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Abstract

Recent studies have pointed many well-
developed Visual Question Answering (VQA)
systems suffer from bias problem. Despite
the remarkable performance gained on In-
Distribution (ID) datasets, the VQA model
might capture the superficial correlation from
question to answer rather than showing real
reasoning abilities. Therefore, when switching
to Out-of-Distribution (OOD) dataset, whose
test distribution is unknown or even reversed
with the training set, significant drops appear.
Efforts have been devoted to negative bias
brought by language prior but are still limited
by two aspects. First, most current debiasing
methods achieve promising OOD generaliza-
tion ability with a sacrifice of the ID perfor-
mance. Second, they are restricted by exploit-
ing comprehensive biases, since weakening the
language bias is mainly focused and few works
consider vision bias. In this paper, we inves-
tigate a straightforward way to mitigate bias
problem for VQA task by subtracting bias score
from VQA base score. Then we design two bias
learning branches to detect more bias, which
is combined with a dynamical constraint loss
to alleviate the problem of over-correction and
insufficient debiasing. We evaluate our method
on the challenging VQA v2.0 and VQA-CP
V2.0 datasets and achieve significant improve-
ment.

1 Introduction

Visual Question Answering (VQA) (Antol et al.,
2015) is a challenging task spanning both com-
puter vision and natural language processing. The
goal of VQA is to infer the answer based on a
given image and a textual question, which is gen-
erally cast as a classification problem. Promis-
ing results on test set whose distribution is anal-
ogous with the training set, such as VQA v2.0
(Goyal et al., 2017), are generally favorable. How-
ever, latest studies (Agrawal et al., 2016; Goyal
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Figure 1: A straightforward way to mitigate the bias
problem for VQA task is by subtracting the QA score
from the VQA base score.

et al., 2017) have pointed out that many well-
developed VQA models merely over-exploit the
language prior from the training set to provide
correct answers without reasoning. That is, the
answer prediction might rely more on the correla-
tion to the question and less on the image. For
instance, in the VQA-CP v2.0 (Agrawal et al.,
2018) training set, the answers of the question
with the first few words “how many · · · ” are usu-
ally “2”, and the answers of the specific ques-
tion “what′s the color of the bananas?” are al-
most all “yellow”. Consequently, significant drops
(Agrawal et al., 2018) are demonstrated while han-
dling with the out-of-distribution test dataset.

Recently, solutions for this problem can
be categorized into two classes, namely, non-
augmentation-based methods (Cadene et al., 2019;
Ramakrishnan et al., 2018; Wu and Mooney, 2019;
Selvaraju et al., 2019; Clark et al., 2019; Jing et al.,
2020; Niu et al., 2021) and augmentation-based
methods (Chen et al., 2020; Gokhale et al., 2020;
Liang et al., 2020; Teney et al., 2020). The former
seeks to weaken language bias or leverage visual
grounding to increase the image dependency, while
the latter aims to to balance the dis-tribution of
training data. Moreover, most of the advanced debi-
asing methods still suffer from two issues, namely
comprehensive bias detecting (Wen et al., 2021)
and In-Distribution (ID) generalizability problems
(Niu and Zhang, 2021).

In this work, firstly we explore a very straight-
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Figure 2: Examples from VQA-CP v2.0 test set when using the subtracting way for debiasing based on Updn model.

Model ALL Y/N NUM. Other

Updn (SV QA) 39.80 41.39 12.10 46.56
Updn (SV QA - SQA) 51.49 76.38 13.93 48.74

Table 1: Debiasing effect on VQA-CP v2.0 dataset when
applying our subtracting debiasing strategy (i.e., SV QA

- SQA) to Updn (i.e., SV QA). The best score is in bold.

forward solution to VQA bias, which is shown in
Figure 1. Generally, we try to design different
strategies for learning and inference via a VQA
base model and a question answering (QA) model,
beforehand. In the training procedure, these two
models are separately optimized, and let SV QA,
SQA denote the VQA base score and QA score, re-
spectively. In the inference procedure, we calculate
the debiased result by subtracting the SQA from
SV QA. We apply such a simple strategy to the pop-
ular VQA model Updn (Anderson et al., 2018) on
VQA-CP v2.0 dataset, and we find that the overall
accuracy gains from 39.80% to 51.49% as shown
in Table 1. Despite its remarkable performance, we
still identify the above two major limitations in this
strategy, which specifically reflect the following
two aspects:

• First, the model answers questions without
comprehensively exploiting vision bias. Fig-
ure 2 (a) & (b) in the left indicate the impact
of the bias related to visual side, where the
salient “elephant” object leads to wrong an-
swers. According to our statistics, most of the
irrelevant wrong answer “elephant” appear
in “what” type questions, while the biased

answers might be different in the questions
belonging to “how many” type, such as Fig-
ure 2 (c). Therefore, both language and visual
modalities might jointly bring about bias.

