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Abstract

Longitudinal user modeling can provide a
strong signal for various downstream tasks.
Despite the rapid progress in representation
learning, dynamic aspects of modelling indi-
viduals’ language have only been sparsely ad-
dressed. We present a novel extension of neural
sequential models using the notion of path sig-
natures from rough path theory, which consti-
tute graduated summaries of continuous paths
and have the ability to capture non-linearities
in trajectories. By combining path signatures
of users’ history with contextual neural repre-
sentations and recursive neural networks we
can produce compact time-sensitive user rep-
resentations. Given the magnitude of mental
health conditions with symptoms manifesting
in language, we show the applicability of our
approach on the task of identifying changes
in individuals’ mood by analysing their online
textual content. By directly integrating signa-
ture transforms of users’ history in the model
architecture we jointly address the two most
important aspects of the task, namely sequen-
tiality and temporality. Our approach1 achieves
state-of-the-art performance on macro-average
F1 score on the two available datasets for the
task, outperforming or performing on-par with
state-of-the-art models utilising only histori-
cal posts and even outperforming prior models
which also have access to future posts of users.

1 Introduction

Representation learning has become a critical tool
in Natural Language Processing (NLP) applica-
tions, especially for user-specific tasks (Pan and
Ding, 2019). Despite its importance there is lim-
ited work on low-dimensional static user represen-
tations (Amir et al., 2016; Song and Lee, 2017;
Amir et al., 2017) or more importantly on dynamic
user representations (Liang et al., 2018; Cao et al.,

1https://github.com/Maria-Liakata-NLP-Group/
seq-sig-net

2019; Sawhney et al., 2021). Dynamically repre-
senting users through their textual data can be of
paramount importance especially for addressing
user-specific changes in their language over time,
potentially indicative of underlying mental health
conditions. Current research on temporal user rep-
resentations for mental health applications (Sinha
et al., 2019; Sawhney et al., 2020, 2021; Tsakalidis
et al., 2022b) highlights the importance of sequen-
tial modeling but either relies heavily on emotion
and network based features (which limit the gener-
alisability of the representations) or models a user’s
entire available content as a whole, limiting its use
to off-line rather than real-time applications.

To address these, we propose an architecture
that combines sequential modelling with path sig-
natures (Chevyrev and Kormilitzin, 2016). Path sig-
natures provide a pathwise definition to the solution
of differential equations driven by rough signals
and therefore a non-parametric way for sequential
encoding. They are graduated summaries of con-
tinuous paths and have the ability to capture non-
linearities in trajectories. They have been proven ef-
fective in compressing sequential/temporal content
(Fermanian, 2021) for a range of applications in-
cluding Chinese character recognition (Yang et al.,
2016; Xie et al., 2017), medical information extrac-
tion (Biyong et al., 2020) and emotion recognition
through audio streams (Wang et al., 2019). We
combine signature paths with contextual representa-
tions from a pre-trained BERT (Devlin et al., 2018)
and recurrent neural networks to obtain a novel
sequential, temporally sensitive architecture. We
apply this to a longitudinal task in mental health,
that of identifying Moments of Change (MoC) in
individuals’ mood (Tsakalidis et al., 2022b). We
make the following contributions:

• We propose the first architecture to combine
path signatures with neural networks for Longi-
tudinal Language Modeling, addressing tempo-
rality and sequentiality within the model (§3.5).
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• Our model provides compact and efficient dy-
namic user representations by combining path
signatures with LSTMs to represent a user’s
history, capturing both long- and short-term
dependencies in user’s historical linguistic con-
tent. By operating only on historical data, our
model’s output representations are generalis-
able to longitudinal user tasks in real-time.

• We show state-of-the-art performance in one
dataset for the task of MoC prediction and out-
perform or perform on-par with all compet-
ing models for both datasets that use historical
user data only. We perform very competitively
against those that utilise additional future user
data (§5.1).

2 Related Work

Temporal Representations. Recent work has fo-
cused on expanding static representations in or-
der to construct temporal user embeddings through
user activity data (Pavlovski et al., 2020; Hansen
et al., 2020; Zhang et al., 2020). Despite the impor-
tance of longitudinal online linguistic content, little
work addresses dynamic temporally-sensitive user
representations. For the task of semantic change de-
tection, temporally sensitive word representations
are obtained either over discrete time bins (Hamil-
ton et al., 2016; Tsakalidis and Liakata, 2020) or
jointly over time (Frermann and Lapata, 2016; Yao
et al., 2018; Rudolph and Blei, 2018; Bamler and
Mandt, 2017). Such work addresses the change
in words over long periods rather than changes in
users, which may cover much shorter spans. Liang
et al. (2018) tackled the problem of temporal user
representations through the extension of dynamic
word representations (Bamler and Mandt, 2017),
through joint word and user temporal modeling
in a probabilistic fashion, adopting a skip-gram
model. This work precedes the advent of powerful
pretrained language models (PLMs).

Dynamic topic models have been employed in
social media for modeling the evolution of emo-
tions and topics in subject-specific reviews and
news corpora (He et al., 2014; Zhu et al., 2016). Al-
though such work forms a strong foundation for dy-
namic representation modeling, temporal individ-
ual linguistic content spans across multiple unique
topics unlike reviews and news documents that are
heavily governed by aggregate topics. Additionally,
in longitudinal user modeling individuals’ mood
changes occur uniquely and at different speeds,

rather than presenting a mass change of sentiment
in topic-specific documents. Lastly, since work on
dynamic topic-emotion models precedes the PLM
era, there is need to further explore the effect of
contextual word representations in capturing the
dynamics of words governed by the post topics.

