overfit to the fine-tuning scenario.
Thus it is hard to adapt the ability to perform code-
switching to unseen language pairs. Therefore,
instead of directly fine-tuning the whole PMMTM,
we propose to use an additional code-switching
module paired with the PMMTM. The module is
specifically learned to mix languages for a given
translation pair generated by PMMTM.

To implement the design and enable end-to-end
training, we employ either an adapter (Houlsby
et al., 2019) or extra prefixes (Li and Liang, 2021)
as the code-switching module. These approaches
are parameter-efficient methods to introduce con-
trol into pre-trained models and guide the final
generation (He et al., 2022):

Adapter is an additional layer (and parame-
ters) that is introduced inside each Transformer
block (Vaswani et al., 2017), and it was shown to
be an effective way to conduct transfer learning
for NLP tasks (Houlsby et al., 2019). This layer is

appended after each feed-forward layer (in a Trans-
former block). It projects the original feature size
to a smaller dimension and then projects them back
to the original size, ensuring that the number of
parameters stays substantially small.

Prefix is another parameter-efficient way to con-
duct transfer learning for NLP tasks (Li and Liang,
2021). “Prefix” are the new key and value matri-
ces used when calculating attention in Transformer.
More specifically, trainable prefixes are a set of vec-
tors that will be concatenated with the original key
and value matrices when calculating dot-product
attention. Hence, in each layer, inputs will be in-
fluenced by these additional keys and values after
attention is applied.

During fine-tuning using CS training data, we
keep the parameters of PMMTM frozen and solely
train the adapter or prefixes. This allows the code-
switching module to learn how to blend a trans-
lated distribution with the input sentence. When
GLoOSS is tested and tasked with generating a code-
switched sentence in an unseen target language
pair, the frozen PMMTM, having been trained to
produce translations for this specific pair, can still
generate reliable translations. With reliable transla-
tions, our code-switching module continues to per-
form a similar function during training by blending
languages. As a result, GLOSS exhibits improved
generalization capabilities.

3.3 GLOSS with Self-Training

Although GLOSS has the ability to generalize to
synthesize CS text to languages that the PMMTM

5140

supports, the generation could still be unstable. As
we will show in §5, GLOSS still has around 11% to
13% of cases that will generate non-CS sentences
when performing zero-shot transfer to unseen lan-
guage pairs. Hence, we aim to improve this stabil-
ity issue if more information about the test case is
provided. We assume a common scenario in real
practice — the target language pair [and [is
known, and we can update GLOSS for fitting this
specific target language pair.

We design a self-training procedure to incorpo-
rate off-the-shelf language identification models to
help GLOSS synthesize target CS sentences more
stably. The procedure is illustrated in Fig. 3. To
be more specific, we first use the input sentence
written in (¢ in the CS training data as the input
query and ask GLOSS to make a prediction on the
target language (""", forming potential CS sentences
x"™¢, Then, we use language identification models
to perform sentence filtering based on the following
constraints:

* The synthesized sentence should at least cover
one token from ",

* The synthesized sentence should at least cover
tokens from [°.

* The synthesized sentence cannot cover tokens
from other languages except [and [°.

We use CLD3 ¢ as the language identification
model, which extracts character n-grams from the
input text and computes an embedding based on
the fraction of times each n-gram character appears.
Notably, CLD3’s training does not rely on code-
switched text. We leverage CLD3’s predicted lan-
guage distribution for each token to determine if
each generated sentence meets the aforementioned
constraints. We filter out low-quality instances and
collect the remaining sentences as a synthetic code-
switching corpus specific to the target domain. This
corpus is subsequently used for further fine-tuning
of GLOSS. The procedure can be executed repeat-
edly in R rounds, where R is a hyper-parameter.
Notice that other advanced filtering can be easily
included in our proposed procedure and we leave
the exploration as a future work.

Different from the classic self-training algorithm
in semi-supervised research (Fei et al., 2023), in our
procedure, the initial model is a zero-shot transfer
model. Additionally, we apply a filtering process
to further improve the quality of the synthetic code-
switching corpus.

Swww.github.com/bsolomonl124/pycld3

3.4 Discussion

Utilizing pre-trained models that are initially
trained on machine translation data as a founda-
tion for constructing code-switched (CS) text syn-
thesizers has gained significant attention recently
due to the resemblance between machine transla-
tion and CS text synthesis tasks (Tarunesh et al.,
2021; Gupta et al., 2020). However, our work dif-
fers from theirs in that we train a single model
capable of consuming all the machine translation
data, thereby supporting translation across multiple
language pairs. In contrast, prior works rely on
selecting data based on the target language pair (I™
and [°) as a priori.

Our approach enables a unified model that pos-
sesses the ability to generate phrases in multiple
languages, thereby facilitating CS text synthesis
across various language pairs. Conversely, con-
straining the training of the PMMTM to a limited
number of languages, such as a few specific pairs,
would result in GLOSS losing its ability to general-
ize to a broader range of CS language pairs.