• Second, strong uncertainty exists in the fi-
nal score, since the base model and bias
model are optimized separately. That means
the model cannot guarantee that the correct
answer has the highest score after subtracting
the bias effect. For this reason, the model still
suffers from inadequate debiasing and over-
correction problems, which has been shown
in the right part of Figure 2.

To solve the above problems, we propose a
Multi-modal Debiasing model with Dynamical
Constraint (MDDC). For the first limitation, we
construct two bias learning branches. Inspired by
the way of using the single modality to identify
unimodal-specific bias, we adopt a question-only
branch for language bias. Unfortunately, such a
strategy is unsuitable for the bias issue related to
visual information. The reason is that the same
image is usually used to answer various types of
questions, thus the model cannot obtain the specific
vision bias that involves necessary information to
answer the question, but only an image-to-answer
distribution bias. We assume that a more effective
way is to provide some question clues for images to
generate question-specific vision bias. Following
this assumption, we design a special bias learning
branch by incorporating prompts extracted from
questions into an image-only answering model.

For the second limitation, we propose a dynam-
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Figure 3: The overall framework of our debiasing model
with dynamical constraint for VQA.

ical constraint loss to reduce the difference of the
amount of information (Ramakrishnan et al., 2018)
between the VQA base module and the bias module.
In this way, we dynamically subtract the bias score
according to the degree of bias. Therefore, we mit-
igate the problem of uncertain inference caused by
the separate optimization of these two modules.

We evaluate the proposed MDDC on VQA v2.0
and VQA-CP v2.0 benchmarks. Experimental re-
sults on both datasets demonstrate that our debi-
asing strategy is competitive compared with main-
stream baselines.

2 Related Work

Visual question answering has witnessed great
progress, while a growing body of work (Agrawal
et al., 2016; Goyal et al., 2017) has pointed out
the drawbacks of reasoning ability and bias af-
fect. In this section, we review recently proposed
VQA debiasing approaches, which can be gener-
ally fall into non-augmentation-based methods and
augmentation-based methods.

2.1 Non-augmentation-based Methods

One of the strategies is to introduce prior knowl-
edge (i.e., human visual and textual explanations)
to strengthen the visual grounding for VQA model.
HINT (Selvaraju et al., 2019), SCR (Wu and
Mooney, 2019) are proposed with a self-critical
training objective that ensures the correct answers
to match important image regions with the help of
human explanations. Another common solution
(Ramakrishnan et al., 2018; Cadene et al., 2019) is
to design ensemble-based models, which adds an
auxiliary QA model to identify bias. Ramakrish-
nan et al. (2018) propose an adversarial regulariza-
tion method between the VQA base model and the
question-only branch to overcome language bias.

RUBi (Cadene et al., 2019) also leverages the QA
model to capture language bias when unwanted reg-
ularities are identified. Wen et al. (2021) use both
question-to-answer and vision-to-answer models
to generate bias representations of two modalities.
Niu et al. (2021) design a novel counterfactual in-
ference framework to reduce language bias by sub-
tracting the direct language effect from the VQA
total causal effect. Guo et al. (2022) propose a loss
re-scaling way to assign different weights to each
answer according to the training data statistics.

2.2 Augmentation-based Methods
Recently, studies automatically generate additional
question-image pairs to balance the distribution of
training data. Chen et al. (2020) propose a method,
CSS, to produce massive counterfactual samples
by masking the critical objects and words. Mu-
tant (Gokhale et al., 2020) generates the samples
by semantic transformations of the original im-
ages or questions. Teney et al. (2020) and Zhu
et al. (2020) obtain negative samples to balance the
dataset without external annotations. Chen et al.
(2022) design a knowledge distillation-based an-
swer assignment to generate pseudo answers for
each image-question pairs. However, it is important
to note that the VQA-CP is proposed to evaluate
whether the VQA model can distinguish between
visual knowledge and language prior. Therefore,
we expect that the model can be robust enough to
make debiased inference under biased training.