Longitudinal Modeling for Mental Health.
User’s linguistic footprint on social media is a rich
resource for the detection of mental health condi-
tions (Sinha et al., 2019; Jiang et al., 2020; Shing
et al., 2020) and related linguistic shifts (De Choud-
hury et al., 2016; Guntuku et al., 2020; Tsaka-
lidis et al., 2022b). Shared tasks such as CLPsych
(Zirikly et al., 2019; Tsakalidis et al., 2022a) and
CLEF eRISK (Losada et al., 2020) have recently
highlighted the importance of temporal, sequen-
tial and longitudinal user modeling for downstream
mental health applications.

Our approach furthers work in sequential and
longitudinal modeling from individuals’ language
data on social media by providing a novel ar-
chitecture that combines summaries of user his-
tory through path signature transforms with RNNs.
While we show the effectiveness of our architec-
ture on the task of identifying MoCs in individuals’
mood , our model can be applied in real-time and
extended to a variety of temporally sensitive tasks
and multi-modal sources of data.

Path Signatures A path is defined as a contin-
uous mapping from an interval to a real multi-
dimensional space. The path’s signature can be
seen as a collection of the statistics of the path sum-
marising uniquely important information about the
path. Additionally, the signature provides a linear
approximation of every continuous function of the
path (Bonnier et al., 2019). In rough path theory
(Chen, 1958; Lyons, 1998), path signatures give a
path-wise definition to the solution of differential
equations driven by irregular signals.

Path signatures recently gained attention in ma-
chine learning due to their ability to represent
a trajectory in the un-parameterised path space
and therefore non-parametrically encode sequential
data. They have been used to embed sequential data
to a continuous path and from there to form com-
pressed features of different granularity for differ-
ent downstream tasks. Path signatures have shown
strong performance as feature extractors in various
tasks such as online Chinese character recognition
(Yang et al., 2016; Xie et al., 2017), psychiatric
disorders distinction (Arribas et al., 2018), video
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action recognition (Yang et al., 2017), mood pre-
diction with missing longitudinal data (Wu et al.,
2020), healthcare (Morrill et al., 2020) and finan-
cial time series (Levin et al., 2013). Recent work
has integrated signatures directly in neural models
(Bonnier et al., 2019) allowing their operation as a
layer of sequential pooling in neural networks.

Path signatures are still under-explored in NLP
with limited applications in speech emotion recog-
nition (Wang et al., 2019) and psychiatric disorder
detection from interviews (Wang et al., 2021). Biy-
ong et al. (2020) integrated path signatures with
attention between the BERT embedding and pre-
diction step for information extraction. Although
this demonstrates the ability of signatures to en-
hance the sequential ordering capabilities in the
Transformer (Vaswani et al., 2017), the work in
question lacked temporal and sequential (beyond
word ordering) elements. Our work presents an
architecture combining path signatures with RNNs
that addresses both temporal and sequential aspects,
using path signatures as an integral part of sequen-
tial networks.

3 Methodology

3.1 Problem definition

We define a user timeline T
[s,e]
u as a series of

consecutive posts {p1, . . . , pm} shared by user u
at times T = {t1, t2, . . . , tm} between two dates s
and e, where m can be any length. For each post
pi we assume we need to classify it according to
some multi-class sequential classification task,
where it is important to consider historical context
spanning different ranges. For each post pi we
assume n history windows, each of length w
posts, shifted by k posts.2 We define the first
history window of pi of fixed length w as hi1 =
{pi−(n−1)k−(w−1), pi−(n−1)k−(w−2), ..., pi−(n−1)k}
and the qth history window as hiq =
{pi−(n−q)k−(w−1), pi−(n−q)k−(w−2), ..., pi−(n−q)k}.
The historical context for post pi is therefore
di = {hi1 , ...,hin−1 , hin , pi}.

Method Overview. Fig. 1 shows the historical
context for a post-level classification task. Each
historical sequential window is used as the input
to the path signature compression (see Signature
Window Network Unit-SWNU in §3.3) in order to

2In practice n, k and w are fixed and the number of posts
in a timeline m is given by m = k ∗ n + (w − k), where
m = 29 in our model (k = 3, n = 9, w = 5).

Figure 1: Illustration of post-level historical context of
post pi at time ti, assuming k-shifted windows with
k = 3, window size w = 5 and n = 3 history windows.

capture local sequential patterns (Fig. 2). The out-
put of each SWNU is fed as the input to a BiLSTM
(see §3.5) in order to produce the final single com-
pressed history representation as shown in Fig. 3
to learn the temporal long-term linguistic evolu-
tion of the user. By employing an architecture that
incorporates multiple SWNUs in a BiLSTM we
achieve the enhancement of short-term dependen-
cies in user linguistic content compared to a vanilla
BiLSTM through the efficient representation of lo-
cal sequential trajectories. At the same time we
harness the powerful BiLSTM in modeling long-
term sequential dependencies of the local windows.
We finally combine the compressed historical infor-
mation from the BiLSTM with the PLM (BERT)
representation of the post pi to be classified and its
normalised timestamp.

3.2 Path Signature Preliminaries
A sequence of user posts can be viewed as a se-
quence of linguistic signals. The stream-like nature
of the task allows us to consider the sequence of
c-dimensional posts in a timeline (encoded through
PLM embeddings) as a continuous path P over
an interval [t1, tm].3 The signature S(P ) of this
path P over [t1, tm] is the collection of r-folded
iterated integrals of P along the (integer) indices
i1, i2, · · · , ir ∈ {1, 2, · · · , c}, with r denoting the
number of involved dimensions:

S(P )i1,i2,··· ,irt1,tm
=

∫

gr

...