4 Automatic Evaluation

4.1 Experimental Settings

Dataset and Evaluation Metrics. We use the
data provided by Gupta et al. (2020), which cov-
ers eight language pairs, including Bengali-English
(Bn-En), German-English (De-En), Spanish (Es-
En), French-English (Fr-En), Hindi-English (Hi-
En), Malayalam-English (MI-En), Tamil-English
(Ta-En), and Telugu-English (Te-En). Note that in
this dataset, the input language sentence is always
English. Hence, the target code-switched (CS) lan-
guage pair is X-English, where X is the different
languages that the dataset covers. In the original
paper, they used English-X to call the language
pair in their dataset, but we changed the naming to
present the dominant language first. The dataset
statistics are listed in Appendix §A.

In our setting, we conduct leave-one-out exper-
iments, i.e., seven CS language pairs are selected
as the CS training data, and the remaining is the
test language pair. We select Bn-En, De-En, Es-
En, and Hi-En as the four test scenarios based on
the language resource levels defined in Tang et al.
(2020), such that our selection covers high-resource
(German, Spanish), medium-resource (Hindi), and
low-resource (Bengali) languages. We evaluate the
synthesized text using BLEU (Papineni et al., 2002)

5141

www.github.com/bsolomon1124/pycld3

Model

Bn-En De-En Es-En Hi-En

B M B M B M B M

Type

Gupta et al. (2020)* Sup. 21.49 27.32|24.15 30.47|22.47 29.45|21.55 28.37
Qb:i Fine-tuned PMMTM on all language pairs (nBART50-MMT) Sup. 12.49 38.67 |32.24 59.75|37.82 62.54|27.93 54.81
Fine-tuned PMMTM on all language pairs (augment-MMT) Sup. 13.08 38.69|32.65 59.96|38.59 63.36|28.88 55.10
Copy Input Unsup. 2.66 19.28| 3.29 22.76| 3.28 22.31| 5.22 24.20
Machine Translation Unsup. 4.78 16.82| 6.30 30.28| 9.63 32.97| 9.87 24.26
Translate, Align, then Swap Unsup. 191 16.06| 5.53 27.30| 7.80 30.11| 6.61 24.90
Fine-tuned PMMTM on available language pairs Zst. 3.05 18.57|9.09 32.34| 8.77 30.41| 393 2222
~ GLOSS (mBARTS50-MMT + adapter) Zst. 231 22.07|18.63 48.28|23.04 49.75| 4.09 22.02
§ GLOSS (mBART50-MMT + prefix) Zst. 521 26.83|20.49 48.49|23.47 50.52| 7.51 29.82
§- GLOsSS (augment-MMT + adapter) Zst. 2.16 18.60|14.58 40.75|16.62 42.31| 8.61 30.39
& GLOSS (augment-MMT + prefix) Zst. 9.65 32.63|21.88 50.33|24.85 51.88|12.16 36.94

Table 1: Automatic evaluation results for GLOSS. We evaluate the result in BLEU (B) and METEOR (M). We
classify the models into three types — unsupervised baselines (Unsup.), supervised baselines (Sup.), and zero-shot
transfer baselines (Zst.). The training of supervised baselines contains CS data in target language pairs and hence it
can be viewed as an upper bound (UB.) for GLOSS. Numbers in bold are the best performance among all zero-shot
transfer models and unsupervised models. *We report the numbers from the original paper.

and METEOR (Banerjee and Lavie, 2005) scores
following Gupta et al. (2020).

Implementation Details. We use two different
PMMTM for GLOSS. The first one directly adapts
the pre-trained mBARTS50-many-to-many-MMT
model (mBARTS50-MMT) from (Tang et al., 2020),
which is a machine translation model trained on 50
language pairs using the ML50 benchmark. The
other one is to further fine-tune mBART50-MMT
on the machine translation data collected by Gupta
et al. (2020) to make an “augmented mBART50-
MMT” (augment-MMT). The second setting is
considered since machine translation data in the
ML50 benchmark are limited for Indic languages.
Hence, we further fine-tune mBART50-MMT on
the machine translation data provided in (Gupta
et al., 2020) for three epochs. Notice that the
machine translation data in (Gupta et al., 2020)
only covers eight language pairs, making augment-
MMT a more restricted machine translation model
in terms of supported languages.

All GLOSS (mBART50-MMT/augment-MMT
paired with adapter/prefix) are implemented using
the Huggingface package (Wolf et al., 2020) as the
backbone. To implement the adapter and prefix,
we leverage AdatperHub (Pfeiffer et al., 2020). We
use their default setting to set prefix length as 30
and use all prefixes in the self-attention block in
the Transformer encoder, and cross-attention block
as well as the self-attention block in the Trans-
former decoder. We train GLOSS with a machine
equipped with 4 NVIDIA Tesla V100 GPUs. We
train GLOSS using 1 GPU at a time with around 30

hrs of training.