3 Our Approach

In this section, we first describe the general archi-
tecture of our proposed MDDC model and then
give the details for each component. Figure 3 de-
picts the overview of our approach, which consists
of three major modules: (1) the standard VQA
base module, which aims to indicate the probabil-
ity belonging to each answer candidate; (2) the bias
module, which aims to capture biases combining
both questions and images simultaneously; (3) the
dynamical constraint module, which aims to dy-
namically control the final prediction distribution.

3.1 Standard VQA Base Module
Given a dataset D = {(vi, qi, ai)}Ni=1 which con-
tains N samples, we define the i-th image vi ∈ V ,
the i-th question qi ∈ Q, and the i-th answer
ai ∈ A. A standard VQA module is defined as:

p(a|vi, qi) = σ(fV QA(ev(vi), eq(qi))) (1)
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Figure 4: Question-guided vision bias module, where
c, at, qt represent the embeddings of concept, answer
type and question type, respectively, Vi stands for the
i-th region vector of the image.

where ev(·) and eq(·) denote image and question
encoders, respectively, fV QA(·) represents the map-
ping function which is learned to project the multi-
modal feature to the answer space, σ(·) is the sig-
moid function.

3.2 Bias Module

At the heart of our system is the design to obtain
bias distributions. To make use of this intuition, we
capture the language bias by using a QA model, as
well as the vision bias by incorporating question
clues into a vision-to-answer-only model.

3.2.1 Language Bias Learning
Language bias stands for the prior that produces
the answer only according to the given question.
For example, given a question qi, we denote the
language bias answer probability as:

p(a|qi) = σ(fQ(eq(qi))) (2)

where fQ(·) is a linear function to map the question
representation to the answer space.

3.2.2 Question-guided Vision Bias Learning
We introduce a question-guided vision bias learn-
ing module for VQA debiasing, which is shown in
Figure 4. Since merely using visual information is
hard to obtain more targeted bias, a more flexible
way is to guide images to generate answers with the
intent and concepts of questions. The intent-level
clues provide semantic enhancement on individual
images, manifesting the goal of the question in a
global view. Additionally, the concept-level clues
can supplement more semantics to images, where
the concept refers to a set of entities mentioned

in the question. Here, we compute answer proba-
bility predicted by the question-guided vision bias
module as follows:

p(a|vi, at, qt, c) = σ(fF (ev(vi), at, qt, c)) (3)

where at, qt and c stand for the answer type, ques-
tion type and concepts of the question, respectively,
fF (·) is the function to combine these components
and map the fusion representation to the answer
space. Concretely, we fuse at and qt via a gate
mechanism to obtain the question intent vector
which is later added with each image region embed-
ding. Then, a multi-layer self-attention (Vaswani
et al., 2017) is adopted to make interactive learn-
ing for the image features incorporated with in-
tent clues. Finally, we get the vision bias output
via a concept attention or average pooling oper-
ation. Note that the concept attention is a nor-
mal attention mechanism using c as the query to
weight the image regions. However, we assume
that not all questions are suitable for using con-
cepts. For example, as for the other type question
“What color is the apple?”, it might be easy to
answer “red” if the concept “apple” and intent
“what color” are provided. But for the number
type questions, they are still hard to be answered
even though given the intent and concept. Thus
we only apply concept attention to number type
questions, and employ average pooling operation
on yes/no and other type questions.