∫

g1

dP i1
g1 ⊗...⊗dP ir

gr , (1)

for gi ∈ [t1, tm] and t1 < g1 < g2 < ... < tm. The
signature is a collection of all r iterated integrals:

S(P )t1,tm = (1, S(P )1t1,tm , ..., S(P )ct1,tm , (2)

S(P )1,1t1,tm
, S(P )1,2t1,tm

, ..., S(P )c,ct1,tm
,

..., S(P )i1,i2,··· ,irt1,tm
, ...)

3where t1 is the timestamp of the first post and tm the last
timestamp in the timeline.
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The above leads to infinite dimensions. Thus in ma-
chine learning applications we use the N th degree
truncated signature which means that the r iterated
integrals go up to degree N to constrain the number
of dimensions. We are working with the truncated
signatures, more specifically of degree 3:

TS(P )3t1,tm = (1, S(P )1t1,tm , ..., S(P )ct1,tm , (3)

S(P )1,1t1,tm
, S(P )1,2t1,tm

..., S(P )c,ct1,tm
,

S(P )1,1,1t1,tm
, ..., S(P )c,c,ct1,tm

)

A higher degree of truncated signature adds more
granularity in the path but it also leads to expo-
nentially increasing number of output dimensions
used as features, as the latter is calculated by the
equation (cN+1 − c)(c− 1)−1, where c are the fea-
ture dimensions and N is the degree of truncation.
While Eq. 3 provides the signature compressed fea-
ture set, the constant 1 is excluded from the features
for simplicity as a common practise.

Since signatures provide a way to uniformly lin-
early approximate a continuous function (Ferma-
nian, 2021), their dimensions explode in size in pro-
portion to the dimensions of the input (Kidger and
Lyons, 2020). In our work we use log-signatures
since their dimensions increase more modestly and
therefore allow us to incorporate higher interactions
between inputs in a more compressed representa-
tion. This resulted in better performance of our
model. For simplicity we will be referring to the
application of log-signatures as signatures.4

3.3 Signature Window Network Unit (SWNU)

Figure 2: Architecture of the Signature Window Net-
work Unit (SWNU), the building block that models
windows of local user’s historical content.

4We use the Signatory package (Kidger and Lyons, 2020)
which allows backpropagation through signature transforms.

Path signatures have been used as feature ex-
tractors in the past (see §2). This comes with
the risk that valuable compressed signature infor-
mation in higher order terms may be lost when
truncated at degree N . Bonnier et al. (2019) pro-
posed integrating signature transforms in neural
networks which allows for backpropagation in
the whole network and therefore for a learnable
augmentation of the data Φ(x) that can preserve
the important higher order information in lower
degrees of the truncated signature in SN (Φ(x))
rather than applying the signature directly on the
data. Since signatures transform a stream of data
into a mathematical non-streamlike representation,
the signature transform can in theory only be ap-
plied once. Bonnier et al. (2019) further suggest
the use of a signature multiple times by lifting it
from a stream to a stream of streams. For tempo-
rally ordered post data P={p1, p2, . . . , pm} with
Pj={p1, p2, · · · , pj} one can obtain a stream of
truncated signatures through expanding windows:

(SN (P2), S
N (P3), · · · , SN (Pm)). (4)

We present the building block of our architec-
ture called the Signature Window Network Unit
(SWNU), which produces a compressed history
representation for a window in time. Given a series
of posts, we slide a convolution 1D layer with a
Tanh activation function to allow learnable dimen-
sionality reduction. The selection of Convolution
1D is based on its ability to reduce the embedding
dimensions while preserving the sequential nature
of the data and avoiding interactions between time
points (posts) given a small kernel size. While more
obvious choices such as an LSTM or a Transformer
would preserve sequentiality, they would introduce
post interactions which are undesirable, while also
being more expensive. The choice of Convolution
1D, which involves only 552 parameters, allows
for the efficient, simple and cheap formation of
our building block. The signature is applied as de-
scribed in Eq. 4, therefore producing compressed
representations of local expanding windows. These
are fed into an LSTM to model (see Fig. 2) the
entire sequence and progression of the linguistic
content within the specified timeframe. The output
of the LSTM provides a learnable stream of this
more granular progression that a final signature
layer compresses to get a low-dimensional single
representation, h

′
ij

, for the whole specified posting
window. This unit is depicted in Fig. 2.
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Figure 3: Sequential Path Signature Network (Seq-Sig-Net) using Signature Window Network Units (Fig. 2) on
history windows.

3.4 Post Encoding

Pre-trained contextualised word representations
such as those from BERT have been proved im-
portant in different NLP tasks (Peters et al., 2018).
While the [CLS] token from BERT has been widely
used to represent a given sequence, sentenceBERT
(SBERT) embeddings (Reimers and Gurevych,
2019) are better suited for capturing the sentence
semantics in a more compressed fashion, which is
important when utilising path signatures.

We encode each post pi in a timeline using
sentenceBERT (384-dimensional representation).
Since the dimension of the truncated signature ex-
plodes exponentially with the input path dimension,
a common practice in literature is to reduce the
input dimensionality. We used UMAP (McInnes
et al., 2018) due to its ability to preserve global
structure and produce effective low dimensional
representations used in machine learning (Sainburg
et al., 2021).5 Lastly, we order the posts in a time-
line in ascending order of respective timestamps
and create data points for each post and its history
windows, as described in §3.1.