We consider AdamW optimizer (Loshchilov and
Hutter, 2019) with learning rate set to 10~° and
the weight decay set to 107°. We set the batch
size to 12 and the number of training epochs to
15. For GLOSS with self-training, we experiment
with R € {1, 2,5} rounds with heuristics. Hyper-
parameter determination, except for R, is based on
the available CS data in the development set with-
out considering the leave-out language pair. Due to
the computational resource restriction, our experi-
ment results from a single seed. We note the grad-
ual performance improvement as R increased in
§4.3. However, determining the optimal stopping
point for R presented a challenge since no develop-
ment data exist under the zero-shot scenario. As a
result, we decide not to increase R further in our
experiments.

Compared baselines.
are considered:

Three types of baselines

* Unsupervised baselines — (1) Copy Input: di-
rectly copy the input sentence as the prediction,
(2) Machine Translation: augment-MMT’s ma-
chine translation results, (3) Translate, Align,
then Swap: we use advanced unsupervised
word-alignment tool (Dou and Neubig, 2021)
to extract potential word alignment between the
input sentence and the Machine Translation’s
prediction. Then, we generate the final output
by having a probability p to swap words in Ma-
chine Translation’s prediction with the aligned
input word, where p = 0.35 is based on the
statistics from the training data.

5142

Model

Bn-En

De-En

Es-En

Hi-En

B

M

B

M

B

M

B

M

GLOSS (mBART50-MMT + prefix)

GLOSS (mBART50-MMT + prefix) + self-training(R = 1)
GLOSS (mMBARTS50-MMT + prefix) + self-training(R = 2)
GLOSS (mBARTS50-MMT + prefix) + self-training(R = 5)

5.21
5.84
6.66
6.26

26.83
28.31
29.00
29.75

20.49
20.55
20.97
21.49

48.49
48.83
49.12
49.71

23.47
24.00
24.12
24.58

50.52
51.12
51.47
51.53

7.51
8.22
9.27
10.31

29.82
31.55
33.16
35.84

GLOSS (augment-MMT + prefix)

GLOSS (augment-MMT + prefix) + self-training(R = 1)
GLOSS (augment-MMT + prefix) + self-training(R = 2)
GLOSS (augment-MMT + prefix) + self-training(R = 5)

9.65
9.80
10.19
10.32

32.63
33.63
34.70
35.46

12.16
12.99
13.70
13.63

36.94
38.59
40.09
40.05

21.88
21.78
22.36
2245

50.33
49.73
50.59
50.63

24.85
25.96
26.22
26.31

51.88
52.68
52.88
53.13

Table 2: Automatic evaluation results for GLOSS paired with our self-training procedure. We evaluate the result in
BLEU (B) and METEOR (M). Numbers in bold are the best performance among models using the same architecture.
We can observe the gradual improvement when more rounds of self-training are applied to GLOSS.

* Supervised baselines — (1) Gupta et al. (2020):
a sequence-to-sequence model that leverages
XLM (Conneau and Lample, 2019) features
and utilizes the transfer learning signal from
machine translation to warm-up the model, (2)
Fine-tuned PMMTM on all language pairs:
we fine-tune mBARTS50-MMT on CS data in all
eight language pairs.

e Zero-shot transfer baselines — (1) Fine-tuned
PMMTM on available language pairs: fine-
tune whole mBARTS50-MMT on available CS
training data only (excluding test language pair).

Note that the training of supervised baselines
contains CS data in target language pairs; hence, it
can be viewed as an upper bound for GLOSS. Zero-
shot transfer baselines are trained only using CS
data from other language pairs but not the target
language pair. Unsupervised baseline training does
not use any CS training data.

4.2 Main Results

Tab. 1 shows the results. From the table, we can
observe that the unsupervised baselines generate
very unreliable CS sentences in general. Addition-
ally, naively fine-tuning the whole PMMTM could
perform even worse than the unsupervised meth-
ods. GLOSS improves unsupervised baselines and
zero-shot transfer baselines by at least 55% rela-
tive scores across the board, and every variation of
GLOSS could outperform these baselines. By com-
paring different variations of GLOSS, we can ob-
serve that GLOSS with prefixes is more robust than
using an adapter, especially in the cases where the
PMMTM model has worse performance (Bengali
& Hindi due to limited training machine translation
data used in mBART50-MMT). Furthermore, by

comparing GLOSS equipped with augment-MMT
and GLOSS equipped with mBART50-MMT, we
highlight the PMMTM’s impact on our model.