3.3 Dynamical Constraint
As mentioned above, it is necessary to build con-
nection between the standard VQA base module
and bias module. In this subsection, we introduce
a dynamical constraint loss LD to control the fi-
nal distribution subtracted by the bias probability.
Denote B = {b1, . . . , bM} as the set of features
extracted from M bias modules. We define s as
the feature outputted from the VQA base module.
Afterwards, LD is computed as:

LD =
1

N

N∑

i=1

A∑

j=1

M∑

k=1

βij(I(aj |s)i − I(aj |bk)i)

(4)
βij = p(aj |s)i (5)

where N , A are the number of samples and the
number of candidate answers, respectively, β is
a dynamic control coefficient, I(X|Y ) represents
the amount of information of X under the con-
dition of Y . The goal of LD is to decrease the

5035



uncertainty of the standard VQA module predic-
tion and increase the probability uncertainty of the
bias module according to the degree of bias. As
for the former, it helps the VQA base module learn
adequate knowledge disrupted by bias. As for the
latter, it prompts the bias module to compute the ap-
propriate bias score, for that different samples have
varying degrees of impact from bias. Note that
both the VQA probability score p(aj |s) and the
bias probability score p(aj |b) satisfy the Bernoulli
distribution since the sigmoid function is applied
to the final output layer. Therefore, LD is different
from the Kullback-Leibler divergence (Doersch,
2016). More details are explained in Appendix A.

3.4 Training and Inference
Training. In the model training phase, we sepa-
rately optimize the standard VQA module and bias
module via the binary cross-entropy loss bce(·),
which is defined as:

LB = bce(p(a|s), y)+w

M∑

k=1

bce(p(a|bk), y) (6)

where w is a hyper-parameter to balance the base
and bias components, and y is the target label.
Then, the final loss function is computed as L =
LB+λLD, where λ is the discount coefficient. Ad-
ditionally, we stop the gradient backpropagation of
the bias module to the language encoder and vision
encoder in order to prevent the VQA base module
from updating in a biased direction.
Inference. At the inference stage, the final score
for the j-th answer ∆p(aj) is distinct according to
different answer types, which is defined as:

∆p(aj)
t = p(aj |s)−

M∑

k=1

αt
kp(aj |bk) (7)

where t is the answer type (e.g., yes/no, number,
and other), and αt stands for the weight of t, which
satisfies the condition of

∑M
k=1 α

t
k = 1.

4 Experiment

4.1 Experimental Settings
Dataset. We conduct experiments on VQA-CP
v2.0 dataset (Agrawal et al., 2018), which is pro-
posed to evaluate the debiasing ability. Besides, we
also validate the performance on VQA v2.0 (Goyal
et al., 2017), to see the generalization ability on ID
dataset. For both datasets, the questions are divided
into three categories: yes/no, number and other.

Base Parameter VQA-CP v2.0 VQA v2.0

Updn

lr 5e-4 5e-4
batch size 256 256

epoch 25 25
αt

1 = {αy, αn, αo} {0.99, 0.01, 0.5} {0.5, 0.5, 0.5}
αt

2 = {αy, αn, αo} {0.01, 0.99, 0.5} {0.5, 0.5, 0.5}

LXMERT

lr 5e-5 5e-5
batch size 32 32

epoch 10 10
αt

1 = {αy, αn, αo} {0.99, 0.01, 0.5} {0.5, 0.5, 0.5}
αt

2 = {αy, αn, αo} {0.01, 0.99, 0.5} {0.5, 0.5, 0.5}

Table 2: Important hyper-parameters list, where atk =
{at1, at2} stands for the weight combinations of the lan-
guage bias branch (i.e., at1) and the question-guided
vision bias branch (i.e., at2) in Equation (7); αy , αn, αo

are severally denoted as the weights of the three ques-
tion types, namely yes/no, number and other.

Metric. Following previous work (Antol et al.,
2015), the standard evaluation metric in VQA chal-
lenge is adopted, which is computed as:

Acc(ans) = min

(
1,

#humans provided ans

3

)

(8)
where the humans provided ans is the number
of each answer that human annotated for question.
Hyper-Parameters and Environment. Optimal
hyper-parameters are chosen via grid search. All
the embeddings of question clues are randomly
initialized. The intent extraction model is trained
by fine-tuning BERT (Devlin et al., 2019), and
the concepts are extracted by entity recognition
tool. We use the Pytorch 1.40 framework to im-
plement our model. All computations are done
on NVIDIA Tesla V100 GPUs. Other important
hyper-parameters are listed in Table 2.

4.2 Tested Backbones
We mainly implement our approach on two VQA
backbones, namely Updn (Anderson et al., 2018)
and LXMERT (Tan and Bansal, 2019).
Updn. the most popular VQA baseline, which
firstly employs the pre-trained object detection
model (Ren et al., 2015) to obtain features of salient
image regions.
LXMERT. a multi-modal pre-training framework
based on a cross-modality encoder from Transform-
ers. In our experiments, we separately divide this
backbone into two groups depending on whether
loading pre-trained weights or not.