3.5 Sequential Path Signature Network

The Signature Window Network Unit provides a
way to compactly model the user’s historical lin-
guistic content over a specified time window. How-

5We also explored PPA-PCA and PPA-PCA-PPA (Mu
et al., 2017; Raunak et al., 2019), but UMAP had a better
downstream performance.

ever the kind of longitudinal tasks over user posts
we are considering (such as changes in the mood
of a user, see §4.1) may progress non-linearly.

Our architecture (Fig. 3) employs a BiLSTM
of 9 units that utilises information from both di-
rections of the posting history, up to the current
post pi. Each unit of the BiLSTM takes as input
the compressed signature representation of the cor-
responding Signature Window Network Unit (see
§3.3), formed over short sliding windows within
the timeline up to that point. Thus through the
BiLSTM’s hidden state we obtain a single com-
pressed history representation. Our architecture
preserves the local sequential information through
signatures while also capturing the dependencies
between them in a sequential manner through the
BiLSTM in order to preserve information from the
significant parts of a user’s history.

3.6 Network Optimisation

For a post-level classification task (see §3.1, §4.1),
we concatenate the SBERT representation of the
current post with the history representation ob-
tained from the BiLSTM and the normalised times-
tamp as shown in Fig. 3. By including the times-
tamp, the model can capture signals directly associ-
ated with specific periods in time, e.g. the Covid-19
period. We obtain the final output from:

Ri = FFN(Hi⊕pi⊕ti,norm) ∈ RDBiLSTM+384+1

(5)
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We form a single integrated task-informed repre-
sentation of the user’s overall linguistic content by
finally passing the representation through a feed-
forward network (FFN) with 2 hidden layers. We
add a ReLU activation function and a Dropout layer
between the layers and employ an output linear
layer for 3-class classification prediction.

Sequential tasks from user data like the one we
tackle here (see §4.1) are often heavily imbalanced.
To target this problem we use the alpha-weighted
focal loss (Lin et al., 2017) on the log-softmax of
the output, assigning more importance to minority
classes, with γ controlling the down-weighting of
well-classified samples and α being a class-level
loss weight: L = Focal(ŷi, y; γ, α). The loss func-
tion propagates in the whole network (see Fig. 3),
so that the building block of Signature Window
Network Units as well as the BiLSTM and FFN
are trained together in a single network.

4 Experiments

4.1 Task Definition and Datasets

Task Definition. We apply our model to the lon-
gitudinal task of capturing ‘Moments of Change’
(MoC), the identification of changes in a user’s
mood given a series of sequential posts between
two dates (timeline). Following Tsakalidis et al.
(2022b), we approach this as a supervised 3-class,
post-level sequential classification task distinguish-
ing between: Switches (IS) (post(s) revealing a
sudden mood shift from positive to negative, or
vice versa); Escalations (IE) (gradual user mood
progression from neutral or positive to more posi-
tive, or from neutral or negative to more negative);
None (O) (no change in mood) – see Fig. 4 for
an example of a user’s timeline and the associated
post-level labels. For each post to be classified we
make use of the current post, its timestamp and
historical posts. We report results on post-level
evaluation metrics (Precision, Recall, F1).

Datasets. We make use of the two available
datasets for the task in the English language in
the same way as intended by their authors: (a) Talk-
Life (a peer-to-peer network for mental health sup-
port) (Tsakalidis et al., 2022b) consists of 500 15-
day long user timelines (18,702 posts), each span-
ning [10-124] posts; (b) Reddit from the CLPsych
2022 Shared task (Tsakalidis et al., 2022a) consists
of 256 2-month long user timelines (6,205 posts).
Both datasets were annotated at the post level by

Figure 4: Adaptation of Fig. 1 using only hin and
demonstrating a paraphrased timeline example of the
MoC Task with posts of: Escalations (IE) in orange,
None (O) in gray and a Switch (IS) in green.

annotators who had access to each entire timeline.
Due to the nature of the task, classes are highly im-
balanced with 4.7%/6.6% IS, 10.8%/15.8% IE and
84.5%/77.6% O for TalkLife/Reddit, respectively.
We perform 5-fold cross validation on TalkLife as
in (Tsakalidis et al., 2022b) and keep the train/test
split that was used in CLPsych Shared Task 2022
for Reddit (Tsakalidis et al., 2022a).

4.2 Baseline Models

Reported performance on baselines is based on the
same splits and random seeds for consistency.
(a) For TalkLife, we compare against the following
baselines introduced by Tsakalidis et al. (2022b):
– BERT(f) a post-level (timeline-agnostic) BERT
classifier (Devlin et al., 2018) trained using the
alpha-weighted focal loss (Lin et al., 2017);
– EM-DM a BiLSTM operating on the timeline
level, using as inputs post-level emotion features
derived from DeepMoji (Felbo et al., 2017);
– BiLSTM-bert a timeline-level model consisting
of two stacked BiLSTM networks (trained using
the Cross Entropy loss) taking as its post-level in-
puts the [CLS] tokens from BERT(f). We further
adjust this model to operate on the post-level and its
recent history (29 recent posts, for direct compari-
son with our work) instead of the whole timeline at
once (BiLSTM-bert(hist)).
(b) For Reddit, we considered the following models
from the CLPsych 2022 Shared Task:
– IIITH (Boinepelli et al., 2022), an LSTM-based
model operating on the current post and a window
of its history, trained using a weighted Cross En-
tropy loss function;
– LAMA (AlHamed et al., 2022), an LSTM utilis-
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ing the sequence of the previous posts for a given
target post. Under-sampling was performed on ma-
jority class posts to address class imbalance;
– WResearch (Bayram and Benhiba, 2022), an
XGBoost model (Chen and Guestrin, 2016) using
emotion-based features concatenated with the emo-
tional difference between the current and previous
post, and look-back window abnormality vectors
obtained by a seq2seq model (Provotar et al., 2019);
– UoS (Azim et al., 2022), a multi-task attention
based BiLSTM looking at the whole timeline,
where each steps is a user’s post. The input is
a concatenation of emotion-based representations.