4.3 Results Given Known Target Language

When the target language pair is known, we can
then apply our self-training procedure to GLOSS.
We experiment on GLOSS using prefixes and
present results in Tab. 2. From the table, we can
observe the consistent improvement when adopting
self-training to GLOSS, and the improvement is
especially significant for Hindi-English. Addition-
ally, by conducting self-training with more rounds,
we can observe the gradual improvements in both
of the cases for GLOSS with mBART50-MMT and
augment-MMT.

5 Human Evaluation

To further verify the quality of our method, we
conduct the human evaluation for Hindi-English
and Chinese-English code-switched (CS) text using
sentences in English as the source language.

5.1 Evaluator Selection

Considering the expertise of the annotation task
requires people familiar with both English and
Chinese (or English and Hindi), we have a high-
standard selection process to recruit 3 professionals
for the human evaluation. For Hindi-English an-
notation, We engaged the services of a team of
expert professionals who were contracted to pro-
vide labels for various Hindi and English-related
tasks. They’re all native Hindi speakers and highly
skilled in speaking Hindi-English code-switching.
Conversely, our Chinese-English annotators are
native Chinese NLP researchers with over three

5143

Model Type Hi-En | Zh-En
CSRate. F S Geo. Mean \ CSRate. F S Geo. Mean
Translate, Align, then Swap Unsup. 98.6% 2.69 2.83 2.75 913% 3.19 3.62 3.33

Fine-tuned PMMTM on available language pairs ~ Zst. 4.0% 1.00 1.00 1.00 2.0% 1.0 1.0 1.0
% GLOSS (prefix) Zst. 87.3% 3.06 3.10 3.08 89.3% 3.67 3.84 3.73
S GLOSS (prefix + self-training) Zst. 93.3% 3.84 3.96 3.90 99.3% 3.73 4.01 3.85
o Fine-tuned PMMTM on all language pairs Sup. 98.0% 4.09 4.21 4.15 —— - - ——
S Ground truth —— 96.0% 4.40 4.39 4.84 94.0% 4.18 4.42 4.28

Table 3: Human evaluation results for GLOSS in Hindi-English (Hi-En) and Chinese-English (Zh-En). Code-
switching correctness rate (CS Rate.) measures the percentage of the prediction is a correct CS. F is the abbreviation
of the Fluency score. S is the abbreviation of the Semantic Correctness score. Geometric Mean (Geo. Mean) is
the average of each sample’s geometric mean between its code-switching correctness score, fluency and semantic
scores. Results for the supervised baseline and the ground truth are presented as an upper bound (UB.) for reference.

years of experience, residing in the US for at least
four years, and proficient in Chinese, English, and
Chinese-English code-switching. We offer a com-
petitive hourly payment that meets regional legal
standards, though it’s difficult to determine the av-
erage payment for them on this single task.

5.2 Experimental Settings

Dataset. To avoid the evaluation being biased
in the domain we trained on, we collect testing
English instances by selecting sentences from the
following CS dataset. We sample 50 sentences for
each language pair.

» Hindi-English: We use the data released from
Tarunesh et al. (2021), who collected the dataset
via crowd-sourcing in India. Every data point in
this dataset is a pair of an English sentence and
its corresponding Hindi-English CS sentence.

* Chinese-English: We use the transcript data of
the SEAME dataset (Lyu et al., 2010), which is a
Chinese-English CS speech recognition dataset.
To get the English counterpart of the Chinese-
English sentences, we ask experts to translate
the CS sentence back to their English version.

Compared models. We compare six methods:
(1) Translate, Align, then Swap, which serves as
a representative of unsupervised methods, (2) Fine-
tuned PMMTM on available language pairs,
which serves as a baseline for zero-shot trans-
fer, (3) GLOSS + prefix, we use augment-MMT
as the backbone for Hindi-English, while using
mBART50-MMT as the base model for Chinese-
English, (4) GLOSS + prefix + self-training, we
apply self-training (R = 5) to GLOSS + prefix,
(5) Fine-tuned PMMTM on all language pairs,
which serves a strong supervised baseline. Notice
that since the training dataset in Gupta et al. (2020)

does not contain the Chinese-English pair. Hence,
when evaluating on Chinese-English, this baseline
is not applicable, (6) Ground truth, the original
CS sentences we sampled from the dataset.

Evaluation Procedure We ask each expert an-
notator to evaluate all the output of 50 testing in-
stances from all models (i.e., 300 sentences for
Hindi-English and 250 for Chinese-English). Our
questionnaire covers the following three questions
when using Hindi-English as an example.

* Code-switching Correctness: We measure
whether the present sentence is correct CS (bi-
nary score). Specifically, we define a sentence
as a correct CS sentence if it satisfies the con-
straints: (a) It’s not fully Hindi or English, (b)
It should be mainly in Hindi, and (c) There’s no
other language except English and Hindi.

* Fluency: Measuring the fluency of the predic-
tion presented to humans with scores from 1 to
5, with 5 as the best.