4.3 Baselines
We compare our model with existing mainstream
bias reduction techniques, which can be grouped as
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Models Base VQA-CP v2.0 test VQA v2.0 val

All Y/N Num. Other All Y/N Num. Other

SAN (Yang et al., 2016) - 26.88 38.35 11.96 42.98 52.41 70.06 39.28 47.84
GVQA (Agrawal et al., 2018) - 39.23 57.99 13.68 22.14 48.24 72.03 31.17 34.65
S-MRL (Cadene et al., 2019) - 38.46 42.85 12.81 43.20 63.10 - - -
Updn (Anderson et al., 2018) - 39.74 42.27 11.93 46.05 63.48 81.18 42.14 55.66
Updn † (Anderson et al., 2018) - 39.80 41.39 12.10 46.56 64.36 82.02 43.31 56.49
AReg (Ramakrishnan et al., 2018) Updn 41.17 65.49 15.48 35.48 62.75 79.84 42.35 55.16
GRL (Grand and Belinkov, 2019) Updn 42.33 59.74 14.78 40.76 63.27 - - -
SCR (Wu and Mooney, 2019) Updn 48.47 70.41 10.42 47.29 62.30 77.40 40.90 56.50
AttAlign (Selvaraju et al., 2019) Updn 39.37 43.02 11.89 45.00 63.24 80.99 42.55 55.22
HINT (Selvaraju et al., 2019) Updn 46.73 70.04 10.68 46.31 63.38 81.18 42.99 55.56
DLR (Jing et al., 2020) Updn 48.87 70.99 18.72 45.57 57.96 76.82 39.33 48.54
RUBi (Cadene et al., 2019) Updn 44.23 67.05 17.48 39.61 - - - -
LM (Clark et al., 2019) Updn 48.78 72.78 14.61 45.58 63.26 81.16 42.22 55.22
LMH (Clark et al., 2019) Updn 52.73 72.95 31.90 47.79 56.35 65.06 37.63 54.69
CSS (Chen et al., 2020) Updn 41.16 43.96 12.78 47.48 59.21 72.97 40.00 55.13
CF-VQA (HM) (Niu et al., 2021) Updn 49.74 74.81 18.46 45.19 63.73 82.15 44.29 54.86
CF-VQA (SUM) (Niu et al., 2021) Updn 53.55 91.15 13.03 44.97 63.54 82.51 43.96 54.30
Re-scaling (Guo et al., 2022) Updn 47.09 68.42 21.71 42.88 55.50 64.22 39.61 53.09
MDDC (Ours) Updn 54.70 83.58 19.93 49.10 63.33 81.64 42.56 54.88

LXMERT∗† (Tan and Bansal, 2019) - 40.91 41.91 13.71 47.85 65.32 83.13 46.51 56.75
MDDC (Ours) LXMERT 53.83 76.73 26.07 49.44 64.03 82.15 45.64 55.10

LXMERT † (Tan and Bansal, 2019) - 57.11 54.97 38.34 63.38 75.87 91.46 59.61 68.31
MDDC (Ours) LXMERT 69.77 87.88 52.80 64.93 74.51 90.14 58.81 66.76

Table 3: Summary of results on VQA-CP v2.0 and VQA v2.0 datasets. † denotes our implementation, and ∗ stands
for using the LXMERT model structure without loading multi-modal pre-trained weights. The best score is in bold
and the second best is underlined.

Models VQA-CP v2.0 test VQA v2.0 val

All Y/N Num. Other ∆Gap All Y/N Num. Other ∆Gap

Updn † 39.80 41.39 12.10 46.56 - 64.36 82.02 43.31 56.49 -
+ bl 51.49 76.38 13.93 48.74 + 11.69 62.41 81.17 42.47 53.40 - 1.95
+ bl + LD 54.10 84.27 14.22 49.23 + 14.30 62.65 81.40 42.92 53.61 - 1.71
+ bl + bv 52.15 77.00 16.61 48.87 + 12.35 63.04 81.60 41.24 54.69 - 1.32
+ bl + bv + LD 54.70 83.58 19.93 49.10 + 14.90 63.33 81.64 42.56 54.88 - 1.03