To examine the effect of the signature transforms,
for both datasets, we include a simplified version
of our model SBERT(avg hist), a feed-forward
network of 2 hidden layers, using alpha-weighted
focal loss which takes as input a 384-dimensional
SBERT representation (Reimers and Gurevych,
2019) for the current post concatenated with the
mean of SBERT representations of historical user
posts and the normalised post timestamp. Addi-
tionally, we produce a new fairer baseline model,
called BiLSTM-sbert(hist), for comparison with
both datasets by adjusting BiLSTM-bert (Tsaka-
lidis et al., 2022b) to operate on the post-level and
its recent history (29 recent posts) using SBERT
pre-trained embeddings and focal loss. Lastly, we
include two Naïve classifiers: Majority (always
assigning majority class) and Random (classifying
a post based on the label distributions).

5 Results and Discussion

5.1 Comparison against Baselines

Results on both datasets are presented in Table 1.
Since the MoC task presents a high class imbalance
with the minority classes (IS/IE) being particularly
important, we choose macro-avg F1 as our core per-
formance metric. Our model ranks second best on
both datasets, while it achieves the highest macro-
averaged recall on TalkLife with very competitive
recall on the minority classes, which is particularly
important for anomaly detection tasks such as that
of capturing MoC in mental health.

Our model shows state-of-the-art performance
on TalkLife among baselines that only use his-
torical information. It achieves the second best
performance among all baselines and even sur-
passes some baselines (EM-DM) that have access
to the entire user’s timeline. The best performing
BiLSTM-bert baseline on TalkLife has access to

the entire user’s timeline, while Seq-Sig-Net only
has access up to the current post, enabling real-
time predictions. For a fairer comparison against
our model, we provide a new baseline BiLSTM-
bert(hist) which uses the same architecture and hy-
perparameters for tuning as the original BiLSTM-
bert but with access only to the current post and
its historical data in the timeline. Our model out-
performs BiLSTM-bert(hist) and importantly does
so by a large margin in F1 of the minority classes,
even though it uses dimensionally reduced linguis-
tic representations that are associated with some
information loss.

On Reddit, our model outperforms or performs
on-par with all baselines, including those that have
access to the entire user’s timeline. While BiLSTM-
sbert(hist) scores similarly to Seq-Sig-Net on Red-
dit with respect to macro-avg F1, we show that our
model well outperforms BiLSTM-sbert(hist) on
TalkLife by a clear margin (macro-avg F1: .563 vs
.541), demonstrating its ability to capture historical
information with respect to sudden changes. Since
TalkLife is a platform specifically focused on men-
tal health discussions, it is much more challenging
to spot mood changes compared to Reddit, where
even the mention of a mental health related topic
signals a mood change. This is also quantitatively
shown in literature where on Reddit a post-level
logistic regression on tfidf representations achieves
.492 macro-avg F1 (Tsakalidis et al., 2022a), while
on TalkLife a post-level random forest on tfidf rep-
resentations achieves a much lower performance of
.360 macro-avg F1 (Tsakalidis et al., 2022b).

Beyond its competitive performance and its abil-
ity to model local trajectories of user history, our
architecture provides an end-to-end solution, impor-
tant for real-time application. Strong baselines such
as BiLSTM-bert, BiLSTM-bert(hist) and WRe-
search train separate models for feature extraction
on which they then train a separate classification
model. Apart from being an end-to-end solution,
our model is task agnostic. It is based on encod-
ing multistage language embeddings by addressing
the sequential and temporal aspects of longitudinal
language tasks and it does so without task-specific
features such as emotion representations (contrary
to EM-DM, WResearch and UoS).

5.2 Ablation Study

We examine the effect of incorporating historical
posts (Table 2). When we simply average SBERT
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IS IE O macro-avg Model Type
P R F1 P R F1 P R F1 P R F1 Emotion Future

Ta
lk

L
if

e

Naïve Majority – – – – – – .845 1 .916 .282 .333 .305
Random .047 .047 .047 .108 .108 .108 .845 .845 .845 .333 .333 .333

Post-level BERT(f) (Tsakalidis et al., 2022b) .260 .321 .287 .401 .478 .436 8̇98 .864 .881 .520 .554 .534
Timeline-level EM-DM .553 .118 .193 .479 .351 .405 .880 .948 .913 .631 .472 .504 ✓ ✓

(Tsakalidis et al., 2022b) BiLSTM-bert .397 .264 .316 .568 .461 .508 .898 .936 .917 .621 .553 .580 ✓

Timeline-level SBERT(avg hist) .283 .244 .262 .424 .486 .452 .896 .885 .890 .534 .539 .535
(-signature) BiLSTM-sbert(hist) .258 .272 .264 .442 .506 .468 .901 .879 .890 .534 .553 .541

BiLSTM-bert(hist) .405 .241 .302 .536 .415 .468 .892 .938 .914 .611 .531 .561
Timeline-level (+signature) Seq-Sig-Net (our work) .331 .290 .309 .435 .555 .487 .907 .881 .894 .558 .576 .563

R
ed

di
t

Naïve Majority – .000 .000 – .000 .000 .724 1.000 .840 – .333 .280
Random .066 .066 .066 .158 .158 .158 .776 .776 .776 .333 .333 .333