* Semantic Correctness: Measuring whether the
predicted sentence correctly reveals the meaning
of the corresponding input sentence with scores
from 1 to 5, with 5 as a fully correct translation.

5.3 Results

Tab. 3 presents the results. First, we can ob-
serve that the code-switching correctness rate is
extremely low for the zero-shot baseline — Fine-
tuned PMMTM on available language pairs. Sec-
ond, although the unsupervised baseline — Trans-
late, Align, then Swap gets a high code-switching
success rate, the low fluency reveals that decid-
ing a suitable position to switch languages is a
task beyond random. Third, we can observe that
self-training can successfully improve the code-
switching quality across all metrics in both lan-

5144

German- 4 Bengali-)
Enalish Are there any mosques Enelish My phone has the
nelis in the south of Paris? nglis option of screen shots.
Fine-tuned GLOSSY+ prefix Fine-tuned GLOSS + prefix
PMMTM (Zst) GLOSS + prefix PMMTM (Zst) GLOSS + prefix + self-training
R
Existen mosques . Gibt es mosques phone6V screen QNI phone ANI] phone
. Gibt es mosques . g R
/lm south von im south Paris im south von nﬂdgg’]o(f) option shots option screen shots
Paris counter Paris / shots / Wy /option (&
] / / /
Unnatural word usage . . . - .
- "Existen” is not the Missing fmf” details Good quality. A worfﬂ that is nlot Mlssmﬂg smaII"detalls Good quality.
‘of”. Bengali nor English. 'screen”.
usual verb to use.
\S ~/

Figure 4: Real examples generated by the models for German-English and Bengali-English cases. Fine-tuned
PMMTM (Zst.) refers to the Fine-tuned PMMTM on available language pairs method. The explanation for each

prediction is presented in the bottom boxes in the Figure.

guages, indicating the method’s effectiveness.

5.4 Output Examples

Lastly, we present real examples generated by our
models in Fig. 4. For these examples, we can see
that directly fine-tuning the whole PMMTM on
CS training data will generate unnatural or even
predictions containing tokens in other languages.
In contrast, GLOSS can generate more stable re-
sults, and our self-training algorithm can even help
GLOSS to generate high-quality CS sentences.

6 Related Work

Early approaches (Pratapa et al., 2018; Bhat et al.,
2016; Pratapa and Choudhury, 2021; Li and Fung,
2014) on code-switched (CS) text synthesis were
built based on various linguistic theories, such func-
tional head constraints (Belazi et al., 1994), Matrix-
Language theory (Myers-Scotton, 1997; Joshi,
1982), and Equivalence-Constraint theory (Poplack,
1980; Sankoff, 1998). To turn linguistic theories
into computational models, Bhat et al. (2016); Prat-
apa and Choudhury (2021) leverage trained con-
stituency parser to extract parses of translation pairs
and create CS sentences by mixing translation pairs
following the syntactic constraints derived from
the theories. However, constraints cannot be pos-
tulated as a universal rule for all CS scenarios, es-
pecially for languages that are syntactically diver-
gent (Berk-Seligson, 1986), such as English and
Chinese, since they have word alignments with an
inverted order (Winata et al., 2019). Owing to the
limitation, more and more recent works start to
build CS text synthesizers in a data-driven way.
Garg et al. (2018) train a sequence generative ad-
versarial model on real CS text to generate Chinese-
English CS sentences. Chang et al. (2019) build a

CS text synthesizer using the generative adversarial
network, while several follow-up works (Samanta
et al., 2019; Winata et al., 2019; Gonen and Gold-
berg, 2019) using different generative model tech-
niques are also presented. More studies have been
introduced to improve the synthesis quality such
that we cannot exhaust them in this short summary.
We refer readers to the recent survey (Winata et al.,
2022; Sitaram et al., 2019).

Although many of these efforts had some suc-
cess, the above-mentioned methods can only gener-
ate CS text in the same language pair sets used in
training. Given the difficulties of acquiring CS data,
this requirement hinders the scalability of these
models to support more language pairs. Hence,
in this paper, we take a step forward to explore
the possibility of zero-shot transfer generalization
in CS text synthesis and present GLOSS that can
generate reasonable outputs.

7 Conclusion

In this paper, we develop a novel generalized code-
switched text synthesizer, which can even generate
code-switched sentences where the corresponding
code-switched training data is unavailable. We in-
troduce GLOSS that is built on top of a pre-trained
multilingual machine translation model and aug-
mented with an adapter or prefixes. The modular-
ized design of learning specific parameters for mix-
ing languages from a translated distribution helps
the overall system generalization, hence, fulfilling
our goal. Extensive experiments verify our meth-
ods’ effectiveness qualitatively and quantitatively.
In the future, we plan to investigate how our syn-
thesizer performs on downstream tasks such as con-
versational understanding under a code-switched
scenario.