LXMERT∗ 40.91 41.91 13.71 47.85 - 65.32 83.13 46.51 56.75 -
+ bl 50.80 69.93 19.49 49.35 + 9.89 62.98 81.86 45.53 53.22 - 2.34
+ bl + LD 51.48 71.82 19.57 49.56 + 10.57 63.17 81.69 45.60 53.73 - 2.15
+ bl + bv 52.41 72.94 25.63 48.98 + 11.50 64.08 82.24 45.51 55.17 - 1.24
+ bl + bv + LD 53.83 76.73 26.07 49.44 + 12.92 64.03 82.15 45.64 55.10 - 1.29

LXMERT 57.11 54.97 38.34 63.38 - 75.87 91.46 59.61 68.31 -
+ bl 69.09 87.42 52.73 63.96 + 11.98 73.85 89.66 58.65 65.85 - 2.02
+ bl + LD 69.30 87.99 50.85 64.55 + 12.19 73.84 89.84 58.53 65.72 - 2.03
+ bl + bv 69.54 87.41 51.34 65.15 + 12.43 74.62 90.34 59.04 66.77 - 1.25
+ bl + bv + LD 69.77 87.88 52.80 64.93 + 12.66 74.51 90.14 58.81 66.76 - 1.36

Table 4: Ablation study on VQA-CP v2.0 and VQA v2.0 Datasets. † denotes our implementation, and ∗ stands for
using the LXMERT model structure without loading multi-modal pre-trained weights. The best score is in bold and
the second best is underlined.

follows: (1) Methods incorporating human visual
or textual explanation, including SCR (Agrawal
et al., 2018), AttAlign (Selvaraju et al., 2019) and
HINT (Selvaraju et al., 2019). (2) Adversarial
regularization-based methods, including AReg (Ra-
makrishnan et al., 2018) and GRL (Grand and Be-
linkov, 2019). (3) Ensemble-based methods, in-

cluding RUBi (Cadene et al., 2019), LM (Clark
et al., 2019), LMH (Clark et al., 2019), Re-scaling
(Guo et al., 2022). (4) Question encoding-based
method DLR (Jing et al., 2020). (5) Counterfactual-
based methods, including CF-VQA (Niu et al.,
2021), CSS (Chen et al., 2020). In subsequent
part, all the experimental results for the compared
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baselines are taken from their original papers.

4.4 Results

The results on VQA-CP v2.0 and VQA v2.0 are
reported in Table 3.
Results on VQA-CP v2.0. Overall, our method
achieves the best performance on VQA-CP v2.0
dataset compared with non-augmentation ap-
proaches. Drilling down to the question type, our
method also gets competitive results. Specifically,
we achieve the second-best results on yes/no type
question, and the best results on other type ques-
tion. It is worth noting that our strategy obtains
improvements of 6.90% and 4.13% across number
type and other type question compared with CF-
VQA (Niu et al., 2021) which also employs a sub-
tracting way to reduce bias effect. We infer the
reason is that our model detects more comprehen-
sive biases from both language and vision aspects,
and our dynamical constraint loss also plays a role
in adjusting the final distribution.
Results on VQA v2.0. In consistent with what
metioned in (Agrawal et al., 2018; Selvaraju et al.,
2019; Ramakrishnan et al., 2018; Cadene et al.,
2019; Chen et al., 2020; Niu et al., 2021) , we
usually observe a drop after debiasing on VQA
v2.0 because of the almost consistent distribution
followed by training and test datasets. As a com-
parison, our debiasing strategy demonstrates strong
robustness and achieves competitive results.

To sum up, these results not only show the effec-
tiveness of our approach for reducing bias problem
but also the value of the performance on ID dataset.

5 Analysis

5.1 Ablation Study

An ablation experiment would be informative to
analyze the effects of the dynamical constraint loss
(denoted as + LD), and the bias learning strategy,
which can be taken apart as language bias learning
(denoted as + bl), and question-guided vision bias
learning (denoted as + bv). For fairness, all the
models are trained under the same settings.