IIITH (Boinepelli et al., 2022) .206 .524 .296 .402 .630 .491 .954 .647 .771 .520 .600 .519
Timeline-level LAMA (AlHamed et al., 2022) .166 .354 .226 .609 .389 .475 .882 .861 .871 .552 .535 .524

(CLPsych) WResearch (Bayram and Benhiba, 2022) .362 .256 .300 .646 .553 .596 .868 .929 .897 .625 .579 .598 ✓

UoS (Azim et al., 2022) .490 .305 .376 .697 .630 .662 .881 .940 .909 .689 .625 .649 ✓ ✓

Timeline-level SBERT(avg hist) .340 .329 .330 .605 .563 .582 .893 .912 .902 .613 .601 .605
(-signature) BiLSTM-sbert(hist) .463 .407 .430 .629 .637 .630 .895 .901 .898 .663 .648 .653

Timeline-level (+signature) Seq-Sig-Net (our work) .454 .405 .425 .643 .607 .624 .896 .919 .908 .664 .644 .652

Table 1: Results of all models on TalkLife (above) and Reddit (below). Best and second best scores are highlighted.

TalkLife Reddit

Model name Explanation of ablation IS IE O avg IS IE O avg

SBERT post (*) .281 .431 .887 .533 .200 .541 .909 .550
SBERT(avg hist) (*) + mean hist. + t .262 .452 .890 .535 .330 .582 .902 .605
SWNU Network (*) + 1 SWNU + t .296 .477 .894 .556 .308 .623 .911 .614
Seq-Sig-Net (*) + BiLSTM on SWNU + t .309 .487 .894 .563 .425 .624 .908 .652

Table 2: Ablation Studies for Seq-Sig-Net based on
(macro-avg) F1 score using a 2 layer Feed Forward
Network on the final representation for each model.

historical representations and concatenate this to
the current post representation with normalised
time (SBERT(avg hist) model) we achieve better
performance in IS, IE and macro-average F1 for
both TalkLife and Reddit. This demonstrates the
added value of having historical information for
our task. The version of the model that uses a sin-
gle SWNU to encode the recent history of a post
presents improved performance in all metrics and
classes on TalkLife and most metrics on Reddit
(4.3%/11.6% relative improvement on macro-avg
F1 over SBERT post on TalkLife/Reddit, respec-
tively), showcasing the ability of SWNU to effi-
ciently model time windows of user posts. Finally,
Seq-Sig-Net yields the best macro-avg F1 score
(5.6%/18.5% relative improvement over SBERT
post on TalkLife/Reddit) and the best F1 scores for
IS & IE, showing the ability of our model to pro-
duce historical user representations that memorise
influential local parts of a user’s timeline.

5.3 Computational Resources
We assess the resource requirements of Seq-Sig-
Net compared to LSTM-based models by gather-
ing both the computational cost and time require-
ments of Seq-Sig-Net and of the most competitive
baseline based on TalkLife experiments, BiLSTM-
bert(hist), which we present in Table 3. Seq-Sig-
Net requires 12.9 MB of memory (1.7M param-

Model name Memory (MB) Parameters (million) Avg Training time (minutes)

BiLSTM-bert(hist) 18.9 2.5 36.7
Seq-Sig-Net 12.9 1.7 33.9

Table 3: Memory and Time Requirements for training
BiLSTM-bert(hist) without accounting for the initial
BERT fine-tuning and Seq-Sig-Net.

eters) while BiLSTM-bert(hist) requires 18.9MB
(2.5M parameters) making the latter 46.5% more
expensive to train – without accounting for addi-
tional significant memory requirements for fine tun-
ing BERT representations in the first place. We also
performed runtime experiments on one seed and
all five folds for both models and obtained the aver-
age based on five experiments: BiLSTM-bert(hist)
requires 8.3% more time, (again without consider-
ing the initial BERT fine-tuning step). Since the
remaining competitive baselines are also LSTM-
based with multiple units – e.g., UoS consists of
a larger BiLSTM (100 units compared to 29 used
by BiLSTM-bert(hist), plus an additional multi-
head attention layer) – we expect them to be even
more expensive. Therefore, apart from its compet-
itive performance, Seq-Sig-Net is much greener,
operating on fewer parameters and compressed in-
formation.

5.4 Quantitative Analysis

Peaks of Escalations (IEP) and Beginning of
Switches (ISB) marked during the annotation of
Escalations (IE) and Switches (IS) in mood con-
stitute critical points (Tsakalidis et al., 2022b). In
Fig. 5, we compare BiLSTM-bert(hist) against our
model (Seq-Sig-Net) in capturing these points with
respect to the distance (in number of posts) since
the last IE or IS in a user’s timeline on TalkLife
data. For clarity we bin performance in 3-post steps
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Figure 5: Performance overall vs on peaks (IE peaks &
start of IS) for BiLSTM-bert(hist) and Seq-Sig-Net.

and label cases without any prior IS or IE in the
first bin. Our model well outperforms BiLSTM-
bert(hist) in identifying peaks even when the last
signal of a moment of change appears more than 4-
posts in the past (which is the visible history length
by the SWNU – see §3.3). This demonstrates the
ability of Seq-Sig-Net to efficiently compress lo-
cal information sequentially and model long-range
effects. Our model’s overall performance starts
deteriorating on the overall Macro-F1 (all) met-
ric when the last IS/IE is more than 12 posts in the
past. We assume there is a trade-off between captur-
ing detail in posts within short-range vs capturing
coarser but longer-range information. This could
be remedied potentially by changing the range of
posts accessible to the SWNU.