5145

Limitation

Our paper presents a pilot exploration of investigat-
ing a new setting in code-switched text synthesis
— we allow the target language pair selection not
limited to those for which we already have train-
ing data. Although we have shown the strength of
GLOSS qualitatively and quantitatively, our exper-
imental setting is still confined due to the dataset
restriction — all the input text is in English. It
would be an even harder challenge if the source
languages are more diverse and we leave such ex-
ploration for future work.

Additionally, due to the computational restric-
tion, in GLOSS, we only explore mBART50-MMT
and an augment-MMT as our PMMTM. From the
experimental results, we do observe the benefit of
having a more stable PMMTM in GLOSS. We an-
ticipate the models’ performance can be further
improved by leveraging more stronger PMMTM,
and the exploration is left for the future.

Broader Impacts

Our proposed models are based on a model that
is pre-trained on a large scale of multilingual ma-
chine translation data. It is known that the machine
translation model could capture the bias reflecting
the training data (Wang et al., 2022). Therefore,
our models can potentially generate code-switched
text containing offensive or biased content. We sug-
gest that for deploying our model in any real-world
applications, careful examination of the potential
bias is an essential step.

Acknowledgements

The authors would like to thank Chris Hench,
Chenyang Tao, Mingyu Derek Ma, Che-Ping Tsai,
and Tanmay Parekh for their feedback and help
regarding human evaluation. We also thank anony-
mous reviewers for their helpful feedback on the

paper.

References

Peter Auer and Li Wei. 2008. Handbook of multilin-
gualism and multilingual communication. Walter de
Gruyter.

Dzmitry Bahdanau, Shikhar Murty, Michael
Noukhovitch, Thien Huu Nguyen, Harm de Vries,
and Aaron C. Courville. 2019. Systematic gener-
alization: What is required and can it be learned?
In 7th International Conference on Learning
Representations, ICLR.

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
an automatic metric for MT evaluation with improved
correlation with human judgments. In Proceedings of
the Workshop on Intrinsic and Extrinsic Evaluation
Measures for Machine Translation and/or Summa-
rization@ACL.

Christos Baziotis, Mikel Artetxe, James Cross, and
Shruti Bhosale. 2022. Multilingual machine
translation with hyper-adapters. arXiv preprint
arXiv:2205.10835.

Hedi M Belazi, Edward J Rubin, and Almeida Jacque-
line Toribio. 1994. Code switching and x-bar theory:
The functional head constraint. Linguistic inquiry.

Susan Berk-Seligson. 1986. Linguistic constraints on
intrasentential code-switching: A study of span-
ish/hebrew bilingualism. Language in society.

Gayatri Bhat, Monojit Choudhury, and Kalika Bali.
2016. Grammatical constraints on intra-sentential
code-switching: From theories to working models.
arXiv preprint arXiv:1612.04538.

Ching-Ting Chang, Shun-Po Chuang, and Hung-yi Lee.
2019. Code-switching sentence generation by gener-
ative adversarial networks and its application to data
augmentation. In Interspeech 2019, 20th Annual
Conference of the International Speech Communica-
tion Association.

Alexis Conneau and Guillaume Lample. 2019. Cross-
lingual language model pretraining. In Advances
in Neural Information Processing Systems 32: An-
nual Conference on Neural Information Processing
Systems 2019, NeurIPS.

Zi-Yi Dou and Graham Neubig. 2021. Word alignment
by fine-tuning embeddings on parallel corpora. In
Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Main Volume, EACL.

Ben Fei, Weidong Yang, Liwen Liu, Tianyue Luo,
Rui Zhang, Yixuan Li, and Ying He. 2023. Self-
supervised learning for pre-training 3d point clouds:
A survey. arXiv preprint arXiv:2305.04691.

Jack FitzGerald, Christopher Hench, Charith Peris,
Scott Mackie, Kay Rottmann, Ana Sanchez, Aaron
Nash, Liam Urbach, Vishesh Kakarala, Richa Singh,
Swetha Ranganath, Laurie Crist, Misha Britan,
Wouter Leeuwis, Gokhan Tiir, and Prem Natara-
jan. 2022. MASSIVE: A 1m-example multilin-
gual natural language understanding dataset with
51 typologically-diverse languages. arXiv preprint
arXiv:2204.08582.

Saurabh Garg, Tanmay Parekh, and Preethi Jyothi. 2018.
Code-switched language models using dual rnns and
same-source pretraining. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-

guage Processing, Brussels, Belgium, October 31 -
November 4, 2018.

5146

Hila Gonen and Yoav Goldberg. 2019. Language mod-
eling for code-switching: Evaluation, integration
of monolingual data, and discriminative training.
In Proceedings of the 2019 Conference on Empir-
ical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural
Language Processing, EMNLP-IJCNLP 2019, Hong
Kong, China, November 3-7, 2019.

John J Gumperz. 1982. Discourse strategies. Cam-
bridge University Press.