Table 4 lists the results on two datasets. It can
be seen that coupling with all the components does
really helpful on VQA-CP v2.0 (Agrawal et al.,
2018), and can narrow the drop gap on VQA v2.0
(Goyal et al., 2017). When there is no multi-modal
pre-trained knowledge (e.g., Updn (Anderson et al.,
2018) and LXMERT∗ (Tan and Bansal, 2019)), on
OOD dataset (i.e., VQA-CP v2.0), we find + bv

Image Intent Concept All Y/N Num. Other

✓ 52.85 85.13 12.44 47.02
✓ ✓ 53.65 86.24 12.27 47.91
✓ ✓ 53.10 86.01 12.46 47.00

✓ 53.53 84.94 12.83 48.23
✓ ✓ ✓ 54.70 83.58 19.93 49.10

Table 5: The effects caused by different components in
our question-guided vision bias learning module.

brings significant improvement on number type
question. A possible reason might be that the bias
in number type question is severely affected by
images with language information (e.g., intent and
concept) on VQA-CP v2.0. When leveraging pre-
trained weights into LXMERT, there are still slight
improvements brought by all the components. On
the whole, our bias learning strategy (+ bl + bv) can
detect more comprehensive biases than individual
+ bl, and it narrows the performance gap on ID
dataset (i.e., VQA v2.0). Fortunately, integrating
the dynamical constraint improves the result across
all base models on OOD dataset, and LD does not
have a significant negative impact on ID dataset.

To conclude, it is always preferable to use all the
components (+ bl + bv + LD), due to the superior
performance. This proves the effectiveness of our
bias learning strategy and dynamical constraint.

5.2 Vision Bias Learning Analysis

5.2.1 Impact of Question Clues
In the following set of experiments, we demon-
strate the effectiveness of the question clues men-
tioned in our question-guided vision bias learn-
ing module on VQA-CP v2.0. Note that we only
change three components (i.e., image, intent, con-
cept) based on the overall Updn + MDDC model.
As depicted in Table 5, we conclude that both the
image and the question clues are necessary for de-
biasing. Concretely, leveraging intent feature is
helpful for other type question, based on which
incorporating concept information via a concept-
attention mechanism boosts the performance of
number type question from 12.27% to 19.93%.
Such a phenomena indicates that the base model
Updn might easily overfit the training set of VQA-
CP v2.0 dataset and learn less valid knowledge for
number recognition ability.

5.2.2 Impact of Layer Number
We further investigate the layer number of self-
attention (Vaswani et al., 2017) in question-guided
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attention in question-guided vision bias learning branch.

Figure 6: Qualitative comparison on VQA-CP v2.0.

vision bias learning module on VQA-CP v2.0 test
split. Figure 5 shows the change of accuracy on
the test set as the layer number increases, which is
based on Updn model. A proper number of layers
can make the model perform well on number type
questions, which again verifies the effect of our
vision bias learning strategy, while accuracies on
the rest items are more stable. We find that the best
results can be obtained when the number is equal to
3, and further numbers do not provide a significant
performance improvement.

5.3 Qualitative Analysis
Debiasing qualitative examples on VQA-CP v2.0
are shown in Figure 6. By inspecting the results,
we can further verify that our debiasing approach

Figure 7: An example on VQA-CP v2.0 test split to
verify the effectiveness of our dynamical constraint
loss, when merely using language bias learning module.
More examples are shown in Appendix B

can address more comprehensive biases and dy-
namically adjust the final score. As illustrated in
Figure 6, MDDC can successfully mitigate the bi-
asd inference on all kinds of question types. For
the example at the first row, MDDC overcomes
the bias related to both question and image sides
(i.e., “white”, “elephant”). The two examples
at the second row manifest the effects of MDDC
on number and yes/no type questions. Another
example based on Updn model in Figure 7 further
illustrates the benefit brought by the dynamical
constraint loss LD. Specifically, LD helps to in-
crease the difference between the VQA score and
the QA score corresponding to the answer of “no”,
and it narrows the score gap of the wrong answer
(i.e., “yes”), which promotes the final score of the
correct answer to be the highest.

6 Conclusion

A robust visual question answering model with
dynamical constraint is proposed for reducing as
much multi-modal bias as possible. Compared with
previous researches, we investigate a very straight-
forward way to obtain debiasing effect by subtract-
ing bias score from VQA base score. On one hand,
we design a language bias learning branch and a
question-guided vision bias learning branch to de-
tect comprehensive biases. On the other hand, a
dynamical constraint loss is proposed related to the
two bias branches to alleviate the over-correction
and insufficient debiasing problems to some ex-
tent. Experimental results on VQA-CP v2.0 and
VQA v2.0 datasets demonstrate the effectiveness
of our proposed approach from both quantitative
and qualitative perspectives.