5.5 Qualitative Analysis
We evaluate the effectiveness of the learnable dy-
namic user representations from different models
for the task by clustering the resulting embeddings.
More specifically, we extracted the representations
on TalkLife data before the output layer in Seq-
Sig-Net and BiLSTM-bert(hist) as well as the fine-
tuned BERT representations and we used UMAP
to reduce them in 2 dimensions. In Fig. 6 we plot
a randomly selected subset of representations from
each model per class, to study how well the rep-
resentations can distinguish the different classes.
The reduced representations from both BiLSTM-
bert(hist) and Seq-Sig-Net achieve better separa-
tion than the Fine-tuned BERT representations:
there is less mixing of clusters in the middle area of
BiLSTM-bert(hist) and Seq-Sig-Net compared to
the middle area of fine-tuned BERT representations.
This highlights the importance of sequential model-
ing. Table 4 shows three popular clustering metrics
for each representation type on Fig. 6 in order to
better quantify class separation. When extracting

Silhouette (∼1) Calinski Harabasz ↑ Davies Bouldin ↓
BERT fine-tuned -0.091 134.01 3.15

BiLSTM-bert(hist) -0.050 275.51 2.59
Seq-Sig-Net -0.014 294.66 2.45

Table 4: Clustering Metrics for representations of each
model (models illustrated in Fig. 6)

Figure 6: Representations from each model by class.

different clustering scores based on the reduced
representations, Seq-Sig-Net performs best across
all three metrics, showcasing the strong clustering
ability of our model representations and the ad-
vantage offered by signatures in pooling features
indicative of local trajectories.

6 Conclusion and Future Work

We present a novel sequential model architecture
combining RNNs with path signatures, applicable
to longitudinal tasks which consider timelines of
social media posts. Our model achieves effective
compression of a user’s history through both sig-
nature transforms and sequential modeling via a
BiLSTM. It does so through encoding the local pro-
gression of textual information in history through
signatures in an integrated, robust and computa-
tionally efficient way. The use of signatures within
our network allows for the incorporation of non-
parametric higher order information in a learnable
way and combines this benefit with the sequen-
tial modeling of local and long-term information
through LSTMs. We evaluate our model on per-
sonalised longitudinal language modelling, on the
task of identifying changes in a user’s mood. Our
model well outperforms or performs on-par with all
baselines for this task operating on historical data,
for both of the two existing datasets, from the Talk-
Life and Reddit platforms. In the future we plan
to investigate direct injection of signature trans-
forms into Transformer networks for time-sensitive
modelling as well as explore other time-sensitive
NLP tasks, such as rumour verification using social
media threads (Zubiaga et al., 2016).
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Limitations

Our work addresses the sequential task of modeling
temporal user data through the use of path signa-
tures as a tool for providing low-dimensional trajec-
tories. Although in our work we inject a post-level
timestamp in the final representations, the path sig-
nature element is agnostic of time and rather only
makes use of the sequence order. It therefore po-
tentially hinders the model’s ability to efficiently
model long timelines (unlike ours) with significant
and highly irregular lags between posts. We plan
to address this in future work. Additionally, we
understand that by employing truncated path signa-
tures in the model, we loose information that can
potentially provide additional signal through the
compression that happens both in dimensionality
reduction and in the signature itself. We have eval-
uated our model on a longitudinal mental health
task. While the proposed architecture is in princi-
ple task agnostic we have not yet evaluated it on
other longitudinal tasks on social media.
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A Hyperparameters

Model Experimental Settings: We select the best
model for each of the 5 folds (for TalkLife)/ 1 fold
(for Reddit) using the best validation F1 macro-
average score on 70 epochs with early stopping
(patience of 2 for TalkLife and 3 for Reddit). We
used Adam optimiser (Kingma and Ba, 2014) with
a weight decay of 0.0001. Following Tsakalidis
et al. (2022a,b), we use the same train/test splits
on both TalkLife and Reddit for direct comparison.
For reported results we also used the same five
random seeds of (0, 1, 12, 123, 1234), averaging
them out at the end for both TalkLife and Reddit.
Dev set was formed on 33% of the train set.

Hyperparameter selection is based on the val-
idation set, through grid search with parameters:
learning rate ∈ [0.0001, 0.0003], batch size of 64,
reduced UMAP dimensions of 15, Convolution
1D reduced dimensions ∈ [10, 12], LSTM hidden
dimensions of SWNU ∈ [10, 12], BiLSTM hid-
den dimensions ∈ [200, 300], dimensions of feed-
forward layers ∈ [32, 64], dropout rate of 0.1, γ
of focal loss ∈ [2, 3] and alpha of

√
1/pt with pt

being the probability of class t in the training data.
The best hyperparameters on TalkLife data

are: learning rate= 0.0003, feed-forward layer
dimensions=32, γ=2, Convolution 1D reduced
dimensions=12 , LSTM hidden dimensions of
SWNU=10 and BiLSTM hidden dimensions=300.
For Reddit the best hyperparameters are: learning
rate= 0.0001, feed-forward layer dimensions= 64,
γ=2, Convolution 1D reduced dimensions=10,
LSTM hidden dimensions of SWNU=10 and
BiLSTM hidden dimensions=200.

BiLSTM-bert(hist): For consistency we repro-
duced the history version of the BiLSTM-bert
model as reported by Tsakalidis et al. (2022b). We
used fine-tuned BERT representations trained on
BERT-base (uncased) with a dropout rate of 0.25
and a linear layer on the [CLS] output, trained for
3 epochs using Adam optimiser and a batch size of
8. These were based on focal loss with γ =2 and α

of
√
1/pt with pt being the probability of class t

in the training data.
We used the BERT fine-tuned model with focal

loss above and obtained the representation inputs
in the BiLSTM-bert(hist) model, for classification
on the post-level. BiLSTM-bert(hist) models each
current post and its recent history using 29 most
recent posts in total.