Deepak Gupta, Asif Ekbal, and Pushpak Bhattacharyya.
2020. A semi-supervised approach to generate the
code-mixed text using pre-trained encoder and trans-
fer learning. In Findings of the Association for Com-
putational Linguistics: EMNLP.

Thanh-Le Ha, Jan Niehues, and Alex Waibel. 2016.
Toward multilingual neural machine translation with
universal encoder and decoder. In Proceedings of the

13th International Conference on Spoken Language
Translation, IWSLT.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. 2022. Towards a
unified view of parameter-efficient transfer learning.
In The Tenth International Conference on Learning
Representations, ICLR.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin de Laroussilhe, Andrea Ges-
mundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for NLP. In
Proceedings of the 36th International Conference on
Machine Learning, ICML.

Kuan-Hao Huang, Wasi Uddin Ahmad, Nanyun Peng,
and Kai-Wei Chang. 2021. Improving zero-shot
cross-lingual transfer learning via robust training. In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing (EMNLP).

Kuan-Hao Huang, I-Hung Hsu, Premkumar Natarajan,
Kai-Wei Chang, and Nanyun Peng. 2022. Multilin-
gual generative language models for zero-shot cross-
lingual event argument extraction. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (ACL).

Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Tho-
rat, Fernanda B. Viégas, Martin Wattenberg, Greg
Corrado, Macduff Hughes, and Jeffrey Dean. 2017.
Google’s multilingual neural machine translation sys-
tem: Enabling zero-shot translation. Trans. Assoc.
Comput. Linguistics.

Aravind K. Joshi. 1982. Processing of sentences with
intra-sentential code-switching. In Proceedings of
the 9th International Conference on Computational
Linguistics, COLING.

Ponsiano Kanijo. 2018. Code-switching and code-
mixing errors among swahili-english bilinguals in
tanzania. Kiswahili.

Simran Khanuja, Sandipan Dandapat, Anirudh Srini-
vasan, Sunayana Sitaram, and Monojit Choudhury.
2020. Gluecos: An evaluation benchmark for code-
switched NLP. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, ACL.

Grandee Lee, Xianghu Yue, and Haizhou Li. 2019. Lin-
guistically motivated parallel data augmentation for
code-switch language modeling. In Interspeech 2019,
20th Annual Conference of the International Speech
Communication Association.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing, ACL/IJCNLP.

Ying Li and Pascale Fung. 2014. Language model-
ing with functional head constraint for code switch-
ing speech recognition. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2014, October 25-29,
2014, Doha, Qatar, A meeting of SIGDAT, a Special
Interest Group of the ACL.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In 7th International
Conference on Learning Representations, ICLR.

Dau-Cheng Lyu, Tien-Ping Tan, Eng Siong Chng, and
Haizhou Li. 2010. Seame: a mandarin-english
code-switching speech corpus in south-east asia. In
Eleventh Annual Conference of the International
Speech Communication Association.

Pedzisai Mashiri. 2002. Shona-english code-mixing in
the speech of students at the university of zimbabwe.
Southern African Linguistics and Applied Language
Studies.

Carol Myers-Scotton. 1997. Duelling languages: Gram-
matical structure in codeswitching. Oxford Univer-
sity Press.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics ACL.

Jonas Pfeiffer, Andreas Riicklé, Clifton Poth, Aishwarya
Kamath, Ivan Vuli¢, Sebastian Ruder, Kyunghyun
Cho, and Iryna Gurevych. 2020. Adapterhub: A
framework for adapting transformers. In Proceed-
ings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP 2020): Sys-
tems Demonstrations.

Shana Poplack. 1980. Sometimes i’ll start a sentence in
spanish y termino en espanol: toward a typology of
code-switching.

5147

Adithya Pratapa, Gayatri Bhat, Monojit Choudhury,
Sunayana Sitaram, Sandipan Dandapat, and Kalika
Bali. 2018. Language modeling for code-mixing:
The role of linguistic theory based synthetic data.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics, ACL.

Adithya Pratapa and Monojit Choudhury. 2021. Com-
paring grammatical theories of code-mixing. In Pro-
ceedings of the Seventh Workshop on Noisy User-
generated Text, W-NUT.

Laura Ruis and Brenden M. Lake. 2022. Improving sys-
tematic generalization through modularity and aug-
mentation. arXiv preprint arXiv:2202.10745.

Bidisha Samanta, Sharmila Reddy, Hussain Jagirdar,
Niloy Ganguly, and Soumen Chakrabarti. 2019. A
deep generative model for code switched text. In
Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence, IJCAI

David Sankoff. 1998. A formal production-based expla-
nation of the facts of code-switching. Bilingualism:
language and cognition.

Sunayana Sitaram, Khyathi Raghavi Chandu, Sai Kr-
ishna Rallabandi, and Alan W. Black. 2019. A survey
of code-switched speech and language processing.
arXiv preprint arXiv:1904.00784.

Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Na-
man Goyal, Vishrav Chaudhary, Jiatao Gu, and An-
gela Fan. 2020. Multilingual translation with exten-
sible multilingual pretraining and finetuning. arXiv
preprint arXiv:2008.00401.

Ishan Tarunesh, Syamantak Kumar, and Preethi Jyothi.
2021. From machine translation to code-switching:
Generating high-quality code-switched text. In Pro-
ceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing, ACL/IJCNLP.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems NeurIPS.

Jun Wang, Benjamin I. P. Rubinstein, and Trevor Cohn.
2022. Measuring and mitigating name biases in
neural machine translation. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), ACL
2022, Dublin, Ireland, May 22-27, 2022.

Genta Indra Winata, Alham Fikri Aji, Zheng Xin Yong,
and Thamar Solorio. 2022. The decades progress
on code-switching research in NLP: A systematic
survey on trends and challenges. arXiv preprint
arXiv:2212.09660.

Genta Indra Winata, Andrea Madotto, Chien-Sheng Wu,
and Pascale Fung. 2019. Code-switched language
models using neural based synthetic data from par-
allel sentences. In Proceedings of the 23rd Confer-
ence on Computational Natural Language Learning,
CoNLL.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven
Le Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander Rush. 2020. Huggingface’s
transformers: State-of-the-art natural language pro-
cessing. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing:
System Demonstrations.

5148

A Dataset Details

Tab. 4 presents the dataset statistics for our au-
tomatic evaluation. The dataset is created by
Gupta et al. (2020) and under a Creative Com-
mons Attribution-NoDerivatives 4.0 International
License.’

Language Pairs\ Train Dev. Test

Es-En 196,725 2,000 2,000
De-En 188,131 2,000 2,000
Fr-En 193,922 2,000 2,000
Hi-En 248,330 2,000 2,000
Bn-En 163,893 2,000 2,000
MI-En 178,453 2,000 2,000
Ta-En 11,380 2,000 2,000
Te-En 9,105 2,000 2,000

Table 4: Dataset statistics of the dataset provided by
Gupta et al. (2020).

B Inter Annotator Agreement

We measure the mutual agreement rate among our
human annotators by calculating the average abso-
lute differences between the scores they give for the
same instance. For example, if the semantic correct-
ness score is given with score (2,2, 3). Then, the
average absolute difference is 0.66. We then take
a micro average across all our human-annotated
instances. We get a score of 0.50 and 0.52 for the
fluency and semantic correctness score for Chinese-
English, respectively. As for Hindi-English, we get
a score of 0.59 and 0.55 for the fluency and seman-
tic correctness score. This indicates our experts
agree with each other with only a little disagree-
ment.

"To download the data, please refer to
https://docs.google.com/forms/d/e/
1FATPQLSfR8st2eNu60g5i499bglxrbJ2BYCQKfpHyalYgq6oS—KrDibA/
viewform.

5149

https://docs.google.com/forms/d/e/1FAIpQLSfR8st2eNu6oq5i499bglxrbJ2BYCQKfpHyaIYq6oS-KrDibA/viewform
https://docs.google.com/forms/d/e/1FAIpQLSfR8st2eNu6oq5i499bglxrbJ2BYCQKfpHyaIYq6oS-KrDibA/viewform
https://docs.google.com/forms/d/e/1FAIpQLSfR8st2eNu6oq5i499bglxrbJ2BYCQKfpHyaIYq6oS-KrDibA/viewform

ACL 2023 Responsible NLP Checklist

A For every submission:

¥ Al. Did you describe the limitations of your work?
Limitation Section

¥ A2. Did you discuss any potential risks of your work?
Broader Impacts Section

¥ A3. Do the abstract and introduction summarize the paper’s main claims?
Introduction Section and Abstract Section

A4. Have you used Al writing assistants when working on this paper?
Left blank.

B ¥ Did you use or create scientific artifacts?

Section 4

¥/ B1. Did you cite the creators of artifacts you used?
Section 4

v B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Appendix A

vf B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Appendix A

B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?

We did simple checking of the potential harmful information in the dataset, but since the date size is
large, we couldn’t perform manual check on every instance.

¥/ B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Appendix A

v B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.

Appendix A

C ¥ Did you run computational experiments?
Section4 & 5

¥/ C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Section 4.1

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on Al writing
assistance.

5150

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

v C2. Did you discuss the experimental setup, including hyperparameter search and best-found

hyperparameter values?
Section 4.1 & Appendix B

v C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?

Appendix B

C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?

Left blank.

D ¥ Did you use human annotators (e.g., crowdworkers) or research with human participants?

Section 5

¥/ D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
Appendix C

¥/ D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
Appendix C

¥/ D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
Appendix C

¥f D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Broader Impacts Section

v D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Appendix C

5151