5039



Limitations

Our model introduces additional parameters in
the question-guided vision bias module, compared
with other methods. Moreover it is also worth ex-
ploring whether the question-guided vision bias
module can improve number type questions in
other OOD data sets.
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A A Theoretical Explanation

This section presents an approximately feasible the-
oretical explanation for our dynamical constraint
LD. According to the definition, the total loss L
(L = LB + λLD) can be combined like items and
further simplified. For easier explanation, we ex-
tract the loss item of answer ai ∈ A from a single
sample, namely L(ai) to illustrate, which is com-
puted as:

L(ai) =− (yi + λβi) log p(ai|s)
− (1− yi) log (1− p(ai|s))
− (wyi − λβi) log p(ai|b)
− w(1− yi) log (1− p(ai|b))

(9)

We assume the bias can be reflected as: the score
of a common answer is extremely high or too low
in the training phase, which affects the selection
of the correct answer when evaluating on test set.
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Here, we consider two boundary cases, depending
on whether the target label of the current answer is
1 or 0 (i.e., y = 1 or y = 0).

If yi = 1, both the VQA score p(ai|s) and the
bias score p(ai|b) are optimized to 1. On this con-
dition, L(ai) can be transformed to:

L(ai) =−
VQA model learning︷ ︸︸ ︷

(1+λβi︸ ︷︷ ︸
boost

) log p(ai|s)

− (w

inhibition︷ ︸︸ ︷
−λβi ) log p(ai|b)︸ ︷︷ ︸

bias learning

(10)

Since βi = p(ai|s), when βi → 1, the learning pro-
cedure of VQA base model is further boosted while
the bias learning is inhibited. Due to the extremely
long-tailed answer distribution, the training objec-
tive can be unbalanced across different answers. It
indicates that the unbalanced bias knowledge might
be overlearned from more samples during training.
Thus, if the sample is severely biased, the bias score
tends not to decrease much after suppression, and
the VQA base score will be relatively less reserved
after subtracting (as shown in Figure 8 A).

If yi = 0, both p(ai|s) and p(ai|b) are optimized
to 0, and the L(ai) can be reduced to:

L(ai) =
VQA model learning︷ ︸︸ ︷

−λβi log p(ai|s)︸ ︷︷ ︸
inhibition

− log (1− p(ai|s))

boost︷ ︸︸ ︷
+λβi log p(ai|b)−w log(1− p(ai|b))︸ ︷︷ ︸

bias learning
(11)

Intuitively, the term −λβi log p(ai|s) inhibits
p(ai|s) → 0, thus it can prevent the model from
overfitting the training set to some extent. In addi-
tion, the item +λβi log p(ai|b) boosts p(ai|b) → 0.
Therefore, when the VQA base score of a wrong
answer is high (i.e., B), the process of adjusting
the prediction scores is similar to the condition of
y = 1 (as shown in Figure 8 B).

In this way, during inference procedure, the final
score of the biased answer might be more likely
to decrease, while the unbiased answer tends to
retain a relatively higher final score. In summary,
such a strategy can help to prevent the model from
overfitting the training set, and dynamically obtain
a more appropriate final score.

B Illustrative Examples

In order to fully demonstrate the specific role of the
dynamic constraint loss, we deliver more illustra-
tive examples to show the probability predictions
for each branch, as shown in Figure 9. We choose
Updn as the backbone, and all the results are ob-
tained under the same experimental settings.

For the cases in Figure 9, we find that when LD

is not added (w/o LD), strong uncertainty exists in
the prediction results. The reason is that the VQA
branch and the bias branches are trained separately,
causing debiasing effect to be less significant in cer-
tain cases. By contrast, we explicitly introduce LD

to the model (w/ LD) and thus obtain satisfactory
results.
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Figure 9: Examples on VQA-CP v2.0 test split to verify the effectiveness of the dynamical constraint loss, specifically
for the standard VQA score, language bias score (i.e., QA score) and question-guided vision bias score (i.e., Q-
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