Following the exact same hyperparameters as
Tsakalidis et al. (2022a), we explored BiLSTM
units ∈ [64, 128, 256] for the first and 124 units
for the second BiLSTM, dropout rate ∈ [0.25,
0.50, 0.75] and an output layer. Similar to the
authors we used cross entropy loss with batch size
∈ [16, 32, 64] and learning rate ∈ [0.001, 0.0001].
We employed early stopping (with patience
2) on 100 epochs and ran the final model on
the same five random seeds of (0, 1, 12, 123, 1234).

BiLSTM-sbert(hist): We reproduced the his-
tory version of the BiLSTM-bert model as
per Tsakalidis et al. (2022b). We used pre-
trained sentenceBERT representations (Reimers
and Gurevych, 2019) of 384 dimensions to obtain
the representation inputs in the BiLSTM-sbert(hist)
model, for post-level classification. BiLSTM-
sbert(hist) models each current post and its recent
history using 29 most recent posts in total.

Following the exact same hyperparameters as
Tsakalidis et al. (2022a), we explored BiLSTM
units ∈ [64, 128, 256] for the first and 124 units
for the second BiLSTM, dropout rate ∈ [0.25, 0.50,
0.75] and an output layer. Similar to the authors
we explored batch size ∈ [16, 32, 64] and learning
rate ∈ [0.001, 0.0001]. For the loss function we
employed focal loss for direct comparison with Seq-
Sig-Net that also uses focal loss with γ ∈ [2, 3] and
alpha of

√
1/pt (with pt being the probability of

class t in the training data).
We employed early stopping (with patience 2

for TalkLife and 3 for Reddit) on 100 epochs and
ran the final model on the same five random seeds
of (0, 1, 12, 123, 1234).

Ablation Study (including SBERT(avg hist)):
We performed hyper-parameter tuning for all the
models of the study using Adam optimiser (Kingma
and Ba, 2014) with a weight decay of 0.0001 and
focal loss (Lin et al., 2017). We used the exact
same train/test splits for direct comparison as well
as the same five random seeds of (0, 1, 12, 123,
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1234).
For hyperparameter tuning of ablation models,

including SBERT(avg hist) we followed a similar
regime with our main experimental setting, using
a learning rate ∈ [0.0001, 0.0003], batch size of
64, dimensions of feed-forward layers ∈ [32, 64],
dropout rate of 0.1, γ of focal loss ∈ [2, 3] and al-
pha of

√
1/pt with pt being the probability of class

t in the training data. For the ablation of SWNU
Network we also used reduced UMAP dimensions
of 15, Convolution 1D reduced dimensions ∈ [10,
12] and LSTM hidden dimensions ∈ [10, 12].

B Libraries

The experiments ran in a Python 3.8.13 environ-
ment with the following libraries: torch (1.8.1),
signatory (1.2.6), numpy (1.19.5), pandas (1.4.2),
sentence_transformers (2.0.0), scikitlearn (1.0.1),
umap (0.5.3).

C Infrastructure

The runs were performed on a Standard F16s_v2,
with 16 CPUs and 32 GiB of RAM.

5029



ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

’Limitations’ paragraph after the Conclusion and Future Work section

�3 A2. Did you discuss any potential risks of your work?
’Ethics Statement’ paragraph, after the ’Limitations’

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
Both the Abstract and the Introduction summarise our main claims. Our contributions are listed at
the end of the Introduction.

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
Section 4.1

�3 B1. Did you cite the creators of artifacts you used?
Section 4.1

�3 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Provided in the ’Ethics Statement’

�3 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?

’Ethics statement’ and references in Section 4.1 in using the artefacts in the same way as the authors
intended, while also using the same settings as referenced in Appendix A

�3 B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?

’Ethics statement’

�3 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
We mention the language of the data at Section 4.1 and the platforms from which they were obtained.
We mention throughout this Section and in the rest of the paper that the artifacts are around the
mental health domain.

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Sections 4.1 and Appendix A

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

5030

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/


C �3 Did you run computational experiments?
Our experimental setup is explained in Section 4. Further ablation studies and analyses are reported in

sections 5.2-5.5. Hyperparameters are reported in the Appendix A (’Hyperparameters’). The libraries we
have used are provided in Appendix B (’Libraries’).

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
We provide the number of parameters and memory requirements for our model and the most competi-
tive baseline as well as the computational budget in Section 5.3 (’Computational Resources’). We
also provide a detailed list of hyperparameters and random seeds we have used in our experiments
(Appendix A). The infrastructure we have used is provided in Appendix C.

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
All of the information is provided in Appendix A.

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
We report average statistics from our runs with random seeds (clarified in Appendix A). We do not
report all results per fold/run/dataset, as we thought this would be overwhelming (5 runs with 5
seeds on two datasets).

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Yes. We have detailed our packages and their corresponding versions in Appendix B (‘Libraries’)
and elaborated around specifics of a package in Section 3.3

D �3 Did you use human annotators (e.g., crowdworkers) or research with human participants?
We work with data shared in online platforms by real users. We did not use any annotators.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
Not applicable. Left blank.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
Not applicable. Left blank.

�3 D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
In the ’Ethics Statement’. We have IRB ethics for the work as mentioned in the ’Ethics Statement’,
while we only work with existing datasets.

�3 D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
’Ethics Statement’

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Not applicable. Left blank.

5031